Numerical Simulation of the Air Cooling System for Scientific Payload Rack on a Space Station
Abstract
:1. Introduction
2. Conception of Air Cooling System for Scientific Payload Rack on Space Station
2.1. Traditional Air Cooling System of Rack and Problems
2.2. Idea and Possible Advantages of New Air Cooling System
2.2.1. Coupled Mode of New Air Cooling System and Liquid Circuit
2.2.2. Description of New Air Cooling System and Anticipated Advantages
2.3. Model Establishment and Research Procedure
2.3.1. Physical Model and Mesh Generation
2.3.2. Numerical Model
- (1)
- Simplification of numerical model
- (a)
- The effect of radiation can be ignored.
- (b)
- The air in the rack is low speed and incompressible.
- (2)
- Establishment of numerical model
- (3)
- Setting of boundary conditions
- (a)
- Wall boundary: under the assumption of continuous medium, the non-slip wall condition is applied, that is, the velocity of the fluid relative to the wall is zero, , and are treated by the enhanced wall functions method. The convective heat transfer coefficient between the rack wall and the ambient air outside is 0.37 . The ambient temperature outside the rack is 27 °C.
- (b)
- Inlet boundary: the velocity inlet boundary condition is adopted. The air velocities and temperatures of the air inlets are 0.5 and 24 °C.
- (c)
- Outlet boundary: pressure boundary condition is adopted.
2.3.3. Research Procedure of Numerical Simulation
3. Results and Discussion
3.1. Temperature and Velocity Distribution of New Air Cooling Mode
3.2. Temperature and Velocity Distribution of Traditional Air Cooling Mode
3.3. Comparison of Air Cooling Modes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brekke, M.; Duncan, E. International Space Station Alpha Payload Accommodations. In Proceedings of the Space Programs & Technologies Conference & Exhibit, Huntsville, AL, USA, 27–29 September 1994. [Google Scholar]
- Afanasyev, I.B.; Baturin, Y.M.; Belozerskiy, A.G.; Ivanov, I.A.; Lazutkin, A.I.; Lantratov, K.A.; Lisov, I.A.; Lukashevich, V.P.; Marinin, I.A.; Markov, A.E.; et al. World’s Cosmonautics: History, Technology; People RTSoft: Moscow, Russia, 2005; Chapters 9–12, 15, 16, 19, 21. (In Russian) [Google Scholar]
- Clark, K.I. Scientific Research Aboard the International Space Station. In Proceedings of the 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 10–13 January 2000. [Google Scholar]
- Wang, J.-X.; Guo, W.; Xiong, K.; Wang, S.N. Review of aerospace-oriented spray cooling technology. Prog. Aerosp. Sci. 2020, 116, 100635. [Google Scholar] [CrossRef]
- Pellis, N.R.; North, R.M. Recent NASA research accomplishments aboard the ISS. Acta Astronaut. 2004, 55, 589–598. [Google Scholar] [CrossRef]
- Evans, C.; Robinson, J.; Tate-Brown, J. Research on the International Space Station: An Overview. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–9 January 2009. [Google Scholar]
- Wang, J.-X.; Li, Y.Z.; Liu, X.D.; Shen, C.Q.; Zhang, H.; Xiong, K. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China. Chin. J. Aeronaut. 2020, in press. [Google Scholar] [CrossRef]
- Wang, J.-X.; Li, Y.-Z.; Li, J.-X.; Li, C.; Zhang, Y.; Ning, X.-W. A gas-atomized spray cooling system integrated with an ejector loop: Ejector modeling and thermal performance analysis. Energy Convers. Manag. 2019, 180, 106–118. [Google Scholar] [CrossRef]
