Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices
Abstract
:1. Introduction
1.1. Push-Pull Ventilation Devices
1.1.1. Principle of Operation and Its Consequences
1.1.2. Literature Review: Air Exchange Efficiency
1.2. Aim of this Study
2. Materials and Methods
2.1. Theory: Ventilation Effectiveness
2.1.1. Age of Air
- The density of unsaturated moist air is constant for the entire measurement time interval and volume:
- The molar mass of unsaturated moist air is constant for the entire measurement time interval and volume:
- The volume flow is constant for the entire measurement time interval:
- The outdoor/background CO2-concentration is constant for the entire measurement time interval:
2.1.2. Global Absolute Air Exchange Efficiency
2.1.3. Local Air Exchange
2.2. Methodology of the Measurements
2.2.1. Investigated Ventilation Units
2.2.2. Experimental Setup
2.2.3. Uncertainties
3. Results
3.1. Observations with Regard to the Measurement Set-Up & Technology
- They cut off the concentrations >2000 ppm.
- They measure a concentration peak during the first 2 minutes after initialisation (see MP21e)
- They measure concentration gradients and the overall decay slope, but their maximal temporal resolution is usually not high enough for the concentration variation between supply and exhaust air phase (compare {MP01, …,MP04, MP06} to the others)
- They have significant differences regarding their temporal resolution compare MP16 to the other identical sensors)
- They are thermal hotspots, which are warmer than the air around them, since they are directly powered with ~230 V. This circumstance leads to air movement influencing the air distribution.
3.2. Local Air Exchange Index
3.3. Global Air Exchange Efficiency
4. Discussion
4.1. Effect of the Provided Air Flow Rate Level
4.2. Effect of Non-Isothermal Enclosures
4.3. Effect of Non-Isothermal Supply Air
4.4. Effect of Human Heat Dissipation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Dimensions | Indexes & Operators [41] | |||
C | -concentration | ppm | da | dry air |
R | range | - | moist air | |
n | air exchange rate | - | e | exhaust air |
t | time | s | local point i in space | |
T | temperature | K | local point j in space | |
u | velocity | time average | ||
contaminant removal | - | 〈 · 〉 | spacial average | |
air exchange efficiency | - | P | probe | |
heat recovery rate | % | N | nummer of sensors | |
relative humidity | %rh | exh | exhaust | |
density | sup | supply | ||
