Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System
Abstract
:1. Introduction
- Generate a novel radiation-thermodynamic model for TPV systems.
- Perform parametric studies to understand the effects of varying the temperature of the radiator and PV cells on the key power generation variables.
- Investigate the effects of increasing the temperature of the radiator and TPV cells on the efficiency of a TPV system.
- Examine the inter-relationships between the key power generation variables of a TPV system.
2. Description of a Thermophotovoltaic System
3. Research Method and Approach
4. Numerical Modelling of the Core of the Thermophotovoltaic System
5. Results and Discussion
5.1. Validation of the TPV Model
5.2. Effects of Radiator Temperature on the Power Density Output of the TPV System
5.3. Effects of TPV Cells Temperature on the Power Generation Characteristics of the TPV System
5.4. Thermal Efficiency of the TPV System
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclatures/Abbreviations
CBM | code-based modelling/model |
radiative heat flux (W cm−2) | |
reference radiative heat flux (1000 W m−2) | |
photocurrent of PV module | |
output current of PV module | |
saturation current of PV module | |
short circuit current of PV module | |
k | Boltzmann’s constant (1.38 × 10−23 J K−1) |
n | refractive index of the dielectric medium |
number of PV cells in series | |
number of PV modules in parallel | |
PV | photovoltaic |
PVMSIC | photovoltaic modelling and simulation codes |
q | electron charge (1.602 × 10−19 C) |
thermal losses from the TPV system (W cm−2) | |
STC | standard test condition for PV cells (298.15 K, 1000 W m−2, AM 1.5) |
TPV | thermophotovoltaic |
temperature of the PV cells | |
temperature of the radiator (K) | |
reference temperature (298.15 K) | |
power density output (W cm−2) | |
Greek symbols | |
emissivity | |
η | energy efficiency |
Stefan-Boltzmann’s constant (5.67 × 10−12 W cm−2 K−4) | |
Subscripts | |
cell | PV cell |
ph | photon |
pv | photovoltaic |
rad | radiative |
ref | reference |
Th | thermal |
References
- Ogbonnaya, C.; Abeykoon, C.; Damo, U.M.; Turan, A. The current and emerging renewable energy technologies for power generation in Nigeria: A review. Therm. Sci. Eng. Prog. 2019, 13, 100390. [Google Scholar] [CrossRef]
- MacKay, D.J. Sustainable Energy—Without the Hot Air; UIT Cambridge Ltd.: Cambridge, UK, 2009; p. 383. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change, EU. Paris Agreement; UNFCCC: Paris, France, 2016.
- Dasanayaka, C.H.; Abeykoon, C.; Nagirikandalage, P. Modelling of the effects of renewable energy establishments towards the economic growth of a nation. In Proceedings of the 7th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT’20), Niagara Falls, ON, Canada, 15–17 November 2020. [Google Scholar]
- Mahmud, M.A.P.; Huda, N.; Farjana, S.H.; Lang, C. Environmental impacts of solar-photovoltaic and solar-thermal systems with life-cycle assessment. Energies 2018, 11, 2346. [Google Scholar] [CrossRef] [Green Version]
- Ogbonnaya, C.; Turan, A.; Abeykoon, C. Energy and exergy e ffi ciencies enhancement analysis of integrated photovoltaic-based energy systems. J. Energy Storage 2019, 26, 101029. [Google Scholar] [CrossRef]
- REN21 Renewables 2018 Global Status Report. Paris Renewable Energy Policy Network 21st Century; REN21 Secretariat: Paris, France, 2018; pp. 1–324. ISBN 978-3-9818911-3-3. [Google Scholar]
- Luque, A. Will we exceed 50% efficiency in photovoltaics? J. Appl. Phys. 2011, 110, 031301. [Google Scholar] [CrossRef]
- Ogbonnaya, C.; Turan, A.; Abeykoon, C. Novel thermodynamic efficiency indices for choosing an optimal location for large-scale photovoltaic power generation. J. Clean. Prod. 2019, 119405. [Google Scholar] [CrossRef]
