Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies
Abstract
:1. Introduction
2. Fast PV Power Emulation Procedure
3. Data Acquisition System with the Database
4. A Developed Approach to Fast PV Power Emulation
4.1. PV Plant Configuration Determination
- The open-circuit voltage of the PV array at standard test conditions (STC) UOC_array, calculated as the product of m and the PV module open-circuit voltage at STC UOC_mod, must be equal to or lower than the maximum output voltage of the DC programmable power supply and the maximum input voltage of the PV plant inverter UOC_max.
- The maximum power point (MPP) array voltage at STC UMPP_array, calculated as the product of m and the MPP module voltage at STC UMPP_mod, must be within the MPPT operating range of the PV plant inverter, where UMPP_min is the minimum, while UMPP_max is the maximum MPP voltage.
- The short-circuit current of the PV array at STC ISC_array, calculated as the product of p and the short-circuit current of the PV module at STC ISC_mod, must be equal to or lower than the maximum output current of the DC programmable power supply and the maximum input current of the PV plant inverter ISC_max.
4.2. Measurement Data Filtering for Fast PV Power Emulation
- The maximum output voltage of the DC programmable power supply and the maximum input voltage of the PV plant inverter UOC_max.
- The MPPT voltage operating range of the PV plant inverter given by UMPP_min and UMPP, max.
- The maximum output current of the DC programmable power supply and the maximum input current of the PV plant inverter ISC_max.
4.3. Fast PV Power Emulation Validation
- Wmeter—a recalculated value of electricity generation measured by the electricity meter;
- t—time interval of each measurement sample j;
- tc—time duration of one command (60 s).
5. Fast PV Power Emulation Results and Analysis
5.1. Fast PV Power Emulation Equipment Settings
5.2. Fast PV Power Emulation of a 6 kW PV Plant
5.3. Fast PV Power Emulation of a 12 kW PV Plant
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jäger-Waldau, A. PV Status Report 2019; EUR 29938 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-12608-9. JRC118058. [Google Scholar] [CrossRef]
- REN21. Renewables 2020 Global Status Report; REN21 Secretariat: Paris, France, 2020; ISBN 978-3-948393-00-7. [Google Scholar]
- Taylor, A.N. Jäger-Waldau, Low Carbon Energy Observatory Photovoltaics Technology Development Report 2018—Public Version; EUR 29916 EN; European Commission: Luxemburg, 2019; ISBN 978-92-76-12541-9. JRC118300. [Google Scholar] [CrossRef]
- Liu, W.; Niazi, K.A.K.; Kerekes, T.; Yang, Y. A Review on Transformerless Step-Up Single-Phase Inverters with Different DC-Link Voltage for Photovoltaic Applications. Energies 2019, 12, 3626. [Google Scholar] [CrossRef] [Green Version]
- Rana, R.A.; Patel, S.A.; Muthusamy, A.; Lee, C.w.; Kim, H.-J. Review of Multilevel Voltage Source Inverter Topologies and Analysis of Harmonics Distortions in FC-MLI. Electronics 2019, 8, 1329. [Google Scholar] [CrossRef] [Green Version]
- Zeb, K.; Khan, I.; Uddin, W.; Khan, M.A.; Sathishkumar, P.; Busarello, T.D.C.; Ahmad, I.; Kim, H.J. A Review on Recent Advances and Future Trends of Transformerless Inverter Structures for Single-Phase Grid-Connected Photovoltaic Systems. Energies 2018, 11, 1968. [Google Scholar] [CrossRef] [Green Version]
- Obi, M.; Bass, R. Trends and challenges of grid-connected photovoltaic systems–A review. Renew. Sustain. Energy Rev. 2016, 58, 1082–1094. [Google Scholar] [CrossRef]
- Latran, M.B.; Teke, A. Investigation of multilevel multifunctional grid connected inverter topologies and control strategies used in photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 42, 361–376. [Google Scholar] [CrossRef]
