A Multi-Level World Comprehensive Neural Network Model for Maximum Annual Solar Irradiation on a Flat Surface
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- PVGIS-NSRDB: These data have been supplied by the National Renewable Energy Laboratory (NREL) [52] and is part of the National Solar Irradiation Database.
- PVGIS-CMSAF: CM SAF collaboration [51] have calculated these data covering Europe, Africa, and parts of South America.
- PVGIS uses two more satellites to cover high-latitude areas not covered by previous satellites.
- PVGIS-ERA5: This new re-analysis product is obtained from ECMWF [53]. It covers all over the world on an hourly basis and is used by PVGIS for Europe.
- PVGIS-COSMO: COSMO-REA6 is a regional re-analysis product, covering Europe at hourly time resolution.
Multi-Level Neural Network Model
- μ × 0.1 when the MSE is equal or less to the previous one.
- μ × 10 when the current epoch MSE exceeds the previous value.
4. Results and Discussion
4.1. Results Obtained by PVGIS
4.2. Evaluation of the Proposed Nural Network Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AR1 | Annual Irradiation (kWh/m2) at optimum tilt angle and orientation |
AR2 | Annual Irradiation (kWh/m2) at optimum tilt angle (azimuth angle = 0° for Northern hemisphere and 180° for Southern) |
AR3 | Annual Irradiation (kWh/m2) at horizontal surface |
CMSAF | Climate Monitoring Satellite Application Facility |
DR1 | Daily Average Irradiation (kWh/m2/day) at optimum tilt angle and orientation |
DR2 | Daily Average Irradiation (kWh/m2/day) at optimum tilt angle (azimuth angle = 0° for Northern hemisphere and 180° for Southern) |
DR3 | Daily Average Irradiation (kWh/m2/day) at horizontal surface |
ECMWF | European Centre for Medium-Range Weather Forecasts |
F | The tilt factor |
MSE | Mean Square Error |
NREL | National Solar Irradiation Database |
PSO | Particle Swarm Optimization |
PV | Photovoltaic |
PVGIS | Photovoltaic Geographical Information System |
SDGs | Sustainable Development Goals |
β | Tilt angle (Degrees) |
FFNN | Feed-Forward Neural Networks |
LM | Levenberg-Marquardt |
AR1 | Annual Irradiation (kWh/m2) at optimum tilt angle and orientation |
AR2 | Annual Irradiation (kWh/m2) at optimum tilt angle (azimuth angle = 0 for Northern hemisphere and 180 for Southern) |
AR3 | Annual Irradiation (kWh/m2) at horizontal surface |
DR1 | Daily Average Irradiation (kWh/m2/day) at optimum tilt angle and orientation |
DR2 | Daily Average Irradiation (kWh/m2/day) at optimum tilt angle (azimuth angle = 0 for Northern hemisphere and 180 for Southern) |
DR3 | Daily Average Irradiation (kWh/m2/day) at horizontal surface. |
Appendix A
Country | City | Latitude (deg.) | Longitude (deg.) | Optimum Tilt Angle (deg.) | Azimuth Angle (deg.) | AR1 (kWh/m2) | DR1 (kWh/m2) | AR2 (kWh/m2) | DR2 (kWh/m2) | AR3 (kWh/m2) | DR3 (kWh/m2) | F (Tilt Factor) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Iceland | Reykjavík | 64.15 | −21.94 | 49 | 0 | 1093.00 | 2.99 | 1093.00 | 2.99 | 839.15 | 2.30 | 1.30 |
Afghanistan | Kandahar | 31.63 | 65.74 | 30 | −2 | 2418.44 | 6.63 | 2418.29 | 6.63 | 2166.78 | 5.94 | 1.12 |
Afghanistan | Kabul | 34.56 | 69.21 | 31 | −8 | 2228.34 | 6.11 | 2226.44 | 6.10 | 1981.05 | 5.43 | 1.12 |
Albania | Tirana | 41.33 | 19.82 | 35 | −2 | 1835.59 | 5.03 | 1835.37 | 5.03 | 1581.86 | 4.33 | 1.16 |
Albania | Sarande | 39.87 | 20.00 | 33 | 2 | 1939.22 | 5.31 | 1939.00 | 5.31 | 1694.53 | 4.64 | 1.14 |
Algeria | Algiers | 36.75 | 3.06 | 31 | −4 | 2014.21 | 5.52 | 2013.71 | 5.52 | 1788.61 | 4.90 | 1.13 |
Andorra | Andorra La Vella | 42.51 | 1.52 | 35 (34) | −18 | 1644.99 | 4.51 | 1627.00 | 4.46 | 1418.10 | 3.89 | 1.15 |
Angola | Luanda | −8.84 | 13.29 | 9 | −179 | 1988.58 | 5.45 | 1988.57 | 5.45 | 1972.00 | 5.40 | 1.01 |
Antigua and Barbuda | St. Johns | 17.12 | −61.84 | 19(18) | −17 | 2164.31 | 5.93 | 2158.43 | 5.91 | 2080.39 | 5.70 | 1.04 |
Argentina | Entre Rios | −32.23 | −58.69 | 30 | −169 | 1896.28 | 5.20 | 1895.30 | 5.19 | 1721.98 | 4.72 | 1.10 |
Argentina | Santa Fe | −29.77 | −60.51 | 28 | −169 | 1917.10 | 5.25 | 1915.26 | 5.25 | 1760.64 | 4.82 | 1.09 |
Armenia | Yerevan | 40.19 | 44.52 | 33 | −6 | 1826.76 | 5.00 | 1826.36 | 5.00 | 1611.18 | 4.41 | 1.13 |
Australia | Perth | −31.95 | 115.86 | 29 | −176 | 2165.87 | 5.93 | 2165.50 | 5.93 | 1965.62 | 5.39 | 1.10 |
Australia | Geraldton | −28.78 | 114.61 | 28 | −180 | 2301.10 | 6.30 | 2301.10 | 6.30 | 2092.13 | 5.73 | 1.10 |
Australia | Karratha | −20.73 | 116.84 | 23 | −180 | 2490.05 | 6.82 | 2490.05 | 6.82 | 2343.49 | 6.42 | 1.06 |
Austria | Vienna | 48.21 | 16.37 | 38 | 0 | 1430.94 | 3.92 | 1430.94 | 3.92 | 1224.67 | 3.36 | 1.17 |
Austria | Graz | 47.07 | 15.44 | 39 | −2 | 1503.00 | 4.12 | 1502.85 | 4.12 | 1270.51 | 3.48 | 1.18 |
Azerbaijan | Baku | 40.41 | 49.87 | 32 | 5 | 1663.83 | 4.56 | 1663.05 | 4.56 | 1495.81 | 4.10 | 1.11 |
Azerbaijan | Lankaran | 38.75 | 48.85 | 31 | 2 | 1678.76 | 4.60 | 1678.55 | 4.60 | 1514.72 | 4.15 | 1.11 |
Bahamas | Nassau | 25.05 | −77.36 | 25 | −5 | 2104.47 | 5.77 | 2104.42 | 5.77 | 1958.65 | 5.37 | 1.07 |
Bahrain | Manama | 26.22 | 50.59 | 26 | −1 | 2404.04 | 6.59 | 2404.00 | 6.59 | 2230.98 | 6.11 | 1.08 |
Bahrain | Riffa | 26.13 | 50.54 | 26 | −1 | 2416.54 | 6.62 | 2416.48 | 6.62 | 2245.62 | 6.15 | 1.08 |
Bangladesh | Dhaka | 23.81 | 90.41 | 28 | 4 | 1916.26 | 5.25 | 1915.32 | 5.25 | 1759.41 | 4.82 | 1.09 |
Bangladesh | Chittagong | 22.36 | 91.78 | 27 | 8 | 2036.81 | 5.58 | 2034.05 | 5.57 | 1872.39 | 5.13 | 1.09 |
