Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues
Abstract
:1. Introduction
2. GBMs
3. TiO2
3.1. Compact TiO2 Layer
3.2. Mesoporous TiO2 Layer
4. SnO2
5. ZnO
6. PCBM
7. Other ETL Materials
8. Summary and Outlook
- Enhanced electron transport from increased electrical conductivity and electron mobility of the ETL;
- Enhanced electron transport from improved ETL/perovskite effective interfacial apposition;
- Enhanced J-V characteristics and parameters of PSCs largely owing to more effective electron extraction and transport deriving from the ETLs;
- Enhanced J-V characteristics of PSCs through reduced hysteresis owing to leveraging of surface trap sites created by GBMs;
- Potential tuning of the Eg and the energy levels to optimise charge transfer to and from the ETL;
- Enhanced device stability (i.e., protection of the perovskite from water vapour—hydrophobicity) from passivation of the ETL at the ETL/perovskite interface;
- Enhanced device stability through prevention of alteration of perovskite by inhibition of diffusion and counter-diffusion of mobile ions across the ETL/perovskite interface;
- Enhanced device stability through increased crystallinity of perovskite from the action of GBMs as nucleating agents.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jean, J.; Brown, P.R.; Jaffe, R.L.; Buonassisi, T.; Bulović, V. Pathways for Solar Photovoltaics. Energy Environ. Sci. 2015, 8, 1200–1219. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A.W.Y. Solar Cell Efficiency Tables (Version 55). Prog. Photovolt. Res. Appl. 2020, 28, 3–15. [Google Scholar] [CrossRef]
- Li, Z.; Klein, T.R.; Kim, D.H.; Yang, M.; Berry, J.J.; van Hest, M.F.A.M.; Zhu, K. Scalable Fabrication of Perovskite Solar Cells. Nat. Rev. Mater. 2018, 3, 18017. [Google Scholar] [CrossRef]
- NREL. Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf (accessed on 21 October 2020).
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, M.; Ishihara, T.; Goto, T. Exciton Features in 0-, 2-, and 3-Dimensional Networks of [PbI6]4− Octahedra. J. Phys. Soc. Jpn. 1994, 63, 3870–3879. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative Study on the Excitons in Lead-Halide-Based Perovskite-Type Crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619–623. [Google Scholar] [CrossRef]
- Filip, M.R.; Eperon, G.E.; Snaith, H.J.; Giustino, F. Steric Engineering of Metal-Halide Perovskites with Tunable Optical Band Gaps. Nat. Commun. 2014, 5, 5757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Steirer, K.X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J.J. Defect Tolerance in Methylammonium Lead Triiodide Perovskite. ACS Energy Lett. 2016, 1, 360–366. [Google Scholar] [CrossRef]
- Motta, C.; El-Mellouhi, F.; Sanvito, S. Charge Carrier Mobility in Hybrid Halide Perovskites. Sci. Rep. 2015, 5, 12746. [Google Scholar] [CrossRef] [PubMed]
- Ono, L.K.; Juarez-Perez, E.J.; Qi, Y. Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Appl. Mater. Interfaces 2017, 9, 30197–30246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leijtens, T.; Lauber, B.; Eperon, G.E.; Stranks, S.D.; Snaith, H.J. The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Perez, E.J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 680–685. [Google Scholar] [CrossRef]
- Sidhik, S.; Panikar, S.S.; Pérez, C.R.; Luke, T.L.; Carriles, R.; Carrera, S.C.; De la Rosa, E. Interfacial Engineering of TiO2 by Graphene Nanoplatelets for High-Efficiency Hysteresis-Free Perovskite Solar Cells. ACS Sustain. Chem. Eng. 2018, 6, 15391–15401. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, J.W.; Yu, H.; Yun, J.; Lee, K.; Lee, J.; Hwang, D.; Kang, J.; Kim, S.K.; Jang, J. Size Effects of A Graphene Quantum Dot Modified-Blocking TiO2 Layer for Efficient Planar Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 16834–16842. [Google Scholar] [CrossRef]