- Žnidarec, M.; Šljivac, D.; Došen, D.; Dumnić, B. Performance assessment of mono and poly crystalline silicon photovoltaic arrays under Pannonian climate conditions. In Proceedings of the IEEE EUROCON 2019 -18th International Conference on Smart Technologies, Novi Sad, Serbia, 1–4 July 2019; pp. 1–6. [Google Scholar]
- Žnidarec, M.; Šljivac, D.; Došen, D. Performance and Empirical Analysis of Photovoltaic Modules Made of Different Technologies Using Capacity Evaluation Method. Teh. Vjesn. Tech. Gaz. 2019, 26, 1585–1592. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z.; Ishaque, K. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Appl. Energy 2015, 154, 500–519. [Google Scholar] [CrossRef]
- Stornelli, V.; Muttillo, M.; de Rubeis, T.; Nardi, I. A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels. Energies 2019, 12, 4271. [Google Scholar] [CrossRef] [Green Version]
- Ghareeb, A.; Tamimi, M.; Jaber, M.; Jaradat, S.; Khatib, T. A new method for extracting I-V characteristic curve for photovoltaic modules using artificial neural networks. In Proceedings of the 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), Istanbul, Turkey, 3–5 May 2018; pp. 473–476. [Google Scholar]
- Ram, J.P.; Manghani, H.; Pillai, D.S.; Babu, T.S.; Miyatake, M.; Rajasekar, N. Analysis on solar PV emulators: A review. Renew. Sustain. Energy Rev. 2018, 81, 149–160. [Google Scholar] [CrossRef]
- Ayop, R.; Tan, C.W. A comprehensive review on photovoltaic emulator. Renew. Sustain. Energy Rev. 2017, 80, 430–452. [Google Scholar] [CrossRef]
- Di Piazza, M.C.; Vitale, G. Photovoltaic Sources. In Green Energy and Technology; Springer: London, UK, 2013; ISBN 978-1-4471-4377-2. [Google Scholar]
- Shahabuddin, M.; Riyaz, A.; Asim, M.; Shadab, M.M.; Sarwar, A.; Anees, A. Performance Based Analysis of Solar PV Emulators: A Review. In Proceedings of the 2018 International Conference on Computational and Characterization Techniques in Engineering & Sciences (CCTES), Lucknow, India, 14–15 September 2018; pp. 94–99. [Google Scholar]
- Kim, Y.; Lee, W.; Pedram, M.; Chang, N. Dual-mode power regulator for photovoltaic module emulation. Appl. Energy 2013, 101, 730–739. [Google Scholar] [CrossRef] [Green Version]
- Binduhewa, P.J.; Barnes, M. Photovoltaic emulator. In Proceedings of the 2013 IEEE 8th International Conference on Industrial and Information Systems, Peradeniya, Sri Lanka, 17–20 December 2013; pp. 519–524. [Google Scholar]
- Soetedjo, A.; Nakhoda, Y.I.; Lomi, A.; Hendroyono, G.E. Development of PV simulator by integrating software and hardware for laboratory testing. In Proceedings of the 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Bandung, Indonesia, 29–30 October 2015; pp. 96–100. [Google Scholar]
- Koran, A.; Sano, K.; Kim, R.-Y.; Lai, J.S. Design of a Photovoltaic Simulator with a Novel Reference Signal Generator and Two-Stage LC Output Filter. IEEE Trans. Power Electron. 2010, 25, 1331–1338. [Google Scholar] [CrossRef]
- Di Piazza, M.C.; Pucci, M.; Ragusa, A.; Vitale, G. Analytical Versus Neural Real-Time Simulation of a Photovoltaic Generator Based on a DC–DC Converter. IEEE Trans. Ind. Appl. 2010, 46, 2501–2510. [Google Scholar] [CrossRef]
- Mai, T.D.; De Breucker, S.; Baert, K.; Driesen, J. Reconfigurable emulator for photovoltaic modules under static partial shading conditions. Sol. Energy 2017, 141, 256–265. [Google Scholar] [CrossRef]
- Moussa, I.; Khedher, A.; Bouallegue, A. Design of a Low-Cost PV Emulator Applied for PVECS. Electronics 2019, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Pelin, D.; Opačak, M.; Pal, M. PV Emulation by using DC Programmable Sources. Int. J. Electr. Comput. Eng. Syst. 2017, 8, 11–17. [Google Scholar] [CrossRef]
- Faculty of Electrical Engineering Computer Science and Information Technology Osijek Laboratory for Renewable Energy Sources. Available online: http://reslab.ferit.hr/ (accessed on 24 April 2019).