Barbados | Bridgetown | 13.11 | −59.61 | 15 | −27 | 2107.36 | 5.77 | 2098.29 | 5.75 | 2058.16 | 5.64 | 1.02 |
Belgium | Brussels | 50.85 | 4.35 | 39 | 0 | 1258.11 | 3.45 | 1258.11 | 3.45 | 1076.91 | 2.95 | 1.17 |
Belgium | Saint Hubert | 50.03 | 5.37 | 36 | 0 | 1198.90 | 3.28 | 1198.90 | 3.28 | 1049.61 | 2.88 | 1.14 |
Belize | Belmopan | 17.25 | −88.76 | 17 | 7 | 1907.61 | 5.23 | 1906.68 | 5.22 | 1850.78 | 5.07 | 1.03 |
Belize | Belize City | 17.50 | −88.20 | 18 | 4 | 2056.07 | 5.63 | 2055.63 | 5.63 | 1983.43 | 5.43 | 1.04 |
Benin | Port Novo | 6.50 | 2.63 | 11 | 27 | 1932.30 | 5.29 | 1927.88 | 5.28 | 1906.39 | 5.22 | 1.01 |
Bhutan | Thimphu | 27.47 | 89.63 | 31 | −15 | 1913.66 | 5.24 | 1902.28 | 5.21 | 1704.45 | 4.67 | 1.12 |
Bolivia | Sucre | −19.04 | −65.26 | 23 | −180 | 2433.17 | 6.67 | 2433.17 | 6.67 | 2280.76 | 6.25 | 1.07 |
Bolivia | La Paz | −16.49 | −68.12 | 21 | −180 | 2285.57 | 6.26 | 2285.57 | 6.26 | 2165.62 | 5.93 | 1.06 |
Bosnia Herzegovina | Sarajevo | 43.86 | 18.41 | 34 | −5 | 1431.11 | 3.92 | 1430.05 | 3.92 | 1258.74 | 3.45 | 1.14 |
Bosnia Herzegovina | Banja Luka | 44.77 | 17.19 | 35 | −4 | 1458.17 | 3.99 | 1457.45 | 3.99 | 1274.61 | 3.49 | 1.14 |
Botswana | Gaborone | −24.63 | 25.92 | 29 | −180 | 2352.15 | 6.44 | 2352.15 | 6.44 | 2135.01 | 5.85 | 1.10 |
Brazil | Brasilia | −15.83 | −47.92 | 23 | −180 | 2112.59 | 5.79 | 2112.59 | 5.79 | 1997.21 | 5.47 | 1.06 |
Brazil | Rio De Janeiro | −22.91 | −43.17 | 24 | −180 | 1872.95 | 5.13 | 1872.95 | 5.13 | 1755.27 | 4.81 | 1.07 |
Brazil | Manaus | −3.12 | −60.02 | 7 | −180 | 1780.18 | 4.88 | 1780.18 | 4.88 | 1772.99 | 4.86 | 1.00 |
Brunei Darussalam | Bandar Seri Begawan | 4.90 | 114.94 | 5 | 47 | 1849.17 | 5.07 | 1845.30 | 5.06 | 1841.85 | 5.05 | 1.00 |
Bulgaria | Sofia | 42.70 | 23.32 | 35 | −4 | 1605.33 | 4.40 | 1605.16 | 4.40 | 1404.10 | 3.85 | 1.14 |
Bulgaria | Plovdiv | 42.14 | 24.75 | 35 | 0 | 1701.22 | 4.66 | 1701.22 | 4.66 | 1479.08 | 4.05 | 1.15 |
Burkina Faso | Ouagadougou | 12.37 | −1.52 | 16 | 0 | 2356.42 | 6.46 | 2356.42 | 6.46 | 2282.11 | 6.25 | 1.03 |
Burkina Faso | Banfora | 10.64 | −4.76 | 15 | 1 | 2274.34 | 6.23 | 2274.07 | 6.23 | 2214.97 | 6.07 | 1.03 |
Burundi | Gitega | −3.43 | 29.92 | 7 | −180 | 1903.71 | 5.22 | 1903.71 | 5.22 | 1893.34 | 5.19 | 1.01 |
Burundi | Bujumbura | −3.36 | 29.36 | 8 | −180 | 1982.06 | 5.43 | 1982.06 | 5.43 | 1970.43 | 5.40 | 1.01 |
Cabo Verde | Praia | 15.00 | −23.51 | 15 | 3 | 2263.18 | 6.20 | 2262.90 | 6.20 | 2205.96 | 6.04 | 1.03 |
Cambodia | Phnom Penh | 11.56 | 104.93 | 14 | 0 | 1932.87 | 5.30 | 1932.87 | 5.30 | 1893.75 | 5.19 | 1.02 |
Cameroon | Yaounde | 3.85 | 11.50 | 7 | 35 | 1882.09 | 5.16 | 1877.84 | 5.14 | 1867.71 | 5.12 | 1.01 |
Cameroon | Douala | 4.05 | 9.77 | 12 | 43 | 1784.62 | 4.89 | 1772.88 | 4.86 | 1762.26 | 4.83 | 1.01 |
Canada | Ottawa | 45.42 | −75.70 | 37 | 0 | 1563.56 | 4.28 | 1563.56 | 4.28 | 1325.33 | 3.63 | 1.18 |
Canada | Montreal | 45.50 | −73.57 | 37 | 5 | 1535.22 | 4.21 | 1533.93 | 4.20 | 1302.97 | 3.57 | 1.18 |
Canada | Calgary | 51.04 | −114.07 | 43 | −4 | 1592.94 | 4.36 | 1592.13 | 4.36 | 1268.46 | 3.48 | 1.26 |
Canada | Vancouver | 49.28 | −123.12 | 38 | 6 | 1403.44 | 3.85 | 1401.30 | 3.84 | 1186.43 | 3.25 | 1.18 |
Central Afr. Republic | Bangui | 4.39 | 18.56 | 8 | 21 | 2037.03 | 5.58 | 2034.98 | 5.58 | 2021.71 | 5.54 | 1.01 |
Central Afr. Republic | Carnot | 4.94 | 15.88 | 10 | 25 | 2073.25 | 5.68 | 2069.33 | 5.67 | 2051.33 | 5.62 | 1.01 |
Chad | N’Djamena | 12.13 | 15.06 | 17 | 2 | 2402.55 | 6.58 | 2402.16 | 6.58 | 2323.50 | 6.37 | 1.03 |
Chile | Arica | −18.48 | −70.31 | 18 | −180 | 2274.32 | 6.23 | 2274.32 | 6.23 | 2193.16 | 6.01 | 1.04 |
China | Guigang | 23.11 | 109.60 | 19 | 17 | 1400.07 | 3.84 | 1396.45 | 3.83 | 1354.50 | 3.71 | 1.03 |
China | Kashgar | 39.47 | 75.99 | 36 | 2 | 2009.22 | 5.50 | 2008.93 | 5.50 | 1720.53 | 4.71 | 1.17 |
China | Lhasa | 29.65 | 91.14 | 35 | −4 | 2305.73 | 6.32 | 2304.28 | 6.31 | 1992.22 | 5.46 | 1.16 |
China | Kunming | 25.02 | 102.68 | 28 | 4 | 1745.82 | 4.78 | 1745.04 | 4.78 | 1605.72 | 4.40 | 1.09 |
Colombia | Bogota | 4.71 | −74.07 | 6 | 0 | 1684.99 | 4.62 | 1684.99 | 4.62 | 1678.45 | 4.60 | 1.00 |
Colombia | Medellin | 6.254 | −75.576 | 5 | −8 | 1896.07 | 5.19 | 1895.95 | 5.19 | 1890.18 | 5.18 | 1.00 |
Comoros | Moroni | −11.72 | 43.25 | 13 | −140 | 1892.52 | 5.18 | 1877.10 | 5.14 | 1846.07 | 5.06 | 1.02 |
Republic of the Congo | Brazzaville | −4.27 | 15.28 | 4 | −180 | 1877.58 | 5.14 | 1877.58 | 5.14 | 1874.81 | 5.14 | 1.00 |
Republic of the Congo | Owando | −0.48 | 15.89 | 0 | −180 | 1924.80 | 5.27 | 1924.80 | 5.27 | 1924.80 | 5.27 | 1.00 |
Democratic Republic of the Congo | Kinshasa | −4.44 | 15.27 | 5 | −180 | 1841.02 | 5.04 | 1841.02 | 5.04 | 1837.45 | 5.03 | 1.00 |
Democratic Republic of the Congo | Lubumbashi | −11.69 | 27.50 | 19 | −180 | 2286.65 | 6.26 | 2286.65 | 6.26 | 2195.55 | 6.02 | 1.04 |
Costa-Rica | San José | 9.93 | −84.09 | 14 | −45 | 1933.00 | 5.30 | 1908.08 | 5.23 | 1875.87 | 5.14 | 1.02 |
Croatia | Zagreb | 45.82 | 15.98 | 35 | 2 | 1511.78 | 4.14 | 1511.63 | 4.14 | 1311.44 | 3.59 | 1.15 |
Croatia | Zadar | 44.12 | 15.23 | 37 | 2 | 1801.18 | 4.93 | 1801.08 | 4.93 | 1530.99 | 4.19 | 1.18 |
Cuba | Havana | 23.11 | −82.37 | 23 | −11 | 2094.01 | 5.74 | 2089.25 | 5.72 | 1965.96 | 5.39 | 1.06 |
Cuba | Sancti Spiritus | 21.93 | −79.44 | 23 | −19 | 2113.43 | 5.79 | 2102.92 | 5.76 | 1982.22 | 5.43 | 1.06 |
Cyprus | Nicosia | 35.19 | 33.38 | 31 | −2 | 2167.72 | 5.94 | 2167.36 | 5.94 | 1928.19 | 5.28 | 1.12 |
Cyprus | Larnaca | 34.90 | 33.62 | 31 | 1 | 2164.18 | 5.93 | 2164.12 | 5.93 | 1929.96 | 5.29 | 1.12 |