temperature | °C | out | outdoor | |
air age | s | entire closed interval | ||
nominal time const. | s | for all | ||
volume flow | element of | |||
X | absolute humidity | logical and | ||
M | molar mass | number of elements |
Appendix A
Position | = 15 m3·h−1 | = 28 m3·h−1 | ||
---|---|---|---|---|
01 | 0.73 ± 0.02 | 0.95 ± 0.11 | 0.61 ± 0.02 | 0.87 ± 0.16 |
02 | 0.79 ± 0.02 | 1.04 ± 0.10 | 0.62 ± 0.02 | 0.88 ± 0.16 |
03 | 0.73 ± 0.02 | 0.96 ± 0.10 | 0.60 ± 0.02 | 0.85 ± 0.16 |
04 | 0.76 ± 0.02 | 1.00 ± 0.10 | 0.61 ± 0.02 | 0.87 ± 0.16 |
05 | 0.69 ± 0.02 | 0.91 ± 0.11 | 0.65 ± 0.02 | 0.92 ± 0.15 |
06 | 0.70 ± 0.02 | 0.92 ± 0.11 | 0.64 ± 0.02 | 0.91 ± 0.15 |
07 | 0.84 ± 0.03 | 1.10 ± 0.09 | 0.72 ± 0.02 | 1.02 ± 0.14 |
08 | 0.75 ± 0.03 | 0.98 ± 0.10 | 0.69 ± 0.02 | 0.98 ± 0.15 |
09 | 0.71 ± 0.03 | 0.93 ± 0.11 | 0.63 ± 0.02 | 0.90 ± 0.15 |
10 | 0.71 ± 0.03 | 0.93 ± 0.11 | 0.70 ± 0.02 | 0.99 ± 0.15 |
11 | 0.74 ± 0.03 | 0.96 ± 0.10 | 0.75 ± 0.02 | 1.06 ± 0.14 |
14 | 0.72 ± 0.03 | 0.94 ± 0.11 | 0.80 ± 0.02 | 1.14 ± 0.13 |
15 | 0.71 ± 0.03 | 0.93 ± 0.11 | 0.79 ± 0.02 | 1.12 ± 0.13 |
16 | 1.02 ± 0.03 | 1.34 ± 0.08 | 1.12 ± 0.02 | 1.59 ± 0.11 |
17 | - | - | - | - |
18 | 0.84 ± 0.03 | 1.11 ± 0.09 | 0.85 ± 0.02 | 1.21 ± 0.13 |
19 | 0.90 ± 0.03 | 1.18 ± 0.09 | 0.76 ± 0.02 | 1.08 ± 0.14 |
R | 0.33 | 0.43 | 0.52 | 0.74 |
0.09 | 0.11 | 0.13 | 0.18 |
Position | = 15 m3·h−1 | = 28 m3·h−1 | ||
---|---|---|---|---|
01 | 0.87 ± 0.02 | 0.86 ± 0.08 | 0.74 ± 0.02 | 0.86 ± 0.13 |
02 | 0.95 ± 0.02 | 0.94 ± 0.07 | 0.74 ± 0.02 | 0.85 ± 0.13 |
03 | 0.94 ± 0.02 | 0.93 ± 0.07 | 0.78 ± 0.02 | 0.90 ± 0.13 |
04 | 1.01 ± 0.02 | 1.01 ± 0.07 | 0.82 ± 0.02 | 0.96 ± 0.12 |
05 | 1.31 ± 0.02 | 1.30 ± 0.06 | 1.13 ± 0.02 | 1.31 ± 0.10 |
06 | 1.13 ± 0.02 | 1.12 ± 0.06 | 0.69 ± 0.02 | 0.80 ± 0.13 |
07 | 1.11 ± 0.03 | 1.10 ± 0.07 | 1.06 ± 0.02 | 1.23 ± 0.11 |
08 | 0.96 ± 0.03 | 0.96 ± 0.07 | 0.90 ± 0.02 | 1.04 ± 0.11 |
09 | 0.95 ± 0.03 | 0.94 ± 0.07 | 0.81 ± 0.02 | 0.94 ± 0.12 |
10 | 1.08 ± 0.03 | 1.07 ± 0.07 | 1.24 ± 0.02 | 1.44 ± 0.10 |
11 | 1.11 ± 0.03 | 1.10 ± 0.06 | 1.26 ± 0.02 | 1.47 ± 0.10 |
14 | 0.85 ± 0.03 | 0.85 ± 0.07 | 0.75 ± 0.02 | 0.87 ± 0.13 |
15 | 0.79 ± 0.03 | 0.78 ± 0.08 | 0.68 ± 0.02 | 0.80 ± 0.14 |
16 | 1.15 ± 0.03 | 1.14 ± 0.06 | 0.88 ± 0.02 | 1.02 ± 0.12 |
17 | 1.12 ± 0.03 | 1.11 ± 0.06 | 1.12 ± 0.02 | 1.30 ± 0.11 |
18 | 1.03 ± 0.03 | 1.02 ± 0.07 | 0.84 ± 0.02 | 0.97 ± 0.12 |
19 | 1.03 ± 0.03 | 1.02 ± 0.07 | 0.77 ± 0.02 | 0.89 ± 0.13 |
R | 0.52 | 0.52 | 0.58 | 0.67 |