- BISOL Group d.o.o. BISOL BMO 250, Datasheet; Bisol Group, d.o.o.: Prebold, Slovenia, 2014. [Google Scholar]
- BISOL Group d.o.o. BISOL BMU 250, Datasheet; Bisol Group, d.o.o.: Prebold, Slovenia, 2014. [Google Scholar]
- Masdar PV GmbH Masdar MPV100-S Datasheet; Masdar PV GmbH: Ichtershausen, Germany, 2010.
- Solar Frontier Europe GmbH Solar Frontier SF150-S Datasheet; Solar Frontier Europe GmbH: Grünwald, Germany, 2012.
- SANYO Component Europe GmbH Panasonic VBHN240SE10 Datasheet; Sanyo Component Europe GmbH: München, Germany, 2012.
- Dosen, D.; Znidarec, M.; Sljivac, D. Measurement Data Acquisition System in Laboratory for Renewable Energy Sources. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; pp. 1–6. [Google Scholar]
- KACO New Energy GmbH. Operating Instructions Powador 12.0 TL3-20.0 TL3; KACO New Energy GmbH: Neckarsulm, Germany, 2016. [Google Scholar]
- Electronic Test & Power Systems Ltd LAB-HP 101000 Datasheet; ETPS Ltd.: Chesterfield, UK, 2019.
Parameter | Bisol BMO 250 | Bisol BMU 250 | Masdar MPV100-S | Solar Frontier SF150-S | Panasonic VBHN240SE10 |
---|---|---|---|---|---|
Technology | m-Si | p-Si | a-Si | CIS | HIT |
MPP power Pmod_nom [W] | 250 | 250 | 100 | 150 | 240 |
MPP voltage UMPP_mod [V] | 30.5 | 30.3 | 76 | 81.5 | 43.7 |
MPP current IMPP_mod [A] | 8.2 | 8.25 | 1.33 | 1.85 | 5.51 |
Open-circuit voltage UOC_mod [V] | 37.9 | 38.4 | 100 | 108 | 52.4 |
Short-circuit current ISC_mod [A] | 8.8 | 8.75 | 1.57 | 2.2 | 5.85 |
Kaco Powador 12.0 TL3 | DC Side Parameters (Input) | |
DC MPPT voltage range | 280 V–800 V | |
Maximum open-circuit voltage | 1000 V | |
Maximum input current | 2 × 18.6 A | |
Number of arrays/MPPT | 2 | |
Maximum power per input | 10.2 kW | |
AC side parameters (output) | ||
Number of phases | 3 | |
Nominal power | 10 kVA | |
Grid voltage | 400/230 V (3/N/PE) | |
Nominal current | 3 × 14.5 A | |
Maximum efficiency | 98% | |
European efficiency | 97.5% | |
Number of phases | 3 | |
LAB/HP 101000 | AC side parameters (input) | |
Input voltage | 3 × 400 V ± 10% | |
Rated current | 22.9 A | |
Maximum efficiency | 94% | |
DC side parameters (output) | ||
Maximum output power | 10 kW | |
Voltage range | 0–1000 V | |
Current range | 0–10 A |
a-Si Masdar MPV100-S | |||||||
Array no. | n | p | m | Parray [W] | UMPP_array [V] | UOC_array [V] | ISC_array [A] |
1 | 30 | 5 | 6 | 3000 | 456 | 600 | 7.85 |
2 | 30 | 5 | 6 | 3000 | 456 | 600 | 7.85 |
CIS Solar Frontier SF150-S | |||||||
Array no. | n | p | m | Parray [W] | UMPP_array [V] | UOC_array [V] | ISC_array [A] |
1 | 20 | 4 | 5 | 3000 | 407.5 | 540 | 8.8 |
2 | 20 | 4 | 5 | 3000 | 407.5 | 540 | 8.8 |
HIT Panasonic VBHN240SE10 | |||||||
Array no. | n | p | m | Parray [W] | UMPP_array [V] | UOC_array [V] | ISC_array [A] |