Czech Republic | Prague | 50.08 | 14.44 | 37 | −1 | 1317.92 | 3.61 | 1317.88 | 3.61 | 1132.38 | 3.10 | 1.16 |
Czech Republic | Ostrava | 49.82 | 18.26 | 38 | −1 | 1292.84 | 3.54 | 1292.75 | 3.54 | 1105.96 | 3.03 | 1.17 |
Denmark | Copenhagen | 55.69 | 12.59 | 40 | 2 | 1261.85 | 3.46 | 1261.65 | 3.46 | 1050.72 | 2.88 | 1.20 |
Djibouti | Djibouti City | 11.57 | 43.15 | 14 | 11 | 2383.11 | 6.53 | 2381.31 | 6.52 | 2333.55 | 6.39 | 1.02 |
Dominica | Roseau | 15.31 | −61.38 | 15 | 2 | 1915.78 | 5.25 | 1915.71 | 5.25 | 1875.46 | 5.14 | 1.02 |
Dominican Republic | Santo Domingo | 18.49 | −69.93 | 20 | −13 | 2084.80 | 5.71 | 2080.37 | 5.70 | 1989.93 | 5.45 | 1.05 |
Dutch-Antilles | Willemstad | 12.11 | −68.93 | 12 | 7 | 2208.67 | 6.05 | 2208.21 | 6.05 | 2171.92 | 5.95 | 1.02 |
Ecuador | Quito | −0.18 | −78.47 | 3 | −108 | 1959.69 | 5.37 | 1952.43 | 5.35 | 1950.98 | 5.35 | 1.00 |
Egypt | Cairo | 30.04 | 31.24 | 28 | 7 | 2417.65 | 6.62 | 2416.13 | 6.62 | 2197.43 | 6.02 | 1.10 |
Egypt | Port Said | 31.26 | 32.31 | 29 | 3 | 2316.73 | 6.35 | 2314.47 | 6.34 | 2093.57 | 5.74 | 1.11 |
Egypt | Aswan | 24.09 | 32.90 | 25 | 4 | 2669.99 | 7.32 | 2669.07 | 7.31 | 2471.27 | 6.77 | 1.08 |
Egypt | Marsa Matruh | 31.35 | 27.24 | 27 | 6 | 2351.08 | 6.44 | 2348.95 | 6.44 | 2150.14 | 5.89 | 1.09 |
El Salvador | San Salvador | 13.69 | −89.22 | 18 | −18 | 2242.27 | 6.14 | 2235.02 | 6.12 | 2160.75 | 5.92 | 1.03 |
Equatorial Guinea | Malabo | 3.76 | 8.78 | 8 | 19 | 1676.42 | 4.59 | 1675.38 | 4.59 | 1664.01 | 4.56 | 1.01 |
Eritrea | Asmara | 15.33 | 38.93 | 20 | 0 | 2339.85 | 6.41 | 2339.85 | 6.41 | 2236.93 | 6.13 | 1.05 |
Estonia | Tallinn | 59.44 | 24.75 | 41 | 1 | 1119.41 | 3.07 | 1119.31 | 3.07 | 932.40 | 2.55 | 1.20 |
Estonia | Tartu | 58.38 | 26.73 | 41 | 0 | 1124.62 | 3.08 | 1124.62 | 3.08 | 943.57 | 2.59 | 1.19 |
Ethiopia | Addis Ababa | 8.97 | 38.73 | 15 | −2 | 2173.71 | 5.96 | 2173.62 | 5.96 | 2118.91 | 5.81 | 1.03 |
Ethiopia | Gondar | 12.60 | 37.45 | 19 | −26 | 2145.84 | 5.88 | 2130.39 | 5.84 | 2054.75 | 5.63 | 1.04 |
Finland | Helsinki | 60.17 | 24.94 | 42 | 3 | 1125.27 | 3.08 | 1124.86 | 3.08 | 925.59 | 2.54 | 1.22 |
France | Paris | 48.85 | 2.35 | 38 | −3 | 1381.32 | 3.78 | 1380.65 | 3.78 | 1181.09 | 3.24 | 1.17 |
France | Lyon | 45.76 | 4.84 | 37 | 1 | 1578.76 | 4.33 | 1578.74 | 4.33 | 1348.05 | 3.69 | 1.17 |
France | Rennes | 48.114 | −1.669 | 38 | 0 | 1413.59 | 3.87 | 1413.59 | 3.87 | 1210.02 | 3.32 | 1.17 |
France | Bordeaux | 44.84 | −0.58 | 37 | 3 | 1608.95 | 4.41 | 1608.44 | 4.41 | 1374.99 | 3.77 | 1.17 |
Gabon | Libreville | 0.41 | 9.47 | 3 | 48 | 1804.25 | 4.94 | 1802.80 | 4.94 | 1801.52 | 4.94 | 1.00 |
Gabon | Franceville | −1.62 | 13.60 | 0 | −180 | 1790.85 | 4.91 | 1790.85 | 4.91 | 1790.85 | 4.91 | 1.00 |
Gambia | Banjul | 13.45 | −16.59 | 16 | 4 | 2288.49 | 6.27 | 2288.15 | 6.27 | 2226.59 | 6.10 | 1.03 |
Georgia | Tbilisi | 41.70 | 44.82 | 35 | 4 | 1737.14 | 4.76 | 1736.14 | 4.76 | 1509.04 | 4.13 | 1.15 |
Germany | Berlin | 52.52 | 13.38 | 38 | −4 | 1261.69 | 3.46 | 1261.22 | 3.46 | 1077.30 | 2.95 | 1.17 |
Germany | Cologne | 50.94 | 6.96 | 38 | −2 | 1257.92 | 3.45 | 1257.79 | 3.45 | 1072.06 | 2.94 | 1.17 |
Germany | Munich | 48.14 | 11.58 | 38 | 1 | 1372.50 | 3.76 | 1372.46 | 3.76 | 1169.59 | 3.20 | 1.17 |
Germany | Hamburg | 53.55 | 9.99 | 38 | −1 | 1185.43 | 3.25 | 1185.34 | 3.25 | 1011.99 | 2.77 | 1.17 |
Ghana | Accra | 5.60 | −0.19 | 9 | 28 | 2131.69 | 5.84 | 2126.79 | 5.83 | 2109.18 | 5.78 | 1.01 |
Gibraltar | Catalan Bay | 36.14 | −5.34 | 31 | −27 | 1884.42 | 5.16 | 1845.21 | 5.06 | 1654.38 | 4.53 | 1.12 |
Greece | Athens | 37.98 | 23.73 | 32 | 2 | 2055.37 | 5.63 | 2055.21 | 5.63 | 1818.83 | 4.98 | 1.13 |
Guatemala | Guatemala City | 14.63 | −90.51 | 18 | −2 | 2007.60 | 5.50 | 2007.56 | 5.50 | 1939.68 | 5.31 | 1.03 |
Guinea | Kindia | 10.04 | −12.86 | 15 | 9 | 2135.68 | 5.85 | 2134.46 | 5.85 | 2085.93 | 5.71 | 1.02 |
Guinea | Kankan | 10.38 | −9.31 | 15 | 9 | 2256.01 | 6.18 | 2254.54 | 6.18 | 2202.55 | 6.03 | 1.02 |
Guinea-Bissau | Bissau | 11.86 | −15.58 | 14 | 5 | 2223.35 | 6.09 | 2222.89 | 6.09 | 2169.36 | 5.94 | 1.02 |
Guyana | Georgetown | 6.80 | −58.16 | 7 | −14 | 2004.88 | 5.49 | 2004.09 | 5.49 | 1993.37 | 5.46 | 1.01 |
Haiti | Port-Au-Prince | 18.55 | −72.34 | 21 | −16 | 2244.58 | 6.15 | 2235.80 | 6.13 | 2124.32 | 5.82 | 1.05 |
Honduras | Tegucigalpa | 14.07 | −87.17 | 16 | 1 | 1956.36 | 5.36 | 1956.34 | 5.36 | 1905.88 | 5.22 | 1.03 |
Honduras | Catacamas | 14.84 | −85.88 | 14 | −7 | 1886.46 | 5.17 | 1885.78 | 5.17 | 1845.84 | 5.06 | 1.02 |
Hong Kong | Hong Kong | 22.42 | 114.16 | 20 | 13 | 1523.23 | 4.17 | 1520.24 | 4.17 | 1463.19 | 4.01 | 1.04 |
Hungary | Budapest | 47.50 | 19.04 | 37 | −5 | 1512.04 | 4.14 | 1510.81 | 4.14 | 1298.57 | 3.56 | 1.16 |
Hungary | Debrecen | 47.53 | 21.63 | 37 | 0 | 1502.57 | 4.12 | 1502.57 | 4.12 | 1288.64 | 3.53 | 1.17 |
India | New Delhi | 28.61 | 77.21 | 31 | 3 | 2138.18 | 5.86 | 2137.84 | 5.86 | 1921.33 | 5.26 | 1.11 |
India | Rajkot | 22.30 | 70.80 | 27 | −1 | 2300.66 | 6.30 | 2300.64 | 6.30 | 2108.29 | 5.78 | 1.09 |
India | Jodhpur | 26.293 | 73.034 | 30 | 0 | 2324.87 | 6.37 | 2324.87 | 6.37 | 2098.01 | 5.75 | 1.11 |
India | Chennai | 13.08 | 80.27 | 15 | 3 | 2137.98 | 5.86 | 2137.87 | 5.86 | 2088.66 | 5.72 | 1.02 |
India | Nagercoil | 8.18 | 77.41 | 9 | 1 | 2166.94 | 5.94 | 2166.92 | 5.94 | 2143.62 | 5.87 | 1.01 |
Indonesia | Jakarta | −6.17 | 106.83 | 10 | −180 | 1852.98 | 5.08 | 1852.98 | 5.08 | 1835.41 | 5.03 | 1.01 |