0.13 | 0.12 | 0.19 | 0.22 |
Position | = 15 m3·h−1 | = 28 m3·h−1 | ||
---|---|---|---|---|
01 | 0.84 ± 0.02 | 0.98 ± 0.08 | 0.68 ± 0.02 | 0.96 ± 0.14 |
02 | 0.92 ± 0.02 | 1.08 ± 0.07 | 0.73 ± 0.02 | 1.03 ± 0.13 |
03 | 0.90 ± 0.02 | 1.05 ± 0.07 | 0.69 ± 0.02 | 0.97 ± 0.14 |
04 | 0.89 ± 0.02 | 1.04 ± 0.07 | 0.74 ± 0.02 | 1.05 ± 0.13 |
05 | 1.10 ± 0.02 | 1.18 ± 0.07 | 0.91 ± 0.02 | 1.28 ± 0.12 |
06 | 0.78 ± 0.02 | 0.91 ± 0.08 | 0.60 ± 0.02 | 0.84 ± 0.15 |
07 | 0.78 ± 0.03 | 0.91 ± 0.08 | 0.83 ± 0.02 | 1.17 ± 0.12 |
08 | 0.90 ± 0.03 | 1.06 ± 0.07 | 0.66 ± 0.02 | 0.94 ± 0.14 |
09 | 0.90 ± 0.03 | 1.05 ± 0.07 | 0.64 ± 0.02 | 0.90 ± 0.15 |
10 | 0.99 ± 0.03 | 1.16 ± 0.07 | 0.87 ± 0.02 | 1.23 ± 0.12 |
11 | 1.03 ± 0.03 | 1.20 ± 0.07 | 0.85 ± 0.02 | 1.20 ± 0.12 |
14 | 0.64 ± 0.03 | 0.75 ± 0.07 | 0.55 ± 0.02 | 0.78 ± 0.16 |
15 | 0.59 ± 0.03 | 0.69 ± 0.10 | 0.53 ± 0.02 | 0.75 ± 0.17 |
16 | 0.92 ± 0.03 | 1.07 ± 0.07 | 0.78 ± 0.02 | 1.10 ± 0.13 |
17 | 1.05 ± 0.03 | 1.23 ± 0.07 | 1.06 ± 0.02 | 1.50 ± 0.11 |
18 | 0.86 ± 0.03 | 1.01 ± 0.08 | 0.65 ± 0.02 | 0.92 ± 0.15 |
19 | 0.87 ± 0.03 | 1.02 ± 0.08 | 0.66 ± 0.02 | 0.94 ± 0.14 |
R | 0.46 | 0.54 | 0.53 | 0.75 |
0.12 | 0.14 | 0.13 | 0.19 |
Position | = 15 m3·h−1 | = 28 m3·h−1 | ||
---|---|---|---|---|
01 | 1.06 ± 0.02 | 0.88 ± 0.05 | 0.71 ± 0.02 | 0.86 ± 0.12 |
02 | 1.17 ± 0.02 | 0.97 ± 0.05 | 0.76 ± 0.02 | 0.93 ± 0.12 |
03 | 1.11 ± 0.02 | 0.92 ± 0.05 | 0.75 ± 0.02 | 0.92 ± 0.12 |
04 | 1.19 ± 0.02 | 0.99 ± 0.05 | 0.84 ± 0.02 | 1.03 ± 0.11 |
05 | 1.59 ± 0.02 | 1.32 ± 0.04 | 1.03 ± 0.02 | 1.26 ± 0.10 |
06 | 1.25 ± 0.02 | 1.04 ± 0.05 | 0.78 ± 0.02 | 0.95 ± 0.12 |
07 | 1.37 ± 0.03 | 1.14 ± 0.05 | 0.95 ± 0.02 | 1.16 ± 0.11 |
08 | - | - | 0.67 ± 0.02 | 0.82 ± 0.13 |
09 | - | - | 0.62 ± 0.02 | 0.75 ± 0.14 |
10 | - | - | 0.82 ± 0.02 | 1.00 ± 0.11 |
11 | - | - | 0.86 ± 0.02 | 1.05 ± 0.11 |
14 | 1.01 ± 0.03 | 0.84 ± 0.06 | 0.67 ± 0.02 | 0.81 ± 0.13 |
15 | 0.97 ± 0.03 | 0.81 ± 0.05 | 0.64 ± 0.02 | 0.78 ± 0.13 |
16 | 1.40 ± 0.03 | 1.16 ± 0.05 | 1.03 ± 0.02 | 1.25 ± 0.10 |
17 | - | - | 0.88 ± 0.02 | 1.08 ± 0.11 |
18 | 1.28 ± 0.03 | 1.07 ± 0.05 | 0.89 ± 0.02 | 1.09 ± 0.11 |
19 | 1.29 ± 0.03 | 1.07 ± 0.05 | 0.87 ± 0.02 | 1.07 ± 0.11 |
R | 0.62 | 0.51 | 0.41 | 0.51 |
0.17 | 0.14 | 0.12 | 0.15 |
References
- Bundesverband der Deutschen Heizungsindustrie e., V. Entwicklung Wärmemarkt Deutschland 2019; Köln. Available online: www.bdh-koeln.de/fileadmin/user_upload/Pressemeldungen/Marktentwicklung_Waermemarkt_2019.pdf (accessed on 13 July 2020).