- Pang, S.; Zhang, C.; Zhang, H.; Dong, H.; Chen, D.; Zhu, W.; Xi, H.; Chang, J.; Lin, Z.; Zhang, J.; et al. Boosting Performance Of Perovskite Solar Cells with Graphene Quantum Dots Decorated SnO2 Electron Transport Layers. Appl. Surf. Sci. 2020, 507, 145099. [Google Scholar] [CrossRef]
- Biccari, F.; Gabelloni, F.; Burzi, E.; Gurioli, M.; Pescetelli, S.; Agresti, A.; Del Rio Castillo, A.E.; Ansaldo, A.; Kymakis, E.; Bonaccorso, F.; et al. Graphene-based Electron Transport Layers in Perovskite Solar Cells: A Step-up for an Efficient Carrier Collection. Adv. Energy Mater. 2017, 7, 1701349. [Google Scholar] [CrossRef]
- Ball, J.M.; Lee, M.M.; Hey, A.; Snaith, H.J. Low-Temperature Processed Meso-superstructured to Thin-Film Perovskite Solar Cells. Energy Environ. Sci. 2013, 6, 1739–1743. [Google Scholar] [CrossRef]
- Salim, T.; Sun, S.; Abe, Y.; Krishna, A.; Grimsdale, A.C.; Lam, Y.M. Perovskite-Based Solar Cells: Impact of Morphology and Device Architecture on Device Performance. J. Mater. Chem. A 2015, 3, 8943–8969. [Google Scholar] [CrossRef]
- Han, G.S.; Song, Y.H.; Jin, Y.U.; Lee, J.-W.; Park, N.-G.; Kang, B.K.; Lee, J.-K.; Cho, I.S.; Yoon, D.H.; Jung, H.S. Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 23521–23526. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, S.; Yin, X.; Han, J.; Tai, M.; Zhao, X.; Chen, H.; Gu, Y.; Wang, N.; Lin, H. Enhancing Electron Transport via Graphene Quantum Dot/SnO2 Composites for Efficient and Durable Flexible Perovskite Photovoltaics. J. Mater. Chem. A 2019, 7, 1878–1888. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, W.; Ke, W.; Xie, L.; Dong, P.; Hao, F. Graphene-Modified Tin Dioxide for Efficient Planar Perovskite Solar Cells with Enhanced Electron Extraction and Reduced Hysteresis. ACS Appl. Mater. Interfaces 2019, 11, 666–673. [Google Scholar] [CrossRef]
- Hong, J.A.; Jung, E.D.; Yu, J.C.; Kim, D.W.; Nam, Y.S.; Oh, I.; Lee, E.; Yoo, J.-W.; Cho, S.; Song, M.H. Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Cui, X.; Rager, M.; Zhang, S.; Wang, Z.; Yu, J.; Harn, Y.W.; Kang, Z.; Wagner, B.K.; Liu, Y.; et al. Cascade Charge Transfer Enabled by Incorporating Edge-Enriched Graphene Nanoribbons for Mesostructured Perovskite Solar Cells with Enhanced Performance. Nano Energy 2018, 52, 123–133. [Google Scholar] [CrossRef]
- Wang, J.; Qin, M.; Tao, H.; Ke, W.; Chen, Z.; Wan, J.; Qin, P.; Xiong, L.; Lei, H.; Yu, H.; et al. Performance Enhancement of Perovskite Solar Cells with Mg-Doped TiO2 Compact Film as the Hole-Blocking Layer. Appl. Phys. Lett. 2015, 106, 121104. [Google Scholar] [CrossRef]
- Xiong, L.; Qin, M.; Yang, G.; Guo, Y.; Lei, H.; Liu, Q.; Ke, W.; Tao, H.; Qin, P.; Li, S.; et al. Performance Enhancement of High Temperature SnO2-Based Planar Perovskite Solar Cells: Electrical characterization and understanding of the mechanism. J. Mater. Chem. A 2016, 4, 8374–8383. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Yadav, P.; Tavakoli, R.; Kong, J. Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis-Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open-Circuit Voltage and Stability. Adv. Energy Mater. 2018, 8, 1800794. [Google Scholar] [CrossRef]