- Phillips, R.W. Plant Research Facilities on the International Space Station. In Proceedings of the 26th International Conference on Environmental Systems, Monterey, CA, USA, 8–11 July 1996. [Google Scholar] [CrossRef]
- OMalley, T.F.; Weiland, K.J. The FCF Combustion Integrated Rack: Microgravity Combustion ScienceOnboard the International Space Station. In Proceedings of the International Space Station Utilization—2001, Cape Canaveral, FL, USA, 15–18 October 2001. [Google Scholar] [CrossRef]
- Cruzen, C.; Gibbs, R.; Dyer, S.; Cech, J. Expanding Remote Science Operations Capabilities Onboard the International Space Station. In Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2005. [Google Scholar]
- Kim, T.Y.; Hyun, B.S.; Lee, J.J.; Rhee, J. Numerical study of the spacecraft thermal control hardware combining solid–liquid phase change material and a heat pipe. Aerosp. Sci. Technol. 2013, 27, 10–16. [Google Scholar] [CrossRef]
- Cai, B.-Y.; Wei, H.-Y.; Li, Y.-Z.; Lou, Y.-Y.; Li, T. Dynamic Analysis and Intelligent Control Strategy for the Internal Thermal Control Fluid Loop of Scientific Experimental Racks in Space Stations. Entropy 2020, 22, 72. [Google Scholar] [CrossRef] [Green Version]
- Lappa, M.; Castagnolo, D.; Sgambati, A. The fluid-dynamics of the ISS Mice Drawer System under microgravity. Microgravity Space Stn. Util. 2002, 3, 39. [Google Scholar]
- Nemati, K.; Murray, B.T.; Sammakia, B. Experimental Characterization and Modeling of a Water-Cooled Server Cabinet. In Proceedings of the Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 27–30 May 2014; pp. 723–728. [Google Scholar]
- Delgado, C.B.; Silva, P.D.; Pires, L.C.; Gaspar, P.D. Experimental study and numerical simulation of the interior flow in a telecommunications cabinet. Energy Procedia 2017, 142, 3096–3101. [Google Scholar] [CrossRef]
- Dang, C.; Jia, L.; Lu, Q. Investigation on thermal design of a rack with the pul- sating heat pipe for cooling CPUs. Appl. Therm. Eng. 2017, 110, 390–398. [Google Scholar] [CrossRef]
- Chongchao, H.; Hanxun, Z. Fluid Loops in general-purpose space science experimental platform. Chin. J. Space Sci. 2010, 30, 165–169. [Google Scholar]
- James, T. Automation Study for Space Station Subsystems and Mission Ground Support Final Report; NASA: Washington, DC, USA, 1985.
- Vaccaneo, P.; Gottero, M. The Thermal Environmental Control (TEC) of the Fluid Science Laboratory (FSL): A Combined (Water/Air) Thermal Design Solution for a Columbus Active Rack. In Proceedings of the 31st International Conference on Environmental Systems, Orlando, FL, USA, 9–12 July 2001. [Google Scholar] [CrossRef]
- Zengqi, H.; Jingang, H. Spacecraft Thermal Control Technology-Principles and Applications; Beijing Science and Technology of China Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Accardi, F.; Lobascio, C.; D’Auria, R.; Veneri, R. Impacts of Rack Configuration on Columbus Avionics Air Loop Architecture and Control. In Proceedings of the SAE Technical Paper; 20th lntersociety Conference on Environmental Systems, Williamsburg, VA, USA, 9–12 July 1990. [Google Scholar] [CrossRef]
- O’Connor, E.; Nason, R.; Rubalcaba, D.; Klym, J. Space Station Distributed Avionics Air Cooling. In Proceedings of the 24th International Conference on Environmental Systems and 5th European Symposium on Space Environmental Control Systems, Friedrichshafen, Germany, 20–23 June 1994. [Google Scholar] [CrossRef]