- Maurer, K. Warum die Wohnraumlüftung bei der Planung oft unter den Tisch fällt. Available online: https://www.haustec.de/klima-lueftung/lueftungstechnik/warum-die-wohnraumlueftung-bei-der-planung-oft-unter-den-tisch?page=all. (accessed on 29 October 2020).
- Bundesverband der Deutschen Heizungsindustrie e., V. Marktentwicklung Wärmemarkt Deutschland 2018; Köln. Available online: www.bdh-koeln.de/fileadmin/user_upload/Marktentwicklung_Deutschland_2018.pdf (accessed on 13 July 2020).
- Bundesverband der Deutschen Heizungsindustrie e., V. Marktentwicklung Wärmemarkt Deutschland 2017; Köln. Available online: www.bdh-koeln.de/fileadmin/user_upload/pressemitteilungen_pdf/Marktentwicklung_Waermemarkt_2017.pdf (accessed on 22 June 2018).
- Maier, D. Aufbau und Durchführung einer Mixed-Methods-Studie zu Lüftungsverhalten und Raumklima sowie der Einstellung bezüglich Lüftungssystemen. Master’s Thesis, Katholische Universität Eichstätt-Ingolstadt, Eichstätt, Ingolstadt, 2020. [Google Scholar]
- Manz, H.; Huber, H.; Schälin, A.; Weber, A.; Ferrazzini, M.; Studer, M. Performance of single room ventilation units with recuperative or regenerative heat recovery. Energy Build. 2000, 31, 37–47. [Google Scholar] [CrossRef]
- Delegierte Verordnung (EU), Nr. 1254/2014 der Komission—Vom 11. Juli 2014—Zur Ergänzung der Richtlinie 2010/30/EU des Europäischen Parlaments und des Rates im Hinblick auf die Kennzeichnung von Wohnraumlüftungsgeräten in Bezug auf den Energieverbrauch: EU 1254/2014.; EUR-Lex Access to European Union Law: Brussels, Belgium, 2014; pp. 27–45.
- Merzkirch, A. Energieeffizienz, Nutzerkomfort und Kostenanalyse von Lüftungsanlagen in Wohngebäuden: Feldtests von neuen Anlagen un Vorstellung bedarfsgeführter Prototypen. Ph.D. Thesis, University of Luxembourg, Luxemburg, 2015. [Google Scholar]
- Mathis, P.D.-I.; Röder, T.S.; Klein, B.D.-I.; Hartmann, T.D.-I.; Knaus, C.D.-I. EwWalt—Energetische Bewertung der dezentralen kontrollierten Wohnraumlüftung in alternierender Betriebsweise. Abschlussbericht. Aktenzeichen SWD-10.08.18.7-16.32; TGA Report. 2019. Available online: https://downloads.fgk.de/335_TGA-Report_06_EwWalt.pdf (accessed on 8 July 2019).
- Deutsches Institut für Normung, e.V. Raumlufttechnik—Teil 6: Lüftung von Wohnungen—Allgemeine Anforderungen, Anforderungen an die Auslegung, Ausführung, Inbetriebnahme und Übergabe sowie Instandhaltung; Beuth Verlag GmbH: Berlin, Germany, 2019; 91.140.30 (1946-6). [Google Scholar] [CrossRef]
- LUNOS. Lüftungstechnik GmbH für Raumluftsysteme. Technisches Infoblatt. Lüftung mit Wärmerückgewinnung—e² Einschub. 2016. Available online: www.lunos.de (accessed on 10 July 2020).