Indonesia | Balikpapan | −1.24 | 116.85 | 4 | 114 | 1685.95 | 4.62 | 1678.05 | 4.60 | 1675.83 | 4.59 | 1.00 |
Iran | Tehran | 35.69 | 51.42 | 32 | −2 | 2083.70 | 5.71 | 2083.35 | 5.71 | 1850.42 | 5.07 | 1.13 |
Iran | Tabriz | 38.09 | 46.27 | 32 | −10 | 2025.04 | 5.55 | 2023.06 | 5.54 | 1795.77 | 4.92 | 1.13 |
Iran | Yazd | 31.90 | 54.36 | 31 | −3 | 2453.82 | 6.72 | 2453.18 | 6.72 | 2183.47 | 5.98 | 1.12 |
Iraq | Baghdad | 33.32 | 44.37 | 31 | 1 | 2280.20 | 6.25 | 2280.20 | 6.25 | 2038.03 | 5.58 | 1.12 |
Iraq | Mosul | 36.35 | 43.15 | 32 | 0 | 2178.96 | 5.97 | 2178.96 | 5.97 | 1928.69 | 5.28 | 1.13 |
Iraq | Basrah | 30.52 | 47.80 | 29 | 0 | 2324.75 | 6.37 | 2324.75 | 6.37 | 2117.19 | 5.80 | 1.10 |
Ireland | Dublin | 53.35 | −6.27 | 40 | −3 | 1144.43 | 3.14 | 1144.21 | 3.13 | 968.59 | 2.65 | 1.18 |
Ireland | Kilkenny | 52.65 | −7.25 | 38 | −1 | 1129.48 | 3.09 | 1129.44 | 3.09 | 973.43 | 2.67 | 1.16 |
Israel | Haifa | 32.79 | 34.99 | 29 | 6 | 2167.67 | 5.94 | 2165.42 | 5.93 | 1958.53 | 5.37 | 1.11 |
Israel | Eilat | 29.56 | 34.95 | 29 | 3 | 2526.58 | 6.92 | 2525.82 | 6.92 | 2280.23 | 6.25 | 1.11 |
Italy | Rome | 41.90 | 12.50 | 36 | 2 | 1935.18 | 5.30 | 1935.05 | 5.30 | 1653.95 | 4.53 | 1.17 |
Italy | Catania | 37.51 | 15.08 | 33 | −4 | 2049.02 | 5.61 | 2047.78 | 5.61 | 1804.48 | 4.94 | 1.13 |
Ivory Coast | Yamoussoukro | 6.83 | −5.29 | 10 | 36 | 2001.01 | 5.48 | 1991.39 | 5.46 | 1970.58 | 5.40 | 1.01 |
Jamaica | Kingston | 18.02 | −76.80 | 19 | −24 | 2020.66 | 5.54 | 2007.25 | 5.50 | 1933.03 | 5.30 | 1.04 |
Jordan | Amman | 31.95 | 35.91 | 28 | 4 | 2313.66 | 6.34 | 2312.82 | 6.34 | 2102.64 | 5.76 | 1.10 |
Jordan | Zarqa | 32.063 | 36.09 | 28 | 2 | 2315.94 | 6.35 | 2315.57 | 6.34 | 2101.66 | 5.76 | 1.10 |
Jordan | Irbid | 32.56 | 35.85 | 9 | 7 | 2268.95 | 6.22 | 2266.16 | 6.21 | 2049.04 | 5.61 | 1.11 |
Kazakhstan | Nur-Sultan | 51.16 | 71.47 | 38 | −5 | 1442.67 | 3.95 | 1442.49 | 3.95 | 1231.44 | 3.37 | 1.17 |
Kazakhstan | Zhezqazghan | 47.80 | 67.70 | 36 | −3 | 1646.43 | 4.51 | 1645.54 | 4.51 | 1416.89 | 3.88 | 1.16 |
Kenya | Nairobi | −1.29 | 36.82 | 0 | 0 | 1998.16 | 5.47 | 1998.16 | 5.47 | 1998.16 | 5.47 | 1.00 |
Kosovo | Prishtina | 42.66 | 21.17 | 30 | 0 | 1613.38 | 4.42 | 1613.38 | 4.42 | 1419.47 | 3.89 | 1.14 |
Kuwait | Kuwait City | 29.38 | 47.98 | 28 | −1 | 2380.38 | 6.52 | 2380.37 | 6.52 | 2173.16 | 5.95 | 1.10 |
Kyrgyz Republic | Bishkek | 42.87 | 74.57 | 35 | −1 | 1782.39 | 4.88 | 1782.30 | 4.88 | 1550.76 | 4.25 | 1.15 |
Kyrgyz Republic | Jalal-Abad | 40.93 | 72.98 | 33.00 | 2 | 1882.07 | 5.16 | 1881.77 | 5.16 | 1656.30 | 4.54 | 1.14 |
Laos | Vientiane | 17.98 | 102.63 | 23.00 | 11 | 1961.04 | 5.37 | 1956.94 | 5.36 | 1852.99 | 5.08 | 1.06 |
Latvia | Riga | 56.95 | 24.11 | 40 | −1 | 1170.30 | 3.21 | 1170.29 | 3.21 | 982.95 | 2.69 | 1.19 |
Latvia | Daugavpils | 55.87 | 26.54 | 38 | 0 | 1154.60 | 3.16 | 1154.60 | 3.16 | 982.60 | 2.69 | 1.18 |
Lebanon | Beirut | 33.89 | 35.50 | 29 | −1 | 2113.95 | 5.79 | 2113.94 | 5.79 | 1909.46 | 5.23 | 1.11 |
Lesotho | Maseru | −29.32 | 27.49 | 32 | −178 | 2289.04 | 6.27 | 2288.99 | 6.27 | 2026.68 | 5.55 | 1.13 |
Liberia | Monrovia | 6.32 | 10.81 | 11 | 25 | 1907.17 | 5.23 | 1903.23 | 5.21 | 1881.63 | 5.16 | 1.01 |
Libyan Arab Jamahiriya | Tripoli | 32.89 | 13.18 | 30 | 6 | 2267.00 | 6.21 | 2264.80 | 6.20 | 2036.14 | 5.58 | 1.11 |
Liechtenstein | Vaduz | 47.14 | 9.52 | 37 | 5 | 1326.21 | 3.63 | 1324.96 | 3.63 | 1138.42 | 3.12 | 1.16 |
Lithuania | Vilnius | 54.69 | 25.28 | 38 | −1 | 1150.50 | 3.15 | 1150.41 | 3.15 | 985.76 | 2.70 | 1.17 |
Lithuania | Kaunas | 54.90 | 23.890 | 38 | 0 | 1180.46 | 3.23 | 1180.46 | 3.23 | 1007.24 | 2.76 | 1.17 |
Luxembourg | Luxembourg | 49.61 | 6.13 | 36 | 0 | 1282.81 | 3.51 | 1282.81 | 3.51 | 1120.82 | 3.07 | 1.14 |
Macedonia | Skopje | 42.00 | 21.44 | 34 | −2 | 1663.28 | 4.56 | 1663.14 | 4.56 | 1461.89 | 4.01 | 1.14 |
Macedonia | Bitola | 41.03 | 21.33 | 32 | −6 | 1630.95 | 4.47 | 1629.71 | 4.46 | 1456.76 | 3.99 | 1.12 |
Malaysia | Kuala Lumpur | 3.14 | 101.69 | 2 | −66 | 1802.55 | 4.94 | 1799.80 | 4.93 | 1799.19 | 4.93 | 1.00 |
Malaysia | Kangar | 6.44 | 100.20 | 7 | −31 | 1945.97 | 5.33 | 1942.29 | 5.32 | 1932.41 | 5.29 | 1.01 |
Mali | Bamako | 12.64 | −8.00 | 17 | 2 | 2332.23 | 6.39 | 2332.18 | 6.39 | 2261.85 | 6.20 | 1.03 |
Malta | Valletta | 35.90 | 14.51 | 31 | 8 | 2098.64 | 5.75 | 2097.52 | 5.75 | 1875.20 | 5.14 | 1.12 |
Mauritania | Nouakchott | 18.07 | −15.96 | 19 | 6 | 2456.65 | 6.73 | 2456.08 | 6.73 | 2360.03 | 6.47 | 1.04 |
Mauritius | Port Louis | −20.16 | 57.50 | 20 | −165 | 2079.81 | 5.70 | 2076.19 | 5.69 | 1987.61 | 5.45 | 1.04 |
Mexico | Mexico City | 19.43 | −99.13 | 22 | −18 | 2211.22 | 6.06 | 2199.60 | 6.03 | 2082.58 | 5.71 | 1.06 |
Mexico | Merida | 20.97 | −89.59 | 21 | −16 | 2063.70 | 5.65 | 2056.68 | 5.63 | 1960.02 | 5.37 | 1.05 |
Mexico | Ciudad Juárez | 31.69 | −106.42 | 31 | 0 | 2484.94 | 6.81 | 2484.94 | 6.81 | 2190.48 | 6.00 | 1.13 |
Moldova Republic | Chisinau | 47.01 | 28.863 | 35 | 0 | 1508.85 | 4.13 | 1508.85 | 4.13 | 1310.20 | 3.59 | 1.15 |
Monaco | Monte Carlo | 43.74 | 7.43 | 38 | −1 | 1895.71 | 5.19 | 1895.64 | 5.19 | 1579.61 | 4.33 | 1.20 |
Mongolia | Mandalgovi | 45.76 | 106.27 | 42 | 0 | 1895.97 | 5.19 | 1895.97 | 5.19 | 1534.75 | 4.20 | 1.24 |
Mongolia | Ulgii | 48.97 | 89.970 | 42 | −6 | 1751.26 | 4.80 | 1749.85 | 4.79 | 1412.41 | 3.87 | 1.24 |
Montenegro | Podgorica | 42.43 | 19.26 | 36 | 1 | 1854.69 | 5.08 | 1854.66 | 5.08 | 1581.32 | 4.33 | 1.17 |
Morocco | Rabat | 34.02 | −6.84 | 31 | 7 | 2196.62 | 6.02 | 2192.83 | 6.01 | 1947.56 | 5.34 | 1.13 |