- Ogbonnaya, C.; Turan, A.; Abeykoon, C. Modularization of integrated photovoltaic-fuel cell system for remote distributed power systems. In Industry 4.0—Shaping The Future of The Digital World; da Silva Bartolo, P.J., da Silva, F.M., Jaradat, S., Bartolo, H., Eds.; CRC Press: Manchester, UK, 2020; pp. 303–308. ISBN 9780367823085. [Google Scholar]
- Chowdhury, N.; Hossain, C.A.; Longo, M.; Yaïci, W. Optimization of solar energy system for the electric vehicle at university campus in Dhaka, Bangladesh. Energies 2018, 11, 2433. [Google Scholar] [CrossRef] [Green Version]
- Bauer, T. Thermophotovoltaics: Basic Principles and Critical Aspects of System Design (Green Energy Technology); Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Seyf, H.R.; Henry, A. Thermophotovoltaics: A potential pathway to high efficiency concentrated solar power. Energy Environ. Sci. 2016, 9, 2654–2665. [Google Scholar] [CrossRef]
- Durisch, W.; Bitnar, B.; Mayor, J.C.; von Roth, F.; Sigg, H.; Tschudi, H.R.; Palfinger, G. Small self-powered grid-connected thermophotovoltaic prototype system. Appl. Energy 2003, 74, 149–157. [Google Scholar] [CrossRef]
- Coutts, T.J. Review of progress in thermophotovoltaic generation of electricity. Renew. Sustain. Energy Rev. 1999, 3, 77–184. [Google Scholar] [CrossRef]
- Aberoumand, S.; Ghamari, S.; Shabani, B. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Sol. Energy 2018, 165, 167–177. [Google Scholar] [CrossRef]
- Damo, U.M.; Ferrari, M.L.; Turan, A.; Massardo, A.F. Re-compression model for SOFC hybrid systems: Start-up and shutdown test for an emulator rig. Fuel Cells 2015, 15, 42–48. [Google Scholar] [CrossRef]
- Datas, A.; Martí, A. Thermophotovoltaic energy in space applications: Review and future potential. Sol. Energy Mater. Sol. Cells 2017, 161, 285–296. [Google Scholar] [CrossRef]
- Hussain, C.M.I.; Duffy, A.; Norton, B. Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation. Appl. Energy 2020, 259, 114181. [Google Scholar] [CrossRef]
- Zhou, Z.; Sakr, E.; Sun, Y.; Bermel, P. Solar thermophotovoltaics: Reshaping the solar spectrum. Nanophotonics 2016, 5, 1–21. [Google Scholar] [CrossRef]
- Daneshvar, H.; Prinja, R.; Kherani, N.P. Thermophotovoltaics: Fundamentals, challenges and prospects. Appl. Energy 2015, 159, 560–575. [Google Scholar] [CrossRef]
- Harder, N.P.; Würfel, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 2003, 18. [Google Scholar] [CrossRef]
- Ferrari, C.; Melino, F.; Pinelli, M.; Spina, P.R. Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences. Appl. Energy 2014, 113, 1717–1730. [Google Scholar] [CrossRef]
- Butcher, T.A.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R. Heat transfer and thermophotovoltaic power generation in oil-fired heating systems. Appl. Energy 2011, 88, 1543–1548. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, X.; Krysa, A.; Marshall, A.; Carrington, P.; Tan, C.H.; Krier, A. InAs thermophotovoltaic cells with high quantum efficiency for waste heat recovery applications below 1000 °C. Sol. Energy Mater. Sol. Cells 2018, 179, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Gentillon, P.; Singh, S.; Lakshman, S.; Zhang, Z.; Paduthol, A.; Ekins-Daukes, N.J.; Chan, Q.N.; Taylor, R.A. A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission. Appl. Energy 2019, 254, 113721. [Google Scholar] [CrossRef]
- Winterbone, D.E.; Turan, A. Advanced Thermodynamics for Engineers, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2015; ISBN 9780080999838. [Google Scholar]
- Laroche, M.; Carminati, R.; Greffet, J.J. Near-field thermophotovoltaic energy conversion. J. Appl. Phys. 2006, 100, 063704. [Google Scholar] [CrossRef]
- Lau, J.Z.J.; Wong, B.T. Thermal energy conversion using near-field thermophotovoltaic device composed of a thin-film tungsten radiator and a thin-film silicon cell. J. Appl. Phys. 2017, 122, 084302. [Google Scholar] [CrossRef]
- Maremi, F.T.; Lee, N.; Choi, G.; Kim, T.; Cho, H.H. Design of multilayer ring emitter based on metamaterial for thermophotovoltaic applications. Energies 2018, 11, 2299. [Google Scholar] [CrossRef] [Green Version]