1 | 13 | 1 | 13 | 3120 | 568.1 | 681.2 | 5.85 |
2 | 12 | 1 | 12 | 2880 | 524.4 | 628.8 | 5.85 |
Sample j | Array 1 | Array 2 | PV Plant Power | Electricity Generation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
UMPP_array,1 [V] | IMPP_array,1 [A] | PMPP_array,1 [W] | UMPP_array,2 [V] | IMPP_array,2 [A] | PMPP_array,2 [W] | Pinverter, j [W] | Pplant_AC, j [W] | Wfiltered [kWh] | Winverter [kWh] | |
1 | 489.30 | 0.61 | 298.47 | 491.90 | 0.53 | 260.71 | 559.18 | 1422.30 | 0.71 | 0.28 |
2 | 433.10 | 3.49 | 1511.52 | 434.90 | 3.41 | 1483.01 | 2994.53 | 2784.39 | 1.39 | 1.47 |
3 | 419.90 | 3.57 | 1499.04 | 422.10 | 3.67 | 1549.11 | 3048.15 | 3077.47 | 1.54 | 1.50 |
4 | 423.20 | 3.06 | 1294.99 | 420.90 | 3.16 | 1330.04 | 2625.04 | 2533.09 | 1.27 | 1.29 |
5 | 418.40 | 3.39 | 1418.38 | 421.80 | 3.42 | 1442.56 | 2860.93 | 2768.46 | 1.38 | 1.41 |
6 | 419.40 | 3.73 | 1564.36 | 420.90 | 3.81 | 1603.63 | 3167.99 | 2971.41 | 1.49 | 1.56 |
7 | 417.50 | 3.43 | 1432.03 | 421.00 | 3.46 | 1456.66 | 2888.69 | 2870.14 | 1.44 | 1.42 |
8 | 419.80 | 3.50 | 1469.30 | 422.30 | 3.56 | 1503.39 | 2972.69 | 2704.61 | 1.35 | 1.46 |
9 | 421.20 | 3.94 | 1659.53 | 422.40 | 4.03 | 1702.27 | 3361.80 | 3277.97 | 1.64 | 1.65 |
10 | 421.80 | 3.69 | 1556.44 | 420.00 | 3.82 | 1604.40 | 3160.84 | 2978.79 | 1.49 | 1.55 |
11 | 417.80 | 3.57 | 1491.55 | 421.20 | 3.64 | 1533.17 | 3024.71 | 3135.70 | 1.57 | 1.49 |
12 | 416.10 | 2.48 | 1031.93 | 421.70 | 2.53 | 1066.90 | 2098.83 | 2283.86 | 1.14 | 1.03 |
13 | 414.80 | 1.87 | 775.68 | 423.30 | 1.87 | 791.57 | 1567.25 | 1224.70 | 0.61 | 0.77 |
14 | 417.30 | 2.08 | 867.98 | 420.60 | 2.18 | 916.91 | 1784.89 | 1916.40 | 0.96 | 0.88 |
15 | 422.60 | 1.25 | 528.25 | 426.80 | 1.34 | 571.91 | 1100.16 | 1148.01 | 0.57 | 0.54 |
16 | 461.70 | 0.43 | 198.53 | 456.30 | 0.56 | 255.53 | 454.06 | 577.86 | 0.29 | 0.22 |
17 | 487.80 | 0.10 | 48.78 | 487.10 | 0.30 | 146.13 | 194.91 | 235.39 | 0.12 | 0.10 |
18 | 317.30 | 0.05 | 15.87 | 324.10 | 0.25 | 81.03 | 96.89 | 204.28 | 0.10 | 0.05 |
Total | 19.06 | 18.68 |
PV Module (Technology) | Masdar MPV100-S | Solar Frontier SF150-S | Panasonic VBHN240SE10 | ||||||
---|---|---|---|---|---|---|---|---|---|
Emulation no. | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Wfiltered [kWh] | 19.06 | 21.91 | 15.16 | ||||||
Winverter [kWh] | 18.68 | 18.39 | 18.38 | 21.84 | 21.58 | 21.74 | 15 | 14.9 | 15.07 |
Wmeter [kWh] | 18.67 | 18.81 | 18.79 | 21.89 | 21.79 | 21.89 | 15.01 | 14.98 | 15.08 |
δemulated [%] | 1.98 | 3.5 | 3.58 | 0.32 | 1.49 | 0.78 | 1 | 1.68 | 0.54 |
δmeter [%] | 2.03 | 1.29 | 1.41 | 0.08 | 0.56 | 0.08 | 0.96 | 1.17 | 0.49 |
PV Module (Technology) | Masdar MPV100-S | Solar Frontier SF150-S | Panasonic VBHN240SE10 | ||||||