Morocco | Casablanca | 33.57 | −7.59 | 32 | 6 | 2216.54 | 6.07 | 2213.90 | 6.07 | 1963.28 | 5.38 | 1.13 |
Mozambique | Maputo | −25.97 | 32.57 | 29 | 168 | 2082.81 | 5.71 | 2074.42 | 5.68 | 1884.70 | 5.16 | 1.10 |
Mozambique | Lichinga | −13.30 | 35.25 | 17 | −164 | 1996.18 | 5.47 | 1992.87 | 5.46 | 1933.83 | 5.30 | 1.03 |
Myanmar | Naypyitaw | 19.76 | 96.14 | 26 | 5 | 2180.17 | 5.97 | 2179.51 | 5.97 | 2019.55 | 5.53 | 1.08 |
Myanmar | ‘Yangon | 16.80 | 96.16 | 24 | −2 | 1975.38 | 5.41 | 1975.27 | 5.41 | 1852.94 | 5.08 | 1.07 |
Namibia | Windhoek | −22.57 | 17.08 | 27 | −173 | 2473.43 | 6.78 | 2471.35 | 6.77 | 2266.39 | 6.21 | 1.09 |
Nepal | Kathmandu | 27.72 | 85.32 | 32 | −2 | 2083.44 | 5.71 | 2083.18 | 5.71 | 1855.30 | 5.08 | 1.12 |
Netherlands | Amsterdam | 52.37 | 4.89 | 38 | 4 | 1245.27 | 3.41 | 1244.87 | 3.41 | 1064.77 | 2.92 | 1.17 |
Netherlands | Maastricht | 50.85 | 5.69 | 38 | 0 | 1265.56 | 3.47 | 1265.56 | 3.47 | 1079.98 | 2.96 | 1.17 |
Nicaragua | Managua | 12.15 | −86.28 | 16 | −12 | 2202.59 | 6.03 | 2199.97 | 6.03 | 2139.88 | 5.86 | 1.03 |
Nicaragua | Rivas | 11.44 | −85.83 | 14 | 1 | 2113.39 | 5.79 | 2113.38 | 5.79 | 2066.00 | 5.66 | 1.02 |
Niger | Niamey | 13.52 | 2.13 | 18 | 6 | 2414.85 | 6.62 | 2413.94 | 6.61 | 2331.02 | 6.39 | 1.04 |
Nigeria | Abuja | 9.06 | 7.49 | 15 | 12 | 2110.16 | 5.78 | 2107.84 | 5.77 | 2053.46 | 5.63 | 1.03 |
Nigeria | Lagos | 6.45 | 3.40 | 11 | 30 | 1943.48 | 5.32 | 1937.03 | 5.31 | 1915.62 | 5.25 | 1.01 |
Norway | Oslo | 59.91 | 10.75 | 43 | 1 | 1130.68 | 3.10 | 1130.57 | 3.10 | 910.76 | 2.50 | 1.24 |
Norway | Tromsø | 69.65 | 18.96 | 49 | 9 | 906.42 | 2.48 | 905.73 | 2.48 | 713.85 | 1.96 | 1.27 |
Oman | Muscat | 23.60 | 58.54 | 25 | −1 | 2495.07 | 6.84 | 2494.98 | 6.84 | 2321.49 | 6.36 | 1.07 |
Oman | Salalah | 17.02 | 54.10 | 21 | 4 | 2383.35 | 6.53 | 2382.76 | 6.53 | 2258.85 | 6.19 | 1.05 |
Pakistan | Islamabad | 33.69 | 73.06 | 33 | 2 | 2099.78 | 5.75 | 2099.36 | 5.75 | 1847.45 | 5.06 | 1.14 |
Pakistan | Karachi | 24.86 | 67.01 | 28 | 4 | 2377.52 | 6.51 | 2376.65 | 6.51 | 2168.84 | 5.94 | 1.10 |
Palestine | Jerusalem | 31.78 | 35.31 | 28 | 2 | 2275.05 | 6.23 | 2274.88 | 6.23 | 2076.64 | 5.69 | 1.10 |
Palestine | Gaza | 31.53 | 34.46 | 28 | 10 | 2299.91 | 6.30 | 2294.36 | 6.29 | 2079.07 | 5.70 | 1.10 |
Panama | Panama City | 8.98 | −79.52 | 11 | −35 | 1747.42 | 4.79 | 1739.50 | 4.77 | 1718.60 | 4.71 | 1.01 |
Paraguay | Asuncion | −25.29 | −57.62 | 23 | −170 | 1890.38 | 5.18 | 1887.57 | 5.17 | 1778.81 | 4.87 | 1.06 |
Peru | Lima | −12.05 | 77.04 | 10 | 155 | 1761.39 | 4.83 | 1757.43 | 4.81 | 1741.46 | 4.77 | 1.01 |
Poland | Warsaw | 52.23 | 21.01 | 38 | −3 | 1273.84 | 3.49 | 1273.69 | 3.49 | 1086.43 | 2.98 | 1.17 |
Poland | Bielsko-Biala | 49.82 | 19.06 | 38 | −2 | 1255.06 | 3.44 | 1254.91 | 3.44 | 1073.01 | 2.94 | 1.17 |
Poland | Gdynia | 54.52 | 18.55 | 40 | 0 | 1249.85 | 3.42 | 1249.85 | 3.42 | 1051.69 | 2.88 | 1.19 |
Portugal | Lisbon | 38.72 | −9.14 | 33 | 5 | 1994.31 | 5.46 | 1992.69 | 5.46 | 1751.20 | 4.80 | 1.14 |
Qatar | Doha | 25.29 | 51.53 | 25 | 0 | 2431.34 | 6.66 | 2431.34 | 6.66 | 2266.09 | 6.21 | 1.07 |
Romania | Bucharest | 44.43 | 26.10 | 34 | 5 | 1610.98 | 4.41 | 1610.02 | 4.41 | 1406.15 | 3.85 | 1.14 |
Romania | Craiova | 44.315 | 23.828 | 35 | 4 | 1642.53 | 4.50 | 1641.27 | 4.50 | 1431.19 | 3.92 | 1.15 |
Romania | Botoșani | 47.74 | 26.67 | 32 | 2 | 1451.10 | 3.98 | 1450.93 | 3.98 | 1252.32 | 3.43 | 1.16 |
Russia | Saint Petersburg | 59.94 | 30.32 | 41 | 3 | 1076.88 | 2.95 | 1076.41 | 2.95 | 897.41 | 2.46 | 1.20 |
Russia | Omsk | 54.99 | 73.36 | 40 | −3 | 1326.81 | 3.64 | 1326.34 | 3.63 | 1105.67 | 3.03 | 1.20 |
Russia | Barnaul | 53.35 | 83.78 | 40 | −1 | 1355.12 | 3.71 | 1355.10 | 3.71 | 1136.97 | 3.11 | 1.19 |
Russia | Murmansk | 68.97 | 33.09 | 47 | −5 | 866.53 | 2.37 | 865.44 | 2.37 | 684.00 | 1.87 | 1.27 |
Rwanda | Kigali | −1.94 | 30.06 | 4 | −167 | 1930.06 | 5.29 | 1929.85 | 5.29 | 1926.68 | 5.28 | 1.00 |
Saint Kitts And Nevis | Basseterre | 17.30 | −62.72 | 19 | −16 | 2136.25 | 5.85 | 2130.80 | 5.84 | 2051.04 | 5.62 | 1.04 |
Saint Lucia | Castries | 14.01 | −60.99 | 15 | −19 | 2104.18 | 5.76 | 2098.57 | 5.75 | 2046.02 | 5.61 | 1.03 |
San Marino | San Marino | 43.94 | 12.45 | 34 | 9 | 1592.04 | 4.36 | 1587.17 | 4.35 | 1394.67 | 3.82 | 1.14 |
Sao Tome & Principe | Sao Tome | 0.34 | 6.73 | 1 | 0 | 1908.00 | 5.23 | 1908.00 | 5.23 | 1907.91 | 5.23 | 1.00 |
Saudi Arabia | Riyadh | 24.63 | 46.72 | 25 | 1 | 2493.58 | 6.83 | 2493.48 | 6.83 | 2318.87 | 6.35 | 1.08 |
Saudi Arabia | Jeddah | 21.58 | 39.17 | 22 | 15 | 2488.38 | 6.82 | 2479.29 | 6.79 | 2344.20 | 6.42 | 1.06 |
Saudi Arabia | Jazan | 16.89 | 42.57 | 19 | 0 | 2394.38 | 6.56 | 2394.38 | 6.56 | 2300.99 | 6.30 | 1.04 |
Saudi Arabia | Arar | 30.98 | 41.02 | 29 | 0 | 2456.95 | 6.73 | 2456.95 | 6.73 | 2212.61 | 6.06 | 1.11 |
Senegal | Dakar | 14.72 | −17.47 | 17 | 2 | 2322.37 | 6.36 | 2322.26 | 6.36 | 2252.59 | 6.17 | 1.03 |
Serbia | Belgrade | 44.82 | 20.47 | 36 | 0 | 1579.56 | 4.33 | 1579.56 | 4.33 | 1366.20 | 3.74 | 1.16 |
Seychelles | Victoria | 48.43 | −123.37 | 37 | 5 | 1547.90 | 4.24 | 1546.05 | 4.24 | 1317.54 | 3.61 | 1.17 |
Sierra Leone | Koidu | 8.62 | −10.96 | 13 | 26 | 2068.93 | 5.67 | 2063.04 | 5.65 | 2027.23 | 5.55 | 1.02 |
Singapore | Singapore | 1.29 | 103.84 | 0 | 0 | 1733.09 | 4.75 | 1733.09 | 4.75 | 1733.09 | 4.75 | 1.00 |
Slovakia | Bratislava | 48.15 | 17.11 | 37 | 0 | 1466.30 | 4.02 | 1466.30 | 4.02 | 1256.99 | 3.44 | 1.17 |
Slovakia | Žilina | 49.22 | 18.74 | 37 | −2 | 1286.53 | 3.52 | 1286.41 | 3.52 | 1108.48 | 3.04 | 1.16 |