- Han, G.S.; Chung, H.S.; Kim, B.J.; Kim, D.H.; Lee, J.W.; Swain, B.S.; Mahmood, K.; Yoo, J.S.; Park, N.-G.; Lee, J.H.; et al. Retarding Charge Recombination in Perovskite Solar Cells Using Ultrathin MgO-Coated TiO2 Nanoparticulate Films. J. Mater. Chem. A 2015, 3, 9160–9164. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Zhang, P.; Wang, Y.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z.D. Efficient Planar Heterojunction Perovskite Solar Cells with Li-Doped Compact TiO2 Layer. Nano Energy 2017, 31, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Kim, J.-Y.; Son, H.J.; Lee, C.-H.; Jang, S.S.; Ko, M.J. Low-Temperature Solution-Processed Li-Doped SnO2 as an Effective Electron Transporting Layer for High-Performance Flexible and Wearable Perovskite Solar Cells. Nano Energy 2016, 26, 208–215. [Google Scholar] [CrossRef]
- Ke, W.; Zhao, D.; Xiao, C.; Wang, C.; Cimaroli, A.J.; Grice, C.R.; Yang, M.; Li, Z.; Jiang, C.-S.; Al-Jassim, M.; et al. Cooperative Tin Oxide Fullerene Electron Selective Layers for High-Performance Planar Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 14276–14283. [Google Scholar] [CrossRef]
- Dong, Q.; Ho, C.H.Y.; Yu, H.; Salehi, A.; So, F. Defect Passivation by Fullerene Derivative in Perovskite Solar Cells with Aluminum-Doped Zinc Oxide as Electron Transporting Layer. Chem. Mater. 2019, 31, 6833–6840. [Google Scholar] [CrossRef]
- Wang, J.; Datta, K.; Weijtens, C.H.L.; Wienk, M.M.; Janssen, R.A.J. Insights into Fullerene Passivation of SnO2 Electron Transport Layers in Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905883. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Yang, Q.-D.; Xiao, J.; Xue, Q.; Li, H.-W.; Guan, Z.; Yip, H.-L.; Tsang, S.-W. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 19986–19993. [Google Scholar] [CrossRef] [PubMed]
- Kegelmann, L.; Wolff, C.M.; Awino, C.; Lang, F.; Unger, E.L.; Korte, L.; Dittrich, T.; Neher, D.; Rech, B.; Albrecht, S. It Takes Two to Tango—Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. ACS Appl. Mater. Interfaces 2017, 9, 17245–17255. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Zhang, W.; Xie, F.; Li, Y.; Abate, A.; Wei, M. Graphene Quantum Dots Decorated TiO2 Mesoporous Film as an Efficient Electron Transport Layer for High-Performance Perovskite Solar Cells. J. Power Sources 2018, 402, 320–326. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Shi, L.; Liu, Z.; Huang, J.; Yun, J.S.; Zeng, Y.; Pu, A.; Sun, K.; Hameiri, Z.; et al. Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Low-Temperature-Processed Planar-Structure Hybrid Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1800138. [Google Scholar] [CrossRef]
- Ryu, S.; Seo, J.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Noh, J.H.; Seok, S.I. Fabrication of Metal-Oxide-Free CH3NH3PbI3 Perovskite Solar Cells Processed at Low Temperature. J. Mater. Chem. A 2015, 3, 3271–3275. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Tavakoli, R.; Yadav, P.; Kong, J. A Graphene/ZnO Electron Transfer Layer Together with Perovskite Passivation Enables Highly Efficient and Stable Perovskite Solar Cells. J. Mater. Chem. A 2019, 7, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Petridis, C.; Kakavelakis, G.; Kymakis, E. Renaissance of Graphene-Related Materials in Photovoltaics due to the Emergence of Metal Halide Perovskite Solar Cells. Energy Environ. Sci. 2018, 11, 1030–1061. [Google Scholar] [CrossRef]
- Acik, M.; Darling, S.B. Graphene in Perovskite Solar Cells: Device Design, Characterization and Implementation. J. Mater. Chem. A 2016, 4, 6185–6235. [Google Scholar] [CrossRef]
