Simulation of a Synchronous Planar Magnetically Levitated Motion System Based on a Real-Time Analytical Force Model
Abstract
:1. Introduction
2. Design and Implementation of the Simulation Model
3. Mathematical Model
3.1. Structure of the Maglev Actuator
3.2. Magnetic Flux Density
3.3. Force and Torque
3.3.1. Coordinate Transformation
3.3.2. Force and Torque Computation for the 1D Magnetic Field
3.3.3. Force and Torque Computation for the 2D Magnetic Field
4. Validation of the Mathematical Model and the Simulation Model
4.1. Experimental Facility
4.2. Validation of the Mathematical Model
4.3. Validation of the Simulation Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sheng, X.; Meng, C.; Tao, T. Active damping and disturbance rejection control of a six-axis magnetic levitation stage. Rev. Sci. Instrum. 2018, 89, 075109. [Google Scholar] [CrossRef]
- Mehrtash, M.; Khamesee, M.B.; Tsuda, N.; Chang, J.Y. Motion control of a magnetically levitated microrobot using magnetic flux measurement. Microsyst. Technol. 2012, 18, 1417–1424. [Google Scholar] [CrossRef]
- Schuerle, S.; Erni, S.; Flink, M.; Kratochvil, B.E.; Nelson, B.J. Three-dimensional magnetic manipulation of micro- and nanostructures for applications in life sciences. IEEE Trans. Magn. 2012, 49, 321–330. [Google Scholar] [CrossRef]
- Jansen, J.W.; Janssen, J.L.G.; Rovers, J.M.M.; Paulides, J.J.H.; Lomonova, E.A. (Semi-) analytical models for the design of high-precision permanent magnet actuators. Int. Compumag Soc. Newsl. 2009, 16, 4–17. [Google Scholar]
- Xu, F.; Xu, X.Z.; Chen, M. Prototype of 6-DOF Magnetically Levitated Stage Based on Single Axis Lorentz force Actuator. J. Electr. Eng. Technol. 2016, 11, 1216–1218. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wang, Y.; Xu, X.; Ming, W.; Zhang, X. The optimal design of real time control precision of planar motor. Appl. Comput. Electromagn. Soc. J. 2017, 32, 948–954. [Google Scholar]
- Zhang, S.; Ma, S.; Wang, W. Sliding Mode Control based on Disturbance Observer for Magnetic Levitation Positioning Stage. J. Electr. Eng. Technol. 2018, 13, 2116–2124. [Google Scholar]
- Alexander, Y.; Yusuf, A. Geometric Error Compensation With a Six Degree-of-Freedom Rotary Magnetic Actuator. J. Manuf. Sci. Eng.-Trans. ASME 2018, 140, 111016. [Google Scholar]
- He, D.; Morita, H.; Zhang, X.; Shinshi, T.; Nakagawa, T.; Sato, T.; Miyake, H. Development of a novel 5-DOF controlled maglev local actuator for high-speed electrical discharge machining. J. Int. Soc. Precis. Eng. Nanotechnol. 2010, 34, 453–460. [Google Scholar] [CrossRef]
- Lai, Y.C.; Lee, Y.L.; Yen, J.Y. Design and Servo Control of a Single-Deck Planar Maglev Stage. IEEE Trans. Magn. 2007, 43, 2600–2602. [Google Scholar] [CrossRef]
- Wipke, K.B.; Cuddy, M.R.; Burch, S.D. Advisor 2.1: A user-friendly advanced powertrain simulation using a combined backward/forward approach. IEEE Trans. Veh. Technol. 1999, 48, 1751–1761. [Google Scholar] [CrossRef]
- Cipek, M.; Pavkovic, D.; Petric, J. A Control-Oriented Simulation Model of a Power-Split Hybrid Electric Vehicle. Appl. Energy 2013, 101, 121–133. [Google Scholar] [CrossRef]
- Conte, F.V.; Badin, F.; Debal, P.; Alakla, M. Components for hybrid vehicles: Results of the IEA annex VII “hybrid vehicle” phase III. World Electr. Veh. Assoc. J. 2007, 1, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Carpiuc, S.-C.; Lazar, C. Modeling of Synchronous Electric Machines for Real-time Simulation and Automotive Applications. J. Frankl. Inst.-Eng. Appl. Math. 2017, 354, 6258–6281. [Google Scholar] [CrossRef]
- Kou, B.; Zhang, L.; Li, L.; Zhang, H. Modeling and analysis of a magnetically levitated synchronous permanent magnet planar motor. J. Appl. Phys. 2016, 111, 07E706. [Google Scholar] [CrossRef]