Slovenia | Ljubljana | 46.05 | 14.51 | 34 | 12 | 1428.33 | 3.91 | 1420.87 | 3.89 | 1247.25 | 3.42 | 1.14 |
Somalia | Mogadishu | 2.05 | 45.32 | 3 | 14 | 2427.88 | 6.65 | 2427.64 | 6.65 | 2423.50 | 6.64 | 1.00 |
Somalia | Borama | 9.94 | 43.18 | 14 | −24 | 2459.72 | 6.74 | 2450.99 | 6.72 | 2397.80 | 6.57 | 1.02 |
South Sudan | Juba | 4.85 | 31.59 | 8 | 16 | 2165.23 | 5.93 | 2163.93 | 5.93 | 2147.55 | 5.88 | 1.01 |
South Sudan | Renk | 11.75 | 32.811 | 18 | 13 | 2325.21 | 6.37 | 2320.93 | 6.36 | 2240.34 | 6.14 | 1.04 |
South Africa | Johannesburg | −26.20 | 28.05 | 30 | 180 | 2256.50 | 6.18 | 2256.50 | 6.18 | 2020.48 | 5.54 | 1.12 |
South Africa | Durban | −29.855 | 30.985 | 33 | 178 | 1923.65 | 5.27 | 1922.63 | 5.27 | 1694.33 | 4.64 | 1.13 |
South Africa | Cape Town | −33.93 | 18.42 | 30 | 173 | 2160.45 | 5.92 | 2157.75 | 5.91 | 1944.01 | 5.33 | 1.11 |
Spain | Madrid | 40.42 | −3.70 | 36 | 3 | 2099.17 | 5.75 | 2098.86 | 5.75 | 1788.13 | 4.90 | 1.17 |
Spain | Barcelona | 41.39 | 2.17 | 37 | 2 | 1972.30 | 5.40 | 1971.63 | 5.40 | 1662.81 | 4.56 | 1.19 |
Spain | Málaga | 36.72 | −4.43 | 34 | 5 | 2142.65 | 5.87 | 2141.03 | 5.87 | 1869.34 | 5.12 | 1.15 |
Sri-Lanka | Colombo | 6.93 | 79.86 | 8 | −9 | 2109.74 | 5.78 | 2109.31 | 5.78 | 2094.87 | 5.74 | 1.01 |
Sri-Lanka | Jaffna | 9.66 | 80.03 | 8 | −8 | 2153.39 | 5.90 | 2153.05 | 5.90 | 2138.77 | 5.86 | 1.01 |
St. Vincent/Grenadines | Kingstown | 13.16 | −61.23 | 14 | −17 | 2083.32 | 5.71 | 2079.13 | 5.70 | 2035.39 | 5.58 | 1.02 |
Sudan | Khartoum | 15.59 | 32.54 | 19 | 4 | 2543.61 | 6.97 | 2542.19 | 6.96 | 2435.33 | 6.67 | 1.04 |
Sudan | El Obeid | 13.18 | 30.22 | 18 | 6 | 2458.61 | 6.74 | 2457.59 | 6.73 | 2367.66 | 6.49 | 1.04 |
Suriname | Paramaribo | 5.85 | −55.20 | 6 | −53 | 1946.84 | 5.33 | 1937.57 | 5.31 | 1930.37 | 5.29 | 1.00 |
Swaziland | Mbabane | −26.31 | 31.14 | 31 | 177 | 1928.83 | 5.28 | 1927.79 | 5.28 | 1724.97 | 4.73 | 1.12 |
Sweden | Stockholm | 59.33 | 18.07 | 43 | 1 | 1172.53 | 3.21 | 1172.50 | 3.21 | 961.01 | 2.63 | 1.22 |
Sweden | Luleå | 65.58 | 22.16 | 48 | −3 | 1188.99 | 3.26 | 1188.74 | 3.26 | 908.70 | 2.49 | 1.31 |
Switzerland | Bern | 46.95 | 7.45 | 41 | 2 | 1592.63 | 4.36 | 1592.59 | 4.36 | 1291.08 | 3.54 | 1.23 |
Syrian Arab Republic | Damascus | 33.51 | 36.28 | 31 | −8 | 2335.49 | 6.40 | 2334.01 | 6.39 | 2073.87 | 5.68 | 1.13 |
Syrian Arab Republic | Homs | 34.73 | 36.716 | 30 | 7 | 2190.91 | 6.00 | 2187.95 | 5.99 | 1964.10 | 5.38 | 1.11 |
Syrian Arab Republic | Aleppo | 36.20 | 37.13 | 33 | −6 | 2160.63 | 5.92 | 2160.10 | 5.92 | 1894.68 | 5.19 | 1.14 |
Tajikistan | Dushanbe | 38.56 | 68.79 | 31 | −4 | 1867.17 | 5.12 | 1866.30 | 5.11 | 1665.90 | 4.56 | 1.12 |
Tanzania | Dodoma | −6.16 | 35.75 | 8 | 160 | 2365.45 | 6.48 | 2362.99 | 6.47 | 2346.13 | 6.43 | 1.01 |
Tanzania | Songea | −10.65 | 35.64 | 12 | 168 | 2025.61 | 5.55 | 2024.03 | 5.55 | 1994.46 | 5.46 | 1.01 |
Thailand | Bangkok | 13.76 | 100.50 | 17 | 0 | 1994.13 | 5.46 | 1994.13 | 5.46 | 1935.70 | 5.30 | 1.03 |
Thailand | Mueang Chiang Rai | 19.91 | 99.84 | 25 | 9 | 2009.07 | 5.50 | 2006.42 | 5.50 | 1880.23 | 5.15 | 1.07 |
Togo | Lome | 6.13 | 1.23 | 9 | 20 | 2135.78 | 5.85 | 2133.33 | 5.84 | 2112.99 | 5.79 | 1.01 |
Togo | Dapaong | 10.87 | 0.20 | 16 | 5 | 2271.33 | 6.22 | 2270.77 | 6.22 | 2207.94 | 6.05 | 1.03 |
Trinidad and Tobago | Port of Spain | 10.66 | −61.51 | 11 | −37 | 1973.87 | 5.41 | 1961.97 | 5.38 | 1938.35 | 5.31 | 1.01 |
Tunisia | Tunis | 36.81 | 10.18 | 32 | 2 | 2055.49 | 5.63 | 2054.98 | 5.63 | 1824.57 | 5.00 | 1.13 |
Turkey | Ankara | 39.93 | 32.86 | 32 | −4 | 1856.34 | 5.09 | 1855.51 | 5.08 | 1642.72 | 4.50 | 1.13 |
Turkey | İstanbul | 41.01 | 28.97 | 32 | 11 | 1746.38 | 4.78 | 1741.66 | 4.77 | 1551.90 | 4.25 | 1.12 |
Turkey | Hakkâri | 37.58 | 43.74 | 29 | −5 | 1896.31 | 5.20 | 1895.59 | 5.19 | 1722.17 | 4.72 | 1.10 |
Turkmenistan | Ashgabat | 37.94 | 58.39 | 32 | 0 | 1975.89 | 5.41 | 1975.89 | 5.41 | 1752.51 | 4.80 | 1.13 |
Uganda | Kampala | 0.35 | 32.58 | 1 | 74 | 1955.52 | 5.36 | 1953.95 | 5.35 | 1953.69 | 5.35 | 1.00 |
Ukraine | Kyiv | 50.45 | 30.52 | 36 | 1 | 1357.97 | 3.72 | 1357.93 | 3.72 | 1173.62 | 3.22 | 1.16 |
Ukraine | Lviv | 49.848 | 24.033 | 37 | 1 | 1304.11 | 3.57 | 1304.03 | 3.57 | 1123.40 | 3.08 | 1.16 |
Ukraine | Odessa | 46.48 | 30.72 | 35 | 4 | 1574.72 | 4.31 | 1574.14 | 4.31 | 1366.41 | 3.74 | 1.15 |
United States | Washington, D.C | 38.91 | −77.04 | 35 | 1 | 1763.08 | 4.83 | 1762.92 | 4.83 | 1525.77 | 4.18 | 1.16 |
United States | Minot, ND | 48.23 | −101.29 | 42 | 5 | 1674.01 | 4.59 | 1673.38 | 4.58 | 1359.81 | 3.73 | 1.23 |
United States | San Antonio, TX | 29.42 | −98.49 | 28 | 7 | 2023.09 | 5.54 | 2020.54 | 5.54 | 1851.56 | 5.07 | 1.09 |
United States | Los Angeles, CA | 34.05 | −118.24 | 32 | 12 | 2247.35 | 6.16 | 2238.74 | 6.13 | 1966.44 | 5.39 | 1.14 |
United Arab Emirates | Abu Dhabi | 24.43 | 54.65 | 25 | 1 | 2481.46 | 6.80 | 2481.38 | 6.80 | 2309.42 | 6.33 | 1.07 |
United Arab Emirates | Dubai | 25.27 | 55.30 | 25 | 1 | 2457.38 | 6.73 | 2457.36 | 6.73 | 2277.89 | 6.24 | 1.08 |
United Kingdom | London | 51.507 | −0.128 | 39 | −3 | 1227.62 | 3.36 | 1227.42 | 3.36 | 1046.30 | 2.87 | 1.17 |
United Kingdom | York | 53.96 | −1.087 | 40 | −1 | 1142.40 | 3.13 | 1142.34 | 3.13 | 967.71 | 2.65 | 1.18 |
United Kingdom | Truro | 50.26 | −5.05 | 37 | 6 | 1269.16 | 3.48 | 1268.19 | 3.47 | 1097.53 | 3.01 | 1.16 |
Uruguay | Montevideo | −34.91 | −56.19 | 30 | −177 | 1802.71 | 4.94 | 1801.84 | 4.94 | 1622.85 | 4.45 | 1.11 |