- Merckx, M.; Bruyneel, G.; Laverge, J.; Pollet, I. Temperature, draft and ventilation efficiency of room based decentralised heat recovery ventilation systems. In Proceedings of the Smart Ventilation for buildings 39th AIVC Conference 7th TightVent Conference 5th Venticool ConferenceSepember 2018, Antibes Juan-Les-Pins, France, 18–19 September 2018; Air Infiltration and Ventilation Centre, Venticool—The International Platform for Ventilative Cooling, TightVent Europe—Building and Ductwork Airtightness Platform, Eds.; Available online: www.aivc.org/resource/temperature-draft-and-ventilation-efficiency-room-based-decentralised-heat-recovery (accessed on 22 October 2018).
- Cui, S.; Cohen, M.; Stabat, P.; Marchio, D. CO2 tracer gas concentration decay method for measuring air change rate. Build. Environ. 2015, 84, 162–169. [Google Scholar] [CrossRef]
- Sandberg, M. What is ventilation efficiency? Build. Environ. 1981, 16, 123–135. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung, e.V.; International Organization for Standardization. Innenraumluftverunreinigungen—Teil 8: Bestimmung des lokalen Alters der Luft in Gebäuden zur Charakterisierung der Lüftungsbedingungen (ISO 16000-8:2007); Beuth Verlag GmbH: Berlin, Germany, 2008; Available online: https://www.beuth.de/de/norm/din-iso-16000-8/102342071 (accessed on 18 May 2018). [CrossRef]
- Goodwin, E.T. The evaluation of integrals of the form. Math. Proc. Camb. Phil. Soc. 1949, 45, 241–245. [Google Scholar] [CrossRef]
- Mundt, E.; Mathisen, H.M.; Nielsen, P.V.; Moser, A. Ventilation Effectiveness; Rehva: Brussels, Belgium, 2004; ISBN 9782960046809. [Google Scholar]
- Roulet, C.-A.; Vandaele, L. Air Flow Patterns within Buildings, Measurement Techniques. Air Leakage Measurement Methods, Air flow Measurement Methods, Measurement Methods Related to Efficiency, Measurements on Ventilation Systems. Technical Note AIVC 34; Air Infiltration and Ventilation Centre: Coventry, Great Britain, 1991; ISBN 0946075646. [Google Scholar]
- Maas, A. Experimentelle Quantifizierung des Luftwechsels bei Fensterlüftung. Ph.D. Thesis, Universität Gesamthochschule Kassel, Kassel, Germany, 1995. [Google Scholar]
- Sandberg, M. Prof. Ph.D (Eng). The Multi-chamber Theory Reconsidered from the Viewpoint of Air Quality Studies // The multi-chamber theory reconsidered from the viewpoint of air quality studies. Build. Environ. 1984, 19, 221–233. [Google Scholar] [CrossRef]
- International Organization for Standardization; European Committee for Standardization; Deutsches Institut für Normung e.V. Wärmetechnisches Verhalten von Gebäuden und Werkstoffen—Bestimmung des Spezifischen Luftvolumenstroms in Gebäuden—Indikatorgasverfahren (ISO 12569:2017); Deutsche Fassung EN ISO 12569:2017, 1st ed.; Beuth Verlag GmbH: Berlin, Germany, 2018; 91.120.10 (12569). [Google Scholar] [CrossRef]
- Skaaret, E. Contaminant removal performance in terms of ventilation effectiveness. Environ. Int. 1986, 12, 419–427. [Google Scholar] [CrossRef]
- Novoselac, A.; Srebric, J. Comparison of Air Exchange Efficiency and Contaminant Removal Effectiveness as IAQ Indices. ASHRAE Trans. 2003. Available online: www.caee.utexas.edu/prof/novoselac/Publications/Novoselac_ASHRAE_Transactions_2003.pdf (accessed on 29 October 2020).
- Kuber, T. Energy Evaluation of Decentralized Ventilation Systems. Master’s Thesis, Hochschule Offenburg, Offenburg, Germany, 2014. [Google Scholar]
- Testo SE & Co. KGaA. CO2 probe—CO2 probe: Order-Nr. 0632 1240. Available online: https://www.testo.com/en-US/co2-probe/p/0632-1240 (accessed on 12 October 2020).