- Xu, L.; Lin, M.; Fu, X.; Liu, K.; Guo, B. Analytical Calculation of the Magnetic Field Distribution in a Linear and Rotary Machine with an Orthogonally Arrayed Permanent Magnet. Energies 2017, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Kou, B.; Xing, F.; Zhang, L.; Zhang, C.; Zhou, Y. A Real-Time Computation Model of the Electromagnetic Force and Torque for a Maglev Planar Motor with the Concentric Winding. Appl. Sci. 2017, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Jansen, J.W.; Van Lierop, C.M.M.; Lomonova, E.A.; Venput, A.J.A. Modeling of magnetically levitated planar actuators with moving magnets. IEEE Trans. Magn. 2007, 43, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.J.; Trumper, D.L. High-precision magnetic levitation stagefor photolithography. Precis. Eng. 1998, 22, 66–77. [Google Scholar] [CrossRef]
- Rovers, J.M.M.; Jansen, J.W.; Compter, J.C.; Lomonova, E.A. Analysis method of the dynamic force and torque distribution in the magnetic array of a commutated magnetically levitated planar actuator. IEEE Trans. Ind. Electron. 2012, 59, 2157–2166. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, Y.; Liu, G. Calculation of a new real-time control model for the magnetically levitated ironless planar motor. IEEE Trans. Magn. 2013, 49, 1416–1422. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Kim, W. Design and Control of a Compact Lightweight Planar Positioner Moving Over a Concentrated-Field Magnet. IEEE/ASME Trans. Mechatron. 2013, 18, 1090–1099. [Google Scholar] [CrossRef]
- Lu, X.; Usman, I. 6D direct-drive technology for planar motion stages. CIRP Ann. 2012, 61, 359–362. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, T.; Xu, F.; Xu, X. Semi-Analytical Solution of Magnetic Force and Torque for a Novel Magnetically Levitated Actuator in Rotary Table. IEEE Trans. Magn. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, M.; Zhu, Y.; Hu, C. A real-time model of ironless planar motors with stationary circular coils. IEEE/ASME Trans. Magn. 2015, 51, 1–10. [Google Scholar]
- Zhu, H.; Teo, T.J.; Pang, C.K. Design and Modeling of a Six-Degree-of-Freedom Magnetically Levitated Positioner Using Square Coils and 1D Halbach Arrays. IEEE/ASME Trans. Ind. Electron. 2017, 64, 440–450. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Kim, W.J. Novel Electromagnetic Design for a Precision Planar Positioner Moving Over a Superimposed Concentrated-Field Magnet Matrix. IEEE Trans. Energy Convers. 2012, 27, 52–62. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, C.; Xu, F. A Real-Time Numerical Decoupling Method for Multi-DoF Magnetic Levitation Rotary Table. Appl. Sci. 2019, 9, 3263. [Google Scholar] [CrossRef] [Green Version]
- Xing, F.; Kou, B.; Zhang, L.; Yin, X.; Zhou, Y. Design of a Control System for a Maglev Planar Motor Based on Two-Dimension Linear Interpolation. Energies 2017, 10, 1132. [Google Scholar] [CrossRef] [Green Version]
- Peter, B.; Michael, D. Magnetic Levitation Over Large Translation and Rotation Ranges in All Directions. IEEE/ASME Trans. Mechatron. 2013, 18, 44–52. [Google Scholar]
40 mm | 10 mm | 10 mm | 10 mm | 60 mm | 10 mm | 10 mm |
Rotation Amplitude (rad) | x-axis Motion | y-axis Motion | z-axis Motion | z-axis Rotation |
---|---|---|---|---|
0.045% | 0.012% | 0.072% | 0.15% | |
0.013% | 0.067% | 0.075% | 0.066% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, R.; Zheng, T.; Lu, X.; Xu, X.; Xu, F. Simulation of a Synchronous Planar Magnetically Levitated Motion System Based on a Real-Time Analytical Force Model. Energies 2020, 13, 6367. https://doi.org/10.3390/en13236367
Peng R, Zheng T, Lu X, Xu X, Xu F. Simulation of a Synchronous Planar Magnetically Levitated Motion System Based on a Real-Time Analytical Force Model. Energies. 2020; 13(23):6367. https://doi.org/10.3390/en13236367
Chicago/Turabian StylePeng, Ruotong, Tong Zheng, Xing Lu, Xianze Xu, and Fengqiu Xu. 2020. "Simulation of a Synchronous Planar Magnetically Levitated Motion System Based on a Real-Time Analytical Force Model" Energies 13, no. 23: 6367. https://doi.org/10.3390/en13236367
APA StylePeng, R., Zheng, T., Lu, X., Xu, X., & Xu, F. (2020). Simulation of a Synchronous Planar Magnetically Levitated Motion System Based on a Real-Time Analytical Force Model. Energies, 13(23), 6367. https://doi.org/10.3390/en13236367