- Lim, E.L.; Yap, C.C.; Jumali, M.H.H.; Teridi, M.A.M.; Teh, C.H. A Mini Review: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications? Nano Micro Lett. 2017, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Synthesis and Applications of Graphene Quantum Dots: A Review. Nanotechnol. Rev. 2018, 7, 157. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The Chemistry Of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Sorrell, C.C.; Taib, H.; Palmer, T.C.; Peng, F.; Xia, Z.M.; Wei, M. Hydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition. In Biological and Biomedical Coatings Handbook: Processing and Characterization; Zhang, S., Ed.; CRC Press-Taylor & Francis Group: Boca Raton, FL, USA, 2011; pp. 81–135. [Google Scholar]
- Yan, K.; Wei, Z.; Li, J.; Chen, H.; Yi, Y.; Zheng, X.; Long, X.; Wang, Z.; Wang, J.; Xu, J.; et al. High-Performance Graphene-Based Hole Conductor-Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small 2015, 11, 2269–2274. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Kim, S.; Jang, M.H.; Lee, M.H.; Seo, S.W.; Choi, S.-H.; Im, S.H. Highly Efficient CH3NH3PbI3 Perovskite Solar Cells Prepared by AuCl3-Doped Graphene Transparent Conducting Electrodes. Chem. Eng. J. 2017, 323, 153–159. [Google Scholar] [CrossRef]
- Hadadian, M.; Correa-Baena, J.-P.; Goharshadi, E.K.; Ummadisingu, A.; Seo, J.-Y.; Luo, J.; Gholipour, S.; Zakeeruddin, S.M.; Saliba, M.; Abate, A.; et al. Enhancing Efficiency of Perovskite Solar Cells via N-doped Graphene: Crystal Modification and Surface Passivation. Adv. Mater. 2016, 28, 8681–8686. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Ding, J.; Yuan, N.; Sun, P.; Lv, M.; Ding, G.; Zhu, C. Graphene Quantum Dot Incorporated Perovskite Films: Passivating Grain Boundaries and Facilitating Electron Extraction. Phys. Chem. Chem. Phys. 2017, 19, 6057–6063. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.-B. SrTiO3/Al2O3-Graphene Electron Transport Layer for Highly Stable and Efficient Composites-Based Perovskite Solar Cells with 20.6% Efficiency. Adv. Energy Mater. 2020, 10, 1903369. [Google Scholar] [CrossRef]
- Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Zhu, X.; Xu, L.; Wang, P.; Cui, C.; et al. Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano 2017, 11, 9176–9182. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, Y.; Liu, C.; Li, J.; Wang, N.; Lin, H. Iodide-Reduced Graphene Oxide with Dopant-Free Spiro-OMeTAD for Ambient Stable and High-Efficiency Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 15996–16004. [Google Scholar] [CrossRef]
- Wen, X.; Wu, J.; Gao, D.; Lin, C. Interfacial Engineering with Amino-Functionalized Graphene for Efficient Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 13482–13487. [Google Scholar] [CrossRef] [Green Version]
- Yang‡, Q.-D.; Li, J.; Cheng, Y.; Li, H.-W.; Guan, Z.; Yu, B.; Tsang, S.-W. Graphene Oxide as an Efficient Hole-Transporting Material for High-Performance Perovskite Solar Cells with Enhanced Stability. J. Mater. Chem. A 2017, 5, 9852–9858. [Google Scholar] [CrossRef]
- Zhao, X.; Tao, L.; Li, H.; Huang, W.; Sun, P.; Liu, J.; Liu, S.; Sun, Q.; Cui, Z.; Sun, L.; et al. Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. Nano Lett. 2018, 18, 2442–2449. [Google Scholar] [CrossRef]
- Agresti, A.; Pescetelli, S.; Palma, A.L.; Del Rio Castillo, A.E.; Konios, D.; Kakavelakis, G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F.; et al. Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area. ACS Energy Lett. 2017, 2, 279–287. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, H.; Li, J.; Ma, J.; Yang, D.; Liu, Z.; Gao, F.; Liu, S. Air and Thermally Stable Perovskite Solar Cells with CVD-Graphene as the Blocking Layer. Nanoscale 2017, 9, 8274–8280. [Google Scholar] [CrossRef]
- Wang, J.T.-W.; Ball, J.M.; Barea, E.M.; Abate, A.; Alexander-Webber, J.A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H.J.; et al. Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett. 2014, 14, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Hu, Z.; Zhao, X.; Chen, D.; Lin, H.; Lai, X.; Yang, L. Cesium-Containing Perovskite Solar Cell Based on Graphene/TiO2 Electron Transport Layer. ChemistrySelect 2017, 2, 9433–9437. [Google Scholar] [CrossRef]
- Cho, K.T.; Grancini, G.; Lee, Y.; Konios, D.; Paek, S.; Kymakis, E.; Nazeeruddin, M.K. Beneficial Role of Reduced Graphene Oxide for Electron Extraction in Highly Efficient Perovskite Solar Cells. ChemSusChem 2016, 9, 3040–3044. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A.; Pescetelli, S.; Taheri, B.; Del Rio Castillo, A.E.; Cinà, L.; Bonaccorso, F.; Di Carlo, A. Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem 2016, 9, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- Nouri, E.; Mohammadi, M.R.; Xu, Z.-X.; Dracopoulos, V.; Lianos, P. Improvement of The Photovoltaic Parameters of Perovskite Solar Cells Using a Reduced-Graphene-Oxide-Modified Titania Layer and Soluble Copper Phthalocyanine as a Hole Transporter. Phys. Chem. Chem. Phys. 2018, 20, 2388–2395. [Google Scholar] [CrossRef] [PubMed]
- Patil, J.V.; Mali, S.S.; Patil, A.P.; Patil, P.S.; Hong, C.K. Highly Efficient Mixed-Halide Mixed-Cation Perovskite Solar Cells Based on rGO-TiO2 Composite Nanofibers. Energy 2019, 189, 116396. [Google Scholar] [CrossRef]
- Xia, H.; Ma, Z.; Xiao, Z.; Zhou, W.; Zhang, H.; Du, C.; Zhuang, J.; Cheng, X.; Liu, X.; Huang, Y. Interfacial Modification Using Ultrasonic Atomized Graphene Quantum Dots for Efficient Perovskite Solar Cells. Org. Electron. 2019, 75, 105415. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, J.; Arivazhagan, V.; Xiao, K.; Qiang, Y.; Huang, K.; Hu, M.; Cui, C.; Yu, X.; Yang, D. Efficient and Highly Light Stable Planar Perovskite Solar Cells with Graphene Quantum Dots Doped PCBM Electron Transport Layer. Nano Energy 2017, 40, 345–351. [Google Scholar] [CrossRef]
- Bi, E.; Chen, H.; Xie, F.; Wu, Y.; Chen, W.; Su, Y.; Islam, A.; Grätzel, M.; Yang, X.; Han, L. Diffusion Engineering of Ions and Charge Carriers for Stable Efficient Perovskite Solar Cells. Nat. Commun. 2017, 8, 15330. [Google Scholar] [CrossRef] [Green Version]
- Kakavelakis, G.; Maksudov, T.; Konios, D.; Paradisanos, I.; Kioseoglou, G.; Stratakis, E.; Kymakis, E. Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer. Adv. Energy Mater. 2017, 7, 1602120. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, J.M.; Shin, S.H.; Choi, S.-H. Highly-Flexible Graphene Transparent Conductive Electrode/Perovskite Solar Cells with Graphene Quantum Dots-Doped PCBM Electron Transport Layer. Dye. Pigment. 2019, 170, 107630. [Google Scholar] [CrossRef]
- Chandrasekhar, P.S.; Dubey, A.; Qiao, Q. High Efficiency Perovskite Solar Cells Using Nitrogen-Doped Graphene/ZnO Nanorod Composite as an Electron Transport Layer. Sol. Energy 2020, 197, 78–83. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Hussain, Z.; Mujahid, M.; Khan, A.N.; Javaid, S.S.; Habib, A. Low Resistivity ZnO-GO Electron Transport Layer Based CH3NH3PbI3 Solar Cells. AIP Adv. 2016, 6, 065303. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, P.S.; Komarala, V.K. Graphene/ZnO Nanocomposite as an Electron Transport Layer for Perovskite Solar Cells; the Effect of Graphene Concentration on Photovoltaic Performance. RSC Adv. 2017, 7, 28610–28615. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Luo, Q.; Liu, T.; Tai, M.; Lin, J.; Murugadoss, V.; Lin, H.; Wang, J.; Guo, Z.; Wang, N. Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. Acs Appl. Mater. Interfaces 2020, 12, 13941–13949. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-H.; Jang, H.; Yoon, Y.J.; Jeong, J.; Park, S.Y.; Walker, B.; Jeon, I.-Y.; Jo, Y.; Yoon, H.; Kim, M.; et al. Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Lett. 2017, 17, 6385–6390. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, E.; Matteocci, F.; Calabrò, E.; Serenelli, L.; Salza, E.; Martini, L.; Menchini, F.; Izzi, M.; Agresti, A.; Pescetelli, S.; et al. Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule 2020, 4, 865–881. [Google Scholar] [CrossRef]
- Taheri-Ledari, R.; Valadi, K.; Maleki, A. High-performance HTL-Free Perovskite Solar Cell: An Efficient Composition of ZnO NRs, RGO, and CuInS2 QDs, as electron-transporting layer matrix. Prog. Photovolt. Res. Appl. 2020. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Tavakoli, R.; Nourbakhsh, Z.; Waleed, A.; Virk, U.S.; Fan, Z. High Efficiency and Stable Perovskite Solar Cell Using ZnO/rGO QDs as an Electron Transfer Layer. Adv. Mater. Interfaces 2016, 3, 1500790. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P.P.; Kulkarni, S.A.; Mhaisalkar, S.; Grätzel, M.; Park, N.-G. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Lett. 2013, 13, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Sheng, X.; Li, Y.; Feng, X.; Xu, T. Rutile TiO2 Nanowire-Based Perovskite Solar Cells. Chem. Commun. 2014, 50, 14720–14723. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Lee, T.-Y.; Yoo, P.J.; Grätzel, M.; Mhaisalkar, S.; Park, N.-G. Rutile TiO2-Based Perovskite Solar Cells. J. Mater. Chem. A 2014, 2, 9251–9259. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Geng, D.; Wang, J.; Zhang, L.; Andrew, T.L.; Arnold, M.S.; Wang, X. Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures. ACS Nano 2015, 9, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Noh, M.F.; Teh, C.H.; Daik, R.; Lim, E.L.; Yap, C.C.; Ibrahim, M.A.; Ahmad Ludin, N.; Mohd Yusoff, A.R.b.; Jang, J.; Mat Teridi, M.A. The Architecture of the Electron Transport Layer for a Perovskite Solar Cell. J. Mater. Chem. C 2018, 6, 682–712. [Google Scholar] [CrossRef]
- Kim, H.-S.; Park, N.-G. Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. J. Phys. Chem. Lett. 2014, 5, 2927–2934. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Tiwana, P.; Docampo, P.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano 2011, 5, 5158–5166. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-superstructured Organometal Tri-halide Perovskite Solar Cells. Nat. Commun. 2013, 4, 2885. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Xu, H.; Zheng, H.; Zhang, T.; Zhang, P.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z.; et al. SnO2-Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Sol. RRL 2019, 3, 1800292. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef] [PubMed]
- Jarzebski, Z.M.; Morton, J.P. Physical Properties of SnO2 Materials: III. Optical Properties. J. Electrochem. Soc. 2019, 123, 333C–346C. [Google Scholar] [CrossRef]
- Jarzebski, Z.M.; Marton, J.P. Physical Properties of SnO2 Materials: II. Semiconducting properties. J. Electrochem. Soc. 2019, 123, 299C–310C. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. High Efficiency Planar-Type Perovskite Solar Cells with Negligible Hysteresis Using EDTA-Complexed SnO2. Nat. Commun. 2018, 9, 3239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef] [PubMed]