Uruguay | Tacuarembo | −31.711 | −55.964 | 29 | −176 | 1814.57 | 4.97 | 1814.47 | 4.97 | 1664.21 | 4.56 | 1.09 |
Uzbekistan | Tashkent | 41.30 | 69.24 | 33 | 0 | 1924.70 | 5.27 | 1924.70 | 5.27 | 1692.18 | 4.64 | 1.14 |
Vatican City | Vatican City | 41.90 | 12.45 | 36 | 2 | 1935.25 | 5.30 | 1935.14 | 5.30 | 1653.96 | 4.53 | 1.17 |
Venezuela | Caracas | 10.48 | −66.90 | 11 | −17 | 1952.14 | 5.35 | 1949.93 | 5.34 | 1927.48 | 5.28 | 1.01 |
Venezuela | Amazonas | 2.81 | −65.10 | 4 | 0 | 1998.58 | 5.48 | 1998.58 | 5.48 | 1995.50 | 5.47 | 1.00 |
Vietnam | Hanoi | 21.03 | 105.83 | 16 | 28 | 1483.03 | 4.06 | 1475.95 | 4.04 | 1446.40 | 3.96 | 1.02 |
Vietnam | Cà Mau | 9.18 | 105.15 | 11 | −25 | 1849.86 | 5.07 | 1845.96 | 5.06 | 1826.08 | 5.00 | 1.01 |
Yemen | Sana’A | 15.37 | 44.19 | 19 | −23 | 2384.73 | 6.53 | 2370.25 | 6.49 | 2275.92 | 6.24 | 1.04 |
Yemen | Aden | 12.79 | 45.02 | 15 | 5 | 2430.15 | 6.66 | 2429.76 | 6.66 | 2365.05 | 6.48 | 1.03 |
Zambia | Lusaka | −15.42 | 28.29 | 22 | −176 | 2252.38 | 6.17 | 2252.05 | 6.17 | 2137.47 | 5.86 | 1.05 |
Zimbabwe | Harare | −17.83 | 31.03 | 24 | −174 | 2270.50 | 6.22 | 2269.35 | 6.22 | 2131.28 | 5.84 | 1.06 |
Location Coordinates | Calculated Model Using PVGIS | Proposed Model Using Neural Network | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country | City | Latitude (deg.) | Longitude (deg.) | Optimum Tilt Angle (deg.) | Azimuth Angle (deg.) | AR1 (kWh/m2) | AR2 (kWh/m2) | AR3 (kWh/m2) | Optimum Tilt Angle (deg.) | Azimuth Angle (deg.) | AR1 (kWh/m2) | AR2 (kWh/m2) | AR3 (kWh/m2) |
In-Sample Testing Set | |||||||||||||
Sweden | Luleå | 65.58 | 22.16 | 48 | −3 | 1188.99 | 1188.74 | 908.7 | 48.03 | −3.138 | 1219 | 1219 | 925.5 |
Australia | Geraldton | −28.78 | 114.61 | 28 | −180 | 2301.1 | 2301.1 | 2092.13 | 28 | −180 | 2301 | 2301 | 2092 |
Norway | Tromsø | 69.65 | 18.96 | 49 | 9 | 906.42 | 905.73 | 713.85 | 48.82 | 10.86 | 848.8 | 860.8 | 703.4 |
Rwanda | Kigali | −1.94 | 30.06 | 4 | −167 | 1930.06 | 1929.85 | 1926.68 | 4.059 | −167.3 | 1940 | 1933 | 1916 |
Brazil | Rio De Janeiro | −22.91 | −43.17 | 24 | −180 | 1872.95 | 1872.95 | 1755.27 | 24 | −180 | 1873 | 1873 | 1755 |
Burundi | Bujumbura | −3.36 | 29.36 | 8 | −180 | 1982.06 | 1982.06 | 1970.43 | 7.978 | −179.9 | 1974 | 1973 | 1964 |
Iraq | Mosul | 36.35 | 43.15 | 32 | 0 | 2178.96 | 2178.96 | 1928.69 | 32 | −0.1384 | 2188 | 2188 | 1936 |
Spain | Málaga | 36.72 | −4.43 | 34 | 5 | 2142.65 | 2141.03 | 1869.34 | 34 | 4.687 | 2156 | 2157 | 1870 |
Chile | Arica | −18.48 | −70.31 | 18 | −180 | 2274.32 | 2274.32 | 2193.16 | 18.08 | −180 | 2237 | 2241 | 2161 |
Finland | Helsinki | 60.17 | 24.94 | 42 | 3 | 1125.27 | 1124.86 | 925.59 | 41.92 | 3.342 | 1140 | 1141 | 927.7 |
Somalia | Mogadishu | 2.05 | 45.32 | 3 | 14 | 2427.88 | 2427.64 | 2423.5 | 2.827 | 14.29 | 2405 | 2382 | 2381 |
Malaysia | Kuala Lumpur | 3.14 | 101.69 | 2 | −66 | 1802.55 | 1799.8 | 1799.19 | 1.942 | −65.99 | 1783 | 1785 | 1773 |
Suriname | Paramaribo | 5.85 | −55.20 | 6 | −53 | 1946.84 | 1937.57 | 1930.37 | 6.055 | −53.1 | 1907 | 1894 | 1894 |
Benin | Port Novo | 6.50 | 2.63 | 11 | 27 | 1932.3 | 1927.88 | 1906.39 | 11.05 | 27.2 | 1923 | 1918 | 1897 |
India | Nagercoil | 8.18 | 77.41 | 9 | 1 | 2166.94 | 2166.92 | 2143.62 | 8.986 | 1.572 | 2123 | 2133 | 2108 |
Sri-Lanka | Jaffna | 9.66 | 80.03 | 8 | −8 | 2153.39 | 2153.05 | 2138.77 | 8.038 | −8.211 | 2173 | 2165 | 2157 |
China | Guigang | 23.11 | 109.60 | 19 | 17 | 1400.07 | 1396.45 | 1354.5 | 18.99 | 17.11 | 1392 | 1389 | 1347 |
Lebanon | Beirut | 33.89 | 35.50 | 29 | −1 | 2113.95 | 2113.94 | 1909.46 | 29.07 | −1.031 | 2118 | 2118 | 1912 |
Malta | Valletta | 35.90 | 14.51 | 31 | 8 | 2098.64 | 2097.52 | 1875.2 | 31.03 | 7.936 | 2105 | 2104 | 1883 |
United States | Washington, D.C | 38.91 | −77.04 | 35 | 1 | 1763.08 | 1762.92 | 1525.77 | 34.85 | 0.6785 | 1712 | 1689 | 1552 |
Italy | Rome | 41.90 | 12.50 | 36 | 2 | 1935.18 | 1935.05 | 1653.95 | 36.13 | 2.23 | 1925 | 1924 | 1645 |
Croatia | Zadar | 44.12 | 15.23 | 37 | 2 | 1801.18 | 1801.08 | 1530.99 | 36.99 | 2.03 | 1799 | 1799 | 1530 |
Canada | Ottawa | 45.42 | −75.70 | 37 | 0 | 1563.56 | 1563.56 | 1325.33 | 36.95 | 0.0682 | 1563 | 1560 | 1341 |
Liechtenstein | Vaduz | 47.14 | 9.52 | 37 | 5 | 1326.21 | 1324.96 | 1138.42 | 37 | 4.99 | 1326 | 1325 | 1139 |
Germany | Munich | 48.14 | 11.58 | 38 | 1 | 1372.5 | 1372.46 | 1169.59 | 37.99 | 1.023 | 1373 | 1373 | 1170 |
Belize | Belmopan | 17.25 | −88.76 | 17 | 7 | 1907.61 | 1906.68 | 1850.78 | 17 | 7.008 | 1907 | 1906 | 1850 |
Bhutan | Thimphu | 27.47 | 89.63 | 31 | −15 | 1913.66 | 1902.28 | 1704.45 | 31.06 | −15.16 | 1926 | 1913 | 1711 |
Australia | Karratha | −20.73 | 116.84 | 23 | −180 | 2490.05 | 2490.05 | 2343.49 | 22.99 | −180.9 | 2520 | 2494 | 2339 |
South Africa | Johannesburg | −26.20 | 28.05 | 30 | 180 | 2256.5 | 2256.5 | 2020.48 | 29.94 | 179.8 | 2262 | 2265 | 2026 |
Namibia | Windhoek | −22.57 | 17.08 | 27 | −173 | 2473.43 | 2471.35 | 2266.39 | 26.99 | −173.1 | 2466 | 2468 | 2256 |
Out-of-Sample Testing Set | |||||||||||||
Egypt | Port Said | 31.263 | 32.308 | 29 | 3 | 2316.73 | 2314.47 | 2093.57 | 28.98 | 3 | 2315 | 2313 | 2093 |
Jordan | Zarqa | 32.063 | 36.09 | 28 | 2 | 2315.94 | 2315.57 | 2101.66 | 27.32 | 2.042 | 2474 | 2477 | 2226 |
Syrian Arab Republic | Homs | 34.73 | 36.716 | 30 | 7 | 2190.91 | 2187.95 | 1964.1 | 30 | 6.999 | 2191 | 2188 | 1964 |
Romania | Craiova | 44.315 | 23.828 | 35 | 4 | 1642.53 | 1641.27 | 1431.19 | 35 | 4.001 | 1643 | 1641 | 1431 |
Ukraine | Lviv | 49.848 | 24.033 | 37 | 1 | 1304.11 | 1304.03 | 1123.4 | 37 | 1 | 1304 | 1304 | 1123 |