- Testo SE & Co. KGaA. Standard Humidity/Temperature Probe (Ø 21 mm): Order-Nr. 0636 9740. Available online: https://www.testo.com/en-SG/standard-ambient-air-probe-up-to-70degc/p/0636-9740 (accessed on 13 October 2020).
- Testo SE & Co. KGaA. Comfort Level Probe for Measuring Degree of Turbulence, with Telescopic Handle and Stand. Fulfills EN 13779 requirements: Order-Nr. 0628 0009. Available online: https://www.testo.com/en-TH/comfort-level-probe-for-measuring-degree-of-turbulence-with/p/0628-0009 (accessed on 12 October 2020).
- Thermokon Sensortechnik GmbH EasySens®–Transmitter–Humidity–SR65 rH. Available online: www.thermokon.de/en/products/easysensr-transmitter/humidity/sr65-rh/ (accessed on 12 October 2020).
- Testo SE & Co. KGaA. Temperature Probe Ø 12 mm: Order-Nr. 0636 9743. Available online: https://www.testo.com/en-IN/temperature-probe-o-12-mm/p/0636-9743 (accessed on 12 October 2020).
- Testo SE & Co. KGaA. IAQ probe including tripod: Order-Nr. 0632 1543. Available online: https://www.testo.com/en-US/iaq-probe-including-tripod/p/0632-1543 (accessed on 12 October 2020).
- Testo SE & Co. KGaA. Comfort Level Probe: Order-Nr. 0628 0143. Available online: https://www.testo.com/en-US/comfort-level-probe/p/0628-0143 (accessed on 12 October 2020).
- Afriso Euro Index GmbH. Datenblatt—CO2-Sensor. 2020. Available online: https://www.afriso.com/ix_pim_assets/PDF/6/86/286/CO2-Sensor-DB.pdf (accessed on 13 October 2020).
- Deutsches Institut für Normung, e.V.; European Committee for Standardization. Energetische Bewertung von Gebäuden – Lüftung von Gebäuden—Teil 3: Lüftung von Nichtwohngebäuden—Leistungsanforderungen an Lüftungs- und Klimaanlagen und Raumkühlsysteme (Module M5-1, M5-4); Deutsche Fassung EN 16798-3:2017, 1st ed.; Beuth Verlag GmbH: Berlin, Germany, 2017; 16798-3 (16798-3); Available online: http://perinorm-fr.redi-bw.de/volltexte/CD21DE14/2596017/2596017.pdf? (accessed on 19 February 2019). [CrossRef]
- Deutsches Institut für Normung, e.V.; European Committee for Standardization; International Organization for Standardization. Umgebungsklima Instrumente zur Messung physikalischer Größen (ISO 7726:1998) Deutsche Fassung EN ISO 7726:2001. DIN EN ISO 7726, 1st ed.; Beuth Verlag GmbH: Berlin, Germany, 2002; 13.040.20 (7726); Available online: http://fhgonline.fhg.de/bibliotheken/ise/DIN_EN_ISO_7726_April_2002.pdf (accessed on 1 September 2017).
- LUNOS. Lüftungstechnik GmbH für Raumluftsysteme. e² mit Wärmerückgewinnung: Kontrollierte Wohnungslüftung mit dem e² mit Wärmerückgewinnung. Available online: https://www.lunos.de/alle-produkte/e%C2%B2 (accessed on 10 July 2020).
- Hörberg, C. Lüftungswirksamkeit und hygrothermische Behaglichkeit von alternierend arbeitenden fassadenintegrierten Lüftungsgeräten. Master’s Thesis, Hochschule Biberach, Biberach, Germany, 2019. [Google Scholar]
- International Electrotechnical Commission. Uncertainty of Measurement Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995), 2011 (98-3 Supplement 2). Available online: www.iso.org/standard/50461.html (accessed on 18 May 2018).