- Barbé, J.; Tietze, M.L.; Neophytou, M.; Murali, B.; Alarousu, E.; Labban, A.E.; Abulikemu, M.; Yue, W.; Mohammed, O.F.; McCulloch, I.; et al. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 11828–11836. [Google Scholar] [CrossRef]
- Anaraki, E.H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A.; et al. Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-Processed Tin Oxide. Energy Environ. Sci. 2016, 9, 3128–3134. [Google Scholar] [CrossRef]
- Roose, B.; Baena, J.-P.C.; Gödel, K.C.; Graetzel, M.; Hagfeldt, A.; Steiner, U.; Abate, A. Mesoporous SnO2 Electron Selective Contact Enables UV-Stable Perovskite Solar Cells. Nano Energy 2016, 30, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.; Chen, Q.; Li, L. Modification Engineering in SnO2 Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Adv. Funct. Mater. 2020, 30, 2004209. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Haase, M.; Weller, H.; Henglein, A. Photochemistry and Radiation Chemistry of Colloidal Semiconductors. 23. Electron Storage on Zinc Oxide Particles and Size Quantization. J. Phys. Chem. 1988, 92, 482–487. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, T.L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nat. Photonics 2014, 8, 133–138. [Google Scholar] [CrossRef]
- Yang, J.; Siempelkamp, B.D.; Mosconi, E.; De Angelis, F.; Kelly, T.L. Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO. Chem. Mater. 2015, 27, 4229–4236. [Google Scholar] [CrossRef]
- Said, A.A.; Xie, J.; Zhang, Q. Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small 2019, 15, 1900854. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nat. Commun. 2014, 5, 5784. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; et al. Perovskite–Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, M.M.; Tavakoli, R.; Hasanzadeh, S.; Mirfasih, M.H. Interface Engineering of Perovskite Solar Cell Using a Reduced-Graphene Scaffold. J. Phys. Chem. C 2016, 120, 19531–19536. [Google Scholar] [CrossRef]
ETL Material | Device Structure | PCE (%) | VOC (V) | JSC (mA/cm2) | FF | ΔPCE (Relative to Pristine ETL) (%) | Ref. |
---|---|---|---|---|---|---|---|
SnO2 + GQDs | ITO/SnO2-GQDs/MAPbCl3−xIx/Spiro-OMeTAD/Ag | 21.10 | 1.11 | 24.40 | 0.78 | +13 | [19] |
m-TiO2 + RGO | FTO/c-TiO2/m-TiO2-RGO/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | 19.54 | 1.11 | 21.98 | 0.80 | + 3 | [65] |
c-TiO2 + GQDs | FTO/c-TiO2-GQDs/MAPbI3/Spiro-OMeTAD/Au | 19.11 | 1.12 | 22.47 | 0.76 | +11 | [18] |
PCBM + GQDs | ITO/PCBM-GQDs/MAPbI3/Spiro-OMeTAD/Au | 17.56 | 1.09 | 22.03 | 0.73 | +20 | [70] |
ZnO + GR | FTO/ZnO-GR/Perovskite/Spiro-OMeTAD/Au | 19.81 | 1.12 | 22.71 | 0.77 | +43 | [43] |
STO + (m-Al2O3 + GR) | FTO/Sr0.05Ti0.95O3/m-Al2O3-GR/MAPbI3−xClx + Ag-RGO/Spiro-OMeTAD/Au | 20.58 | 1.06 | 25.75 | 0.76 | +29 | [55] |
α-Fe2O3 + GQDs | FTO/α-Fe2O3-GQDs/MAPbI3 + GQDs/GQDs/Spiro-OMeTAD/Au | 19.2 | 1.03 | 23.50 | 0.79 | +37 | [77] |
GBM | Dosage | Synthesis | Device Structure | PCE (%) | VOC (V) | JSC (mA/cm2) | FF | Ref. |
---|---|---|---|---|---|---|---|---|
GR | 2 wt % | SC | FTO/c-TiO2/m-TiO2-GR/MAPbI3/Spiro-OMeTAD/Au | 19.23 | 1.00 | 23.67 | 0.80 | [17] |
GR | 1 vol % | SC | FTO/c-TiO2/m-TiO2-GR/MAPbI3/Spiro-OMeTAD/Au | 14.60 | 1.03 | 22.95 | 0.69 | [66] |
GR | 1 vol % | SC | FTO/c-TiO2/m-TiO2-GR/MAPbI3/Spiro-OMeTAD/Au | 16.00 | 1.04 | 20.99 | 0.73 | [20] |
GR | 0.15 & 1.3 wt % | SC | FTO/c-TiO2-GR/m-TiO2-GR/MAPbI3/Spiro-OMeTAD/Ag | 17.69 | 1.05 | 22.98 | 0.73 | [27] |
GR | 0.6 wt % | SC | FTO/c-TiO2-GR/Al2O3/MAPbI3−xClx/Spiro-OMeTAD/Ag | 15.60 | 1.04 | 21.90 | 0.73 | [63] |
GR | Single layer | EPD | FTO/c-TiO2/porous GR/MAPbI3/Spiro-OMeTAD/Au | 17.20 | 1.05 | 22.80 | 0.72 | [109] |