South Africa | Durban | −29.855 | 30.985 | 33 | 178 | 1923.65 | 1922.63 | 1694.33 | 33 | 178 | 1924 | 1923 | 1694 |
France | Rennes | 48.114 | −1.669 | 38 | 0 | 1413.59 | 1413.59 | 1210.02 | 38 | 0.00012 | 1414 | 1414 | 1210 |
Colombia | Medellin | 6.254 | −75.576 | 5 | −8 | 1896.07 | 1895.95 | 1890.18 | 5 | −8 | 1896 | 1896 | 1890 |
India | Jodhpur | 26.293 | 73.034 | 30 | 0 | 2324.87 | 2324.87 | 2098.01 | 30 | 0.0005 | 2325 | 2325 | 2098 |
Uruguay | Tacuarembo | −31.711 | −55.964 | 29 | −176 | 1814.57 | 1814.47 | 1664.21 | 29 | −176 | 1815 | 1814 | 1664 |
References
- Hernandez-Escobedo, Q.; Rodriguez-Garcia, E.; Saldaña-Flores, R.; Fernández-García, A.; Manzano-Agugliaro, F. Solar energy resource assessment in Mexican states along the Gulf of Mexico. Renew. Sustain. Energy Rev. 2015, 43, 216–238. [Google Scholar] [CrossRef]
- Hailu, G.; Fung, A.S. Optimum tilt angle and orientation of photovoltaic thermal system for application in greater Toronto area, Canada. Sustainability 2019, 11, 6443. [Google Scholar] [CrossRef] [Green Version]
- REN21. Renewables 2020 Global Status Report. Paris: REN21 Secretariat. 2020. Available online: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf (accessed on 1 December 2020).
- United Nations General Assembly. Transforming our World: The 2030 Agenda for Sustainable Development; Division for Sustainable Development Goals: New York, NY, USA, 2015; pp. 1–35. [Google Scholar]
- Dholakia, H.H. Solar powered healthcare in developing countries. Nat. Energy 2018, 3, 705–707. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W. Solar cell efficiency tables (version 56). Prog. Photovolt. Res. Appl. 2020, 28, 629–638. [Google Scholar] [CrossRef]
- Salameh, T.; Tawalbeh, M.; Juaidi, A.; Abdallah, R.; Issa, S.; Alami, A.H. A novel numerical simulation model for the PVT water system in the GCC region. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Rome, Italy, 10–11 December 2020; pp. 1–5. [Google Scholar]
- Abdallah, R.; Juaidi, A.; Assad, M.; Salameh, T.; Manzano-Agugliaro, F. Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study. Energies 2020, 13, 1817. [Google Scholar] [CrossRef] [Green Version]
- Salameh, T.; Tawalbeh, M.; Juaidi, A.; Abdallah, R.; Hamid, A.-K. A novel three-dimensional numerical model for PV/T water system in hot climate region. Renew. Energy 2020, 164, 1320–1333. [Google Scholar] [CrossRef]
- Hafez, A.; Soliman, A.; El-Metwally, K.; Ismail, I. Tilt and azimuth angles in solar energy applications—A review. Renew. Sustain. Energy Rev. 2017, 77, 147–168. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V. Comparison of optimum tilt angles of solar collectors determined at yearly, seasonal and monthly levels. Energy Convers. Manag. 2015, 97, 121–131. [Google Scholar] [CrossRef]
- Juaidi, A.; Montoya, F.G.; Ibrik, I.H.; Manzano-Agugliaro, F. An overview of renewable energy potential in Palestine. Renew. Sustain. Energy Rev. 2016, 65, 943–960. [Google Scholar] [CrossRef]
- Juaidi, A.; Montoya, F.G.; Gázquez, J.A.; Manzano-Agugliaro, F. An overview of energy balance compared to sustainable energy in United Arab Emirates. Renew. Sustain. Energy Rev. 2016, 55, 1195–1209. [Google Scholar] [CrossRef]
- Chen, X.M.; Li, Y.; Zhao, B.Y.; Wang, R.Z. Are the optimum angles of photovoltaic systems so important? Renew. Sustain. Energy Rev. 2020, 124, 109791. [Google Scholar] [CrossRef]
- Castellano, N.N.; Parra, J.A.G.; Valls-Guirado, J.; Manzano-Agugliaro, F. Optimal displacement of photovoltaic array’s rows using a novel shading model. Appl. Energy 2015, 144, 1–9. [Google Scholar] [CrossRef]
- Takilalte, A.; Harrouni, S.; Yaiche, M.R.; Mora-López, L. New approach to estimate 5-min global solar irradiation data on tilted planes from horizontal measurement. Renew. Energy 2020, 145, 2477–2488. [Google Scholar] [CrossRef]
- Novas, N.; Fernández-García, A.; Manzano-Agugliaro, F. A Simplified Method to Avoid Shadows at Parabolic-Trough Solar Collectors Facilities. Symmetry 2020, 12, 278. [Google Scholar] [CrossRef] [Green Version]
- Racharla, S.; Rajan, K. Solar tracking system—A review. Int. J. Sustain. Eng. 2017, 10, 72–81. [Google Scholar]
- Mousazadeh, H.; Keyhani, A.; Javadi, A.; Mobli, H.; Abrinia, K.; Sharifi, A. A review of principle and sun-tracking methods for maximizing solar systems output. Renew. Sustain. Energy Rev. 2009, 13, 1800–1818. [Google Scholar] [CrossRef]
- Abdallah, R.; Juaidi, A.; Abdel-Fattah, S.; Manzano-Agugliaro, F. Estimating the Optimum Tilt Angles for South-Facing Surfaces in Palestine. Energies 2020, 13, 623. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Forster, P.M.; Crook, R. An all-sky radiative transfer method to predict optimal tilt and azimuth angle of a solar collector. Sol. Energy 2016, 123, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, W.G. Optimum tilt and azimuth angles for fixed solar collectors in South Africa using measured data. Renew. Energy 2016, 96, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Fouad, M.; Shihata, L.A.; Morgan, E.I. An integrated review of factors influencing the performance of photovoltaic panels. Renew. Sustain. Energy Rev. 2017, 80, 1499–1511. [Google Scholar] [CrossRef]
- Photovoltaic Geographical Information System. European Commission. PVGIS (2019). Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html (accessed on 1 December 2020).
- Mira, J. Symbols versus connections: 50 years of artificial intelligence. Neurocomputing 2008, 71, 671–680. [Google Scholar] [CrossRef]
- Jyