Numerical Investigation on Flow Field Distribution of Eccentric Compressors Based on Steady and Unsteady CFD Methods
Abstract
:1. Introduction
2. Research Object and Numerical Method
2.1. Research Object and Definition of Eccentricity
2.2. Numerical Methods and Validation
3. Numerical Simulation Results and Discussion
3.1. Characteristic Line Calculation and Analysis
3.2. Influence of Non-Uniform Tip Clearance on the Distribution Law of Flow Field
3.2.1. Influence of Non-Uniform Tip Clearance on Distribution of Inlet Flow Coefficient
3.2.2. Influence of Non-Uniform Tip Clearance on Relative Mach Number Distribution at Tip Section
3.2.3. Influence of Non-Uniform Tip Clearance on Axial Velocity Coefficient Distribution at Tip Section
4. Summary and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | |
ε | Tip clearance |
θ | Circumferential coordinate/direction |
ω | Angular speed |
t | Time |
ν | Whirl rotating speed |
Ma | Relative Mach number |
Φ | Flow Coefficient |
Ψ | Total-to-static pressure rise coefficient |
Λ | Tnertia of fluid in rotor |
W | Axial velocity |
U | Rotor blade speed |
Ρ | Air density |
ρref | Reference density |
Axial velocity coefficient | |
C | Velocity in stationary frame |
W | Velocity in rotating frame |
S | Absolute displacement |
Subscripts | |
Mid | Mid-span value |
max/min | Maximum/minimum |
u | The direction of the blade velocity |
in | Inlet |
Abbreviations | |
CFD | Computational fluid dynamics |
NC | Near choke |
NPE | Near Peak efficiency |
NS | Near stall |
IBMSG | Immersed Boundary Model with Smeared Geometry |
References
- Smith, L.H., Jr. The effect of tip clearance on the peak pressure rise of axial-flow fans and compressors. ASME Symp. Stall. 1958, 149, 152. [Google Scholar]
- Storer, J.A.; Cumpsty, N.A. An approximate analysis and prediction method for tip clearance loss in axial compressors. J. Turbomach. 1994, 116, 648–656. [Google Scholar] [CrossRef]
- Wisler, D.C. Loss reduction in axial-flow compressors through low-speed model testing. J. Eng. Gas Turbines Power 1985, 107, 354–363. [Google Scholar] [CrossRef]
- Gordon, K.A. Three-Dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors; Diss. Massachusetts Institute of Technology: Cambridge, MA, USA, 1999. [Google Scholar]
- Lakshminarayana, B. Methods of predicting the tip clearance effects in axial flow turbomachinery. J. Basic Eng. 1970, 92, 467–480. [Google Scholar] [CrossRef]
- Chima, R.V. Calculation of Tip Clearance Effects in a Transonic Compressor Rotor; American Society of Mechanical Engineers: Birmingham, UK, 1996; Volume 78729. [Google Scholar]
- Suder, K.L.; Celestina, M.L. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor. J. Turbomach. 1996, 118, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Inoue, M.; Kuroumaru, M. Structure of tip clearance flow in an isolated axial compressor rotor. J. Turbomach. 1989, 111, 250–256. [Google Scholar] [CrossRef]
- Graf, M.B.; Wong, T.S.; Greitzer, E.M.; Marble, F.E.; Tan, C.S.; Shin, H.W.; Wisler, D.C. Effects of Non-Axisymmetric Tip Clearance on Axial Compressor Performance and Stability. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: Orlando, FL, USA, 1997; Volume 78682. [Google Scholar]
- Wong, T.S. Effects of Asymmetric Tip Clearance on Compressor Performance and Stability; Diss. Massachusetts Institute of Technology: Cambridge, MA, USA, 1996. [Google Scholar]
- Song, S.J.; Kil, Y.P. Rotordynamic effects of compressor rotor-tip clearance asymmetry. AIAA J. 2001, 39, 1347–1353. [Google Scholar] [CrossRef]
- Cameron, J.D.; Bennington, M.A.; Ross, M.H.; Morris, S.C.; Corke, T.C. Effects of Steady Tip Clearance Asymmetry and Rotor Whirl on Stall Inception in an Axial Compressor. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Parts A and B, Montreal, QC, Canada, 14–17 May 2007; Volume 6, pp. 457–468. [Google Scholar]
- Morris, S.C.; Cameron, J.D.; Bennington, M.A.; McNulty, G.S.; Wadia, A. Performance and short length-scale disturbance generation in an axial compressor with non-uniform tip clearance. In Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008; Volume 43161. [Google Scholar]
- Young, A.; Ivor, D.; Graham, P. Stall warning by blade pressure signature analysis. J. Turbomach. 2013, 135, 011033. [Google Scholar] [CrossRef]
- Young, A.; Cao, T.; Day, I.J.; Longley, J.P. Accounting for eccentricity in compressor performance predictions. J. Turbomach. 2017, 139, 091008. [Google Scholar] [CrossRef]
- Cao, T.; Paul, H.; Paul, G.T. Hierarchical immersed boundary method with smeared geometry. J. Propuls. Power 2017, 33, 1151–1163. [Google Scholar] [CrossRef]
- Fidalgo, V.; Jerez, C.A.; Colin, Y. A study of fan-distortion interaction within the nasa rotor 67 transonic stage. J. Turbomach. 2012, 134, 051011. [Google Scholar] [CrossRef]
- Yao, J.; Gorrell, S.E.; Wadia, A.R. High-fidelity numerical analysis of per-rev-type inlet distortion transfer in multistage fans—Part I: Simulations with selected blade rows. J. Turbomach. 2010, 132, 041014. [Google Scholar] [CrossRef]
- Yao, J.; Gorrell, S.E.; Wadia, A.R. High-fidelity numerical analysis of per-rev-type inlet distortion transfer in multistage fans—Part II: Entire component simulation and investigation. J. Turbomach. 2010, 132, 041015. [Google Scholar] [CrossRef]
- Zhang, W.; Vahdati, M. A parametric study of the effects of inlet distortion on fan aerodynamic stability. J. Turbomach. 2019, 141, 011011. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, B.; Liu, J.; Hu, J. Numerical simulation of unsteady tip clearance flow in a transonic compressor rotor. Aerosp. Sci. Technol. 2018, 2, 193–203. [Google Scholar] [CrossRef]
- Mao, X.; Liu, B.; Tang, T.; Zhao, H. The impact of casing groove location on the flow instability in a counter-rotating axial flow compressor. Aerosp. Sci. Technol. 2018, 76, 250–259. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, A.; Zhang, M.; Li, J.; Zhang, S. Effects of Nonuniform Tip Clearance on Fan Performance and Flow Field. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: Montreal, QC, Canada, 2015; Volume 56635. [Google Scholar]
- Chen, Y.; Hou, A.; Wang, W.; Zhang, M. Performance estimation method for nonuniform tip clearance cases. J. Propuls. Power 2018, 34, 1355–1363. [Google Scholar] [CrossRef]
- Kumar, S.S.; Alone, D.B.; Thimmaiah, S.M.; Mudipalli, J.R.R.; Ganguli, R.; Kandagal, S.B.; Jana, S. Aerodynamic characterization of a transonic axial flow compressor stage–with asymmetric tip clearance effects. Aerosp. Sci. Technol. 2018, 82, 272–283. [Google Scholar] [CrossRef]
- Strazisar, A.J.; Powell, J.A. Laser anemometer measurements in a transonic axial flow compressor rotor. J. Eng. Power 1981, 103, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Lin, F.; Zhang, H.; Chen, J. Numerical investigation on the self-induced unsteadiness in tip leakage flow for a transonic fan rotor. J. Turbomach. 2010, 132, 021017. [Google Scholar] [CrossRef]
- Bruna, D.; Turner, M.G. Isothermal boundary condition at casing applied to the rotor 37 transonic axial flow compressor. J. Turbomach. 2013, 135, 034501. [Google Scholar] [CrossRef]
- Denton, J.D. Some Limitations of Turbomachinery CFD. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: Glasgow, UK, 2010; Volume 44021. [Google Scholar]
- Antoniadis, A.; Drikakis, D.; Zhong, B.; Barakos, G.N.; Steijl, R.; Biava, M.; Vigevano, L.; Brocklehurst, A.; Boelens, O.; Dietz, M.; et al. Assessment of CFD methods against experimental flow measurements for helicopter flows. Aerosp. Sci. Technol. 2012, 19, 86–100. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Blade number | 22 |
Rotational speed (rpm) | 16,043 |
Design tip clearance (mm) | 1.016 |
Aspect ratio | 1.56 |
Solidity at tip | 1.29 |
Tip speed (m/s) | 429 |
Tip relative Mach number | 1.38 |
E | εmax (mm) | εmin (mm) |
---|---|---|
0 | 1.016 | 1.016 |
80% | 1.416 | 0.616 |
160% | 1.816 | 0.216 |
Grid Name | Total Grid Point | K | J | I | Tip Region |
---|---|---|---|---|---|
Grid A | 470,000 | 177 | 65 | 41 | 13 |
Grid B | 680,000 | 189 | 77 | 49 | 13 |
Grid C | 800,000 | 193 | 81 | 53 | 17 |
Grid Name | Total Grid Point | K | J | I | Tip Region |
---|---|---|---|---|---|
Grid A | 123,000 | 170 | 8 | 902 | 8 |
Grid B | 190,000 | 180 | 10 | 1078 | 10 |
Grid C | 330,000 | 190 | 15 | 1166 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Hu, J.; Wang, J.; Cong, L. Numerical Investigation on Flow Field Distribution of Eccentric Compressors Based on Steady and Unsteady CFD Methods. Energies 2020, 13, 6081. https://doi.org/10.3390/en13226081
Jiang C, Hu J, Wang J, Cong L. Numerical Investigation on Flow Field Distribution of Eccentric Compressors Based on Steady and Unsteady CFD Methods. Energies. 2020; 13(22):6081. https://doi.org/10.3390/en13226081
Chicago/Turabian StyleJiang, Chao, Jun Hu, Jiayu Wang, and Longteng Cong. 2020. "Numerical Investigation on Flow Field Distribution of Eccentric Compressors Based on Steady and Unsteady CFD Methods" Energies 13, no. 22: 6081. https://doi.org/10.3390/en13226081
APA StyleJiang, C., Hu, J., Wang, J., & Cong, L. (2020). Numerical Investigation on Flow Field Distribution of Eccentric Compressors Based on Steady and Unsteady CFD Methods. Energies, 13(22), 6081. https://doi.org/10.3390/en13226081