- Klein, B.D.-I.; Siebler, L. Prüfverfahren für dezentrale alternierende Wohnungslüftungsgeräte. HLH 2018, 69, 33–36. [Google Scholar]
- Schmidt, E.; Beckmann, W. Das Temperatur- und Geschwindigkeitsfeld vor einer Wärme abgebenden senkrechten Platte bei natürlicher Konvektion. Tech. Mech. und Thermodyn. 1930, 391–406. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 10th ed.; McGraw-Hill; McGraw Hill Higher Education: New York, NY, USA, 2010; ISBN 978-0-07-352936-3. [Google Scholar]
- Deutsches Institut für Normung, e.V.; European Committee for Standardization; International Organization for Standardization. Größen und Einheiten—Teil 2: Mathematik (ISO 80000-2:2019); Deutsche Fassung EN ISO 80000-2:2019, 1st ed.; Beuth Verlag GmbH: Berlin, Germany, 2020; 01.060; 01.075 (80000-2). [Google Scholar] [CrossRef]
Characteristic | Value | Uncertainty (kp = 2) |
---|---|---|
Specific energy consumption class | B to A+ | |
Thermal efficiency | 85% | ±13% |
Electrical power input | ||
Maximum | 10 W | ±18 W |
Minimum | 3 W | ±3 W |
Volume flow | ||
Maximum | ||
Minimum | ||
Specific power input | ||
Sound power level | ||
Maximum | 37 dB(A) | ±13 dB(A) |
Minimum | 22 dB(A) | ±11 dB(A) |
Acoustic insulation from the outside | 43 dB(A) | ±20 dB(A) |
Geometry | ||
Hydraulic diameter of the wall opening | 194 mm | ±123 mm |
Minimal wall thickness | 266 mm | ±164 mm |
Filter | G3/G4 optional F7/F8 | |
Controller input | ) |
Ref. | System | Boundary Conditions | Method | ||
---|---|---|---|---|---|
[6] | + 325 W (1) | Unit tcyc | Lüftungstechnik Meinerzhagen alternating = 80 s = [−24, −11] K | LM (4) | [0.63, 0.83] |
[8] | 60 m²…110 m² | Unit tcyc | Lunos e² [11] alternating = 70s n.a. | FM (5) (R134a) | [0.45, 0.48] |
[8] | 60 m²…110 m² | Unit tcyc | LTM Thermolüfter 1230 alternating = 50 s n.a. | FM (5) (R134a) | [0.38, 0.47] |
[8] | Unit tcyc | n.a. alternating n.a. n.a. | CFD | 0.55 | |
[9] | (1) | Unit tcyc | n.a. (2),(3) n.a. = −13 K | CFD | [0.49, 0.55] |
[12] | n.a. | Unit tcyc | Renson Endura Twist = 30 s = −20 K | LM (4) | 0.53 |
[12] | n.a. | Unit tcyc | O.ERRE Tempero eco 150 ceram n.a. = 70 s = −20 K | LM (4) | 0.51 |
Evaluation of Contaminant Removal | Evaluation of Air Renewal | ||
---|---|---|---|
(Global) ventilation efficiency | (Global, absolute) air exchange efficiency | ||
Local ventilation efficiency | (Nominal relative) local air exchange index | ||
(Relative) local air exchange indicator |
# | Description |
---|---|
2 | = 28 m3·h−1, isotherm, horizontal plane: 2.2 m |
4 | = 15 m3·h−1, isotherm, horizontal plane: 2.2 m |
8 | = 28 m3·h−1, isotherm, horizontal plane: 1.1 m |
10 | = 15 m3·h−1, isotherm, horizontal plane: 1.1 m |
11 | = 28 m3·h−1, winter, horizontal plane: 1.1 m |
12 | = 28 m3·h−1, winter, horizontal plane: 2.2 m |
14 | = 28 m3·h−1, summer, horizontal plane: 2.2 m |
15 | = 15 m3·h−1, summer, horizontal plane: 2.2 m |
16 | = 15 m3·h−1, summer, horizontal plane: 1.1 m |
18 | = 28 m3·h−1, summer, horizontal plane: 1.1 m |