GR | 5 vol % | SC | ITO/SnO2-NDI-GR/FA0.75MA0.15Cs0.1PbI2.65Br0.35/Spiro-OMeTAD/Ag | 20.16 | 1.08 | 22.66 | 0.82 | [60] |
GR | 1 vol % | SC | FTO/SnO2-GR/MAPbI3/Spiro-OMeTAD/Au | 18.11 | 1.09 | 23.06 | 0.72 | [25] |
GR | Single layer | LPCVD | FTO/ZnO-GR/FAMAPbI3/Spiro-OMeTAD/Au | 19.81 | 1.12 | 22.71 | 0.77 | [43] |
GR | 0.8 wt % | Hydrothermal | FTO/ZnO-NGR/MAPbI3/Spiro-OMeTAD/Ag | 16.82 | 1.01 | 21.98 | 0.77 | [74] |
GR | 0.75 wt % | Spray coating | FTO/ZnO-GR/MAPbI3/Spiro-OMeTAD/Ag | 10.34 | 0.93 | 19.97 | 0.56 | [76] |
GR | 2 wt % | SC | FTO/NiMgLiO/MAPbI3/NGR-PCBM/CQDs/Ag | 15.80 | 1.07 | 19.69 | 0.75 | [71] |
GR | Single layer | SC | ITO/PEDOT:PSS/MAPbI3/PCBM/EFGR-F/Al | 14.30 | 0.98 | 18.50 | 0.78 | [78] |
GR | No info. | SC | FTO/Sr0.05Ti0.95O3/m-Al2O3-GR/MAPbI3−xClx + Ag-RGO/Spiro-OMeTAD/Au | 20.58 | 1.06 | 25.75 | 0.76 | [55] |
GO | Single layer | SC | FTO/c-TiO2/m-TiO2/GO-Li/MAPbI3/Spiro-OMeTAD/Au | 15.20 | 1.02 | 22.51 | 0.65 | [20] |
GO | 5 vol% | SC | ITO/SnO2-NGO/RbCsFAMAI3/Spiro-OMeTAD/Ag | 16.54 | 1.17 | 19.28 | 0.71 | [26] |
RGO | No info. | SC | FTO/c-TiO2/m-TiO2-RGO/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | 19.54 | 1.11 | 21.98 | 0.80 | [65] |
RGO | No info. | Electrospinning | FTO/c-TiO2/TiO2-RGO NF/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | 17.66 | 1.07 | 22.16 | 0.75 | [68] |
RGO | 0.4 vol % | SC | FTO/c-TiO2/m-TiO2-RGO/MAPbI3/Spiro-OMeTAD/Ag | 14.50 | 0.93 | 22.00 | 0.71 | [23] |
RGO | Core-shell | Sol-gel | FTO/ZnO-RGO/MAPbI3/Spiro-OMeTAD/Ag | 15.20 | 1.03 | 21.70 | 0.68 | [81] |
RGO | 5 wt % | SC | FTO/ZnO-RGO/MAPbI3/Spiro-OMeTAD/Au | 11.97 | 1.00 | 19.95 | 0.61 | [80] |
RGO | 5 vol % | SC | ITO/PEDOT:PSS/MAPbI3−xClx/PCBM-RGO/PFN/Ag | 14.51 | 0.94 | 23.52 | 0.65 | [72] |
GQDs | 1 mg/mL | SC | FTO/c-TiO2/m-TiO2-GQDs/(FAPbI3)1−x(MAPbBr3)/Spiro-OMeTAD/Au | 20.45 | 1.08 | 24.92 | 0.76 | [39] |
GQDs | 3 mg/mL | SC | FTO/c-TiO2-GQDs/MAPbI3/Spiro-OMeTAD/Au | 19.11 | 1.12 | 22.47 | 0.76 | [18] |
GQDs | No info. | SC | ITO/SnO2-GQD/MAPbI3−xClx/Spiro-OMeTAD/Ag | 21.10 | 1.11 | 24.40 | 0.78 | [19] |
GQDs | 1 wt % | SC | ITO/SnO2-GQD/MAPbI3/Spiro-OMeTAD/Au | 20.31 | 1.13 | 23.05 | 0.78 | [56] |
GQDs | 0.5 wt % | SC | ITO/SnO2-GQD/CsFAMAI3/Spiro-OMeTAD/Au | 19.60 | 1.08 | 23.50 | 0.77 | [24] |
GQDs | 0.5 wt % | SC | ITO/PCBM-GQD/MAPbI3/Spiro-OMeTAD/Au | 17.56 | 1.09 | 22.03 | 0.73 | [70] |
GQDs | 2.5 mg/L | SC | PET/APTES/GR/PCBM-GQD/MAPbI3/PTAA/Au | 16.41 | 1.07 | 20.75 | 0.74 | [73] |
GQDs | 0.5 mg/mL | SC | FTO/α-Fe2O3-NSGQDs/MAPbI3 + NSGQDs/NSGQDs/Spiro-OMeTAD/Au | 19.2 | 1.03 | 23.50 | 0.79 | [77] |
Mixed | N/A | SC | FTO/c-TiO2/m-TiO2-GR/GO-Li/MAPbI3/Spiro-OMeTAD/Au | 16.20 | 1.03 | 22.85 | 0.69 | [20] |
Mixed | N/A | SC | FTO/c-TiO2/m-TiO2-GR/GO-Li/MAPbI3/Spiro-OMeTAD/Au | 12.6 (50 cm2 module) | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Koshy, P.; Sorrell, C.C.; Lim, J.; Yun, J.S. Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies 2020, 13, 6335. https://doi.org/10.3390/en13236335
Dai X, Koshy P, Sorrell CC, Lim J, Yun JS. Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies. 2020; 13(23):6335. https://doi.org/10.3390/en13236335
Chicago/Turabian StyleDai, Xinchen, Pramod Koshy, Charles Christopher Sorrell, Jongchul Lim, and Jae Sung Yun. 2020. "Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues" Energies 13, no. 23: 6335. https://doi.org/10.3390/en13236335
APA StyleDai, X., Koshy, P., Sorrell, C. C., Lim, J., & Yun, J. S. (2020). Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies, 13(23), 6335. https://doi.org/10.3390/en13236335