---|---|---|---|---|---|---|---|---|---|
Emulation no. | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Wfiltered [kWh] | 17.46 | 20.98 | 17.53 | ||||||
Winverter [kWh] | 17.1 | 16.97 | 17.21 | 19.91 | 20.06 | 20.08 | 17.12 | 17.28 | 16.88 |
Wmeter [kWh] | 17.21 | 17.01 | 17.35 | 20.56 | 20.68 | 20.7 | 17.21 | 17.29 | 17.14 |
δemulated [%] | 2.05 | 2.84 | 1.42 | 5.08 | 4.39 | 4.3 | 2.35 | 1.4 | 3.71 |
δmeter [%] | 1.42 | 2.57 | 0.63 | 1.98 | 1.43 | 1.33 | 1.81 | 1.38 | 2.2 |
PV Module (Technology) | Masdar MPV100-S | Solar Frontier SF150-S | Panasonic VBHN240SE10 | ||||||
---|---|---|---|---|---|---|---|---|---|
Emulation no. | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Wfiltered [kWh] | 23.2 | 24.77 | 19.73 | ||||||
Winverter [kWh] | 22.6 | 22.57 | 22.64 | 23.36 | 23.27 | 23.6 | 19.15 | 19.13 | 18.89 |
Wmeter [kWh] | 22.87 | 22.83 | 22.97 | 23.74 | 23.47 | 23.85 | 19.46 | 19.56 | 19.36 |
δemulated [%] | 2.58 | 2.74 | 2.43 | 5.7 | 6.05 | 4.74 | 2.95 | 3.05 | 4.24 |
δmeter [%] | 1.43 | 1.59 | 1.02 | 4.16 | 5.25 | 3.71 | 2.95 | 3.05 | 4.24 |
m-Si Bisol BMU 250 | |||||||
Array no. | n | p | m | Parray [W] | UMPP_array [V] | UOC_array [V] | ISC_array [A] |
1 | 24 | 1 | 24 | 6000 | 732 | 909.6 | 8.8 |
2 | 24 | 1 | 24 | 6000 | 732 | 909.6 | 8.8 |
p-Si Bisol BMU 250 | |||||||
Array no. | n | p | m | Parray [W] | UMPP_array [V] | UOC_array [V] | ISC_array [A] |
1 | 24 | 1 | 24 | 6000 | 727.2 | 921.6 | 8.75 |
2 | 24 | 1 | 24 | 6000 | 727.2 | 921.6 | 8.75 |
PV Module (Technology) | Bisol BMO 250 | Bisol BMU 250 | ||||
---|---|---|---|---|---|---|
Emulation no. | 1 | 2 | 3 | 1 | 2 | 3 |
Wfiltered [kWh] | 64.52 | 57.43 | ||||
Winverter [kWh] | 63.14 | 63.68 | 63.39 | 56.59 | 56.45 | 56.56 |
Wmeter [kWh] | 63.69 | 64.03 | 63.69 | 56.46 | 56.8 | 56.8 |
δemulated [%] | 2.15 | 1.3 | 1.76 | 1.46 | 1.72 | 1.51 |
δmeter [%] | 1.29 | 0.77 | 1.29 | 1.69 | 1.1 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelin, D.; Žnidarec, M.; Šljivac, D.; Brandis, A. Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies. Energies 2020, 13, 5957. https://doi.org/10.3390/en13225957
Pelin D, Žnidarec M, Šljivac D, Brandis A. Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies. Energies. 2020; 13(22):5957. https://doi.org/10.3390/en13225957
Chicago/Turabian StylePelin, Denis, Matej Žnidarec, Damir Šljivac, and Andrej Brandis. 2020. "Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies" Energies 13, no. 22: 5957. https://doi.org/10.3390/en13225957
APA StylePelin, D., Žnidarec, M., Šljivac, D., & Brandis, A. (2020). Fast Power Emulation Approach to the Operation of Photovoltaic Power Plants Made of Different Module Technologies. Energies, 13(22), 5957. https://doi.org/10.3390/en13225957