20 | = 15 m3·h−1, isotherm + dummy, horizontal plane 1.1 m |
21 | = 15 m3·h−1, winter, horizontal plane: 1.1 m |
22 | = 15 m3·h−1, winter, horizontal plane: 2.2 m |
23 | = 28 m3·h−1, isotherm + dummy, horizontal plane: 2.2 m |
24 | = 28 m3·h−1, isotherm + dummy, horizontal plane: 1.1 m |
Condition | Temperature ϑECC | |||
---|---|---|---|---|
Isothermal | 22.1 | 3.2 | 4.9 | 3.6 |
Summer | 36.9 | 10.5 | 4.2 | 2.9 |
Winter | 8.3 | 7.6 | 4.0 | 1.8 |
Pos. | x, in m | y, in m | z, in m | Measured Quantities | Sensors |
---|---|---|---|---|---|
MP01 | 0.10 | 1.35 | 2.35 | C, φ, ϑ u, ϑ | probe ONr. 0632 1240 [25] Testo humidity sensor ONr. 0636 9740 [26] Testo turbulence probe ONr. 0628 0009 [27] |
MP02 | 0.60 | 1.35 | 2.35 | C, φ, ϑ | probe ONr. 0632 1240 [25] Thermokon SR65 rH [28] |
MP03 | 1.10 | 1.35 | 2.35 | C, φ, ϑ u, ϑ | probe ONr. 0632 1240 [25] Testo humidity sensor ONr. 0636 9743 [29] Testo turbulence probe ONr.0628 0009 [27] |
MP04 | 1.70 | 1.35 | 2.35 | C, φ, ϑ u, ϑ | Testo IAQ probe ONr. 0632 1543 [30] Testo turbulence probe ONr. 0628 0143 [31] |
MP05 | 2.00 | 0.70 | 4.70 | C, φ, ϑ u, ϑ | Testo IAQ probe ONr. 0632 1543 [30] Testo turbulence probe ONr. 0628 0143 [31] |
MP06 | 2.00 | 2.00 | 4.70 | C, φ, ϑ u, ϑ | Testo IAQ probe ONr. 0632 1543 [30] Testo turbulence probe ONr. 0628 0143 [31] |
MP06e | ECC push-pull right | C, φ, ϑ | Testo IAQ probe ONr. 0632 1543 [30] | ||
MP07 | 2.25 | 1.35 | 2.35 | C | Afriso CO2-Sensor F [32] |
MP08 | 2.25 | 0.50 | 2.35 | C | |
MP09 | 2.25 | 0.50 | 0.50 | C | |
MP11 | 2.25 | 2.20 | 4.20 | C | |
MP12 | 2.25 | 0.85 | 4.20 | C | |
MP14 | 1.10 | 0.50 | 0.50 | C | |
MP15 | 1.10 | 2.20 | 0.50 | C | |
MP16 | 1.10 | 1.35 | 1.45 | C | |
MP17 | 1.10 | 1.35 | 3.35 | C | |
MP18 | 1.10 | 0.85 | 4.20 | C | |
MP19 | 1.10 | 0.85 | 4.20 | C | |
MP21e | ECC window | C | |||
MP22e | ECC push-pull left | C | |||
MP05i | 2.00 | 0.70 | 4.70 | C |
Supply Air | = 15 m3·h−1 | = 28 m3·h−1 |
---|---|---|
Isothermal | 0.38 ± 0.11 | 0.34 ± 0.07 |
= 14.3 °C) | 0.50 ± 0.14 | 0.43 ± 0.09 |
= −12.4 °C) | 0.43 ± 0.11 | 0.35 ± 0.07 |
Isothermal + dummy | 0.60 ± 0.15 | 0.41 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auerswald, S.; Hörberg, C.; Pflug, T.; Pfafferott, J.; Bongs, C.; Henning, H.-M. Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices. Energies 2020, 13, 5817. https://doi.org/10.3390/en13215817
Auerswald S, Hörberg C, Pflug T, Pfafferott J, Bongs C, Henning H-M. Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices. Energies. 2020; 13(21):5817. https://doi.org/10.3390/en13215817
Chicago/Turabian StyleAuerswald, Sven, Carina Hörberg, Thibault Pflug, Jens Pfafferott, Constanze Bongs, and Hans-Martin Henning. 2020. "Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices" Energies 13, no. 21: 5817. https://doi.org/10.3390/en13215817
APA StyleAuerswald, S., Hörberg, C., Pflug, T., Pfafferott, J., Bongs, C., & Henning, H. -M. (2020). Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices. Energies, 13(21), 5817. https://doi.org/10.3390/en13215817