- Zhang, Y.; Tong, T.F. Thermal control scheme study of scientific experiment rack of new manned space station. Procedia Eng. 2016, 157, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Weijia, R.; Zifa, C.; Tiefeng, T.; Qiang, S. Optimization for distributed air loop in space science experiment platform. Chin. J. Space Sci. 2015, 35, 217–223. (In Chinese) [Google Scholar] [CrossRef]
- Zhi-Yu, Z.; Bing, X.; Xiang-Ling, K.; De-Min, K. Numerical Simulation of Indoor Heat Transfer with Different Air Conditioner Installation Positions and Blow Angles. Fluid Mach. 2017, 45, 73–77. [Google Scholar]
- Boutros, R.; Cory, J.; Beasley, M. Modular Rack Design for Multiple Users. In Proceedings of the 24th International Conference on Environmental Systems and 5th European Symposium on Space Environmental Control Systems, Friedrichshafen, Germany, 20–23 June 1994. [Google Scholar] [CrossRef]
- Nie, Q.; Joshi, Y. Multi-Scale Thermal Modeling Methodology for Electronics Cabinets. In Proceedings of the Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems (ITHERM 2006), San Diego, CA, USA, 30 May–2 June 2006; pp. 677–684. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Sheth, D.V.; Saha, S.K. Numerical Study of Thermal Management of Data Centre using Porous Medium Approach. J. Build. Eng. 2019, 22, 200–215. [Google Scholar] [CrossRef]
No. | Thermal Load | Liquid Cooling | Air Cooling | |
---|---|---|---|---|
Layer 1 | 1-1 | 200 w | 195 w | 5 w |
1-2 | 70 w | 68 w | 2 w | |
1-3 | 10 w | 5 w | 5 w | |
1-4 | 20 w | 18 w | 2 w | |
Layer 2 | 2-1 | 255 w | 250 w | 5 w |
2-2 | 2 w | - | 2 w | |
2-3 | 13 w | 10 w | 3 w | |
2-4 | 25 w | 20 w | 5 w | |
2-5 | 2 w | - | 2 w | |
2-6 | 3 w | - | 3 w | |
Layer 3 | 3-1 | 140 w | 135 w | 5 w |
3-2 | 18 w | 15 w | 3 w | |
3-3 | 2 w | - | 2 w | |
3-4 | 140 w | 135 w | 5 w | |
Layer 4 | 6 w | - | 6 w |
No. | New Type of Air Cooling | Traditional 120° Lower Air Supply | Traditional 45° Upper Air Supply | |
---|---|---|---|---|
Layer 1 | 1-1 | 41 °C | 41 °C | 35 °C |
1-2 | 38 °C | 37 °C | 38 °C | |
1-3 | 50 °C | 56 °C | 65 °C | |
1-4 | 32 °C | 32 °C | 34 °C | |
Layer 2 | 2-1 | 35 °C | 34 °C | 34 °C |
2-2 | 38 °C | 41 °C | 37 °C | |
2-3 | 49 °C | 45℃ | 47 °C | |
2-4 | 55 °C | 52 °C | 53 °C | |
2-5 | 34 °C | 37 °C | 37 °C | |
2-6 | 48 °C | 46 °C | 52 °C | |
Layer 3 | 3-1 | 46 °C | 45 °C | 39 °C |
3-2 | 46 °C | 44 °C | 45 °C | |
3-3 | 43 °C | 57 °C | 55 °C | |
3-4 | 53 °C | 49 °C | 51 °C | |
Layer 4 | 37 °C | 38 °C | 34 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, Y.-Y.; Cai, B.-Y.; Li, Y.-Z.; Li, J.-X.; Li, E.-H. Numerical Simulation of the Air Cooling System for Scientific Payload Rack on a Space Station. Energies 2020, 13, 6145. https://doi.org/10.3390/en13226145
Lou Y-Y, Cai B-Y, Li Y-Z, Li J-X, Li E-H. Numerical Simulation of the Air Cooling System for Scientific Payload Rack on a Space Station. Energies. 2020; 13(22):6145. https://doi.org/10.3390/en13226145
Chicago/Turabian StyleLou, Yuan-Yuan, Ben-Yuan Cai, Yun-Ze Li, Jia-Xin Li, and En-Hui Li. 2020. "Numerical Simulation of the Air Cooling System for Scientific Payload Rack on a Space Station" Energies 13, no. 22: 6145. https://doi.org/10.3390/en13226145
APA StyleLou, Y. -Y., Cai, B. -Y., Li, Y. -Z., Li, J. -X., & Li, E. -H. (2020). Numerical Simulation of the Air Cooling System for Scientific Payload Rack on a Space Station. Energies, 13(22), 6145. https://doi.org/10.3390/en13226145