- Bitnar, B.; Durisch, W.; Holzner, R. Thermophotovoltaics on the move to applications. Appl. Energy 2013, 105, 430–438. [Google Scholar] [CrossRef]
- Ogbonnaya, C.; Turan, A.; Abeykoon, C. Robust code-based modeling approach for advanced photovoltaics of the future. Sol. Energy 2020, 199, 521–529. [Google Scholar] [CrossRef]
- Bunge, M. A General Black Box Theory. Philos. Sci. 1963, 30. [Google Scholar] [CrossRef]
- Kreith, F. CRC Handbook of Thermal Engineering; CRC Press: Boca Raton, FL, USA, 1999; ISBN 084939581X. [Google Scholar]
- Bellia, H.; Youcef, R.; Fatima, M. A detailed modeling of photovoltaic module using MATLAB. NRIAG J. Astron. Geophys. 2014, 3, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Durisch, W.; Grob, B.; Mayor, J.-C.; Panitz, J.-C.; Rosselet, A. Interfacing a small thermophotovoltaic generator to the grid. AIP Conf. Proc. 2011, 403, 403–416. [Google Scholar] [CrossRef]
- Meyer, E.L. Extraction of Saturation Current and Ideality Factor from Measuring Voc and Isc of Photovoltaic Modules. Int. J. Photoenergy 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Bhatt, R.; Kravchenko, I.; Gupta, M. High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter. Sol. Energy 2020, 197, 538–545. [Google Scholar] [CrossRef]
- Florschuetz, L.W. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Sol. Energy 1979, 22, 361–366. [Google Scholar] [CrossRef]
- Jiang, J.A.; Wang, J.C.; Kuo, K.C.; Su, Y.L.; Shieh, J.C.; Chou, J.J. Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions. Energy 2012, 44, 292–301. [Google Scholar] [CrossRef]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2003; p. 384. [Google Scholar]
- Ogbonnaya, C.; Turan, A.; Abeykoon, C. Numerical integration of solar, electrical and thermal exergies of photovoltaic module: A novel thermophotovoltaic model. Sol. Energy 2019, 185, 298–306. [Google Scholar] [CrossRef]
Parameters | Values | Units | References |
---|---|---|---|
Temperature of the radiator ) | 1800 | K | Bauer [12] |
Temperature of the TPV cells ) | 300 | K | Bauer [12] |
Maximum Power Point (at ) | 116 | W | PVMIC [32] |
Reference temperature ) | 298.15 | K | Bauer [12] |
Refractive index of the medium (n) | 1.5 | Bauer [12] | |
View factor (parallel configuration) (F) | 1 | Bauer [12] | |
Reference radiative heat transfer ) | 1000 | W m−2 | PVMIC [32] |
Emissivity of the radiator ) | 1 | Bauer [12] | |
Short circuit current of TPV cells ) | 2.68 | A | PVMIC [32] |
Saturation current ) | 5.39 × 10−5 | A | Meyer [37] |
Maximum Power Point ) (at STC) | 80 | Watts | PVMIC [32] |
Maximum Voltage Point ) | 35 | V | PVMIC [32] |
Ideality factor (A) | 2.85 | PVMIC [32] | |
Band gap (Silicon) at 0 K | 1.17 | eV | Varshni [38] |
Number of cells in series () | 72 | PVMIC [32] | |
Number of cells in parallel () | 1 | PVMIC [32] | |
Boltzmann constant (k) | 1.38 × 10−23 | J K−1 | Coutts [15] |
Electron Charge (q) | 1.602 × 10−19 | C | Coutts [15] |
Stefan–Boltzmann constant () | 5.67 × 10−8 | W m−2 K−4 | Coutts [15] |
Number of simulation iterations | 700 | PVMIC [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogbonnaya, C.; Abeykoon, C.; Nasser, A.; Turan, A. Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System. Energies 2020, 13, 6157. https://doi.org/10.3390/en13226157
Ogbonnaya C, Abeykoon C, Nasser A, Turan A. Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System. Energies. 2020; 13(22):6157. https://doi.org/10.3390/en13226157
Chicago/Turabian StyleOgbonnaya, Chukwuma, Chamil Abeykoon, Adel Nasser, and Ali Turan. 2020. "Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System" Energies 13, no. 22: 6157. https://doi.org/10.3390/en13226157
APA StyleOgbonnaya, C., Abeykoon, C., Nasser, A., & Turan, A. (2020). Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System. Energies, 13(22), 6157. https://doi.org/10.3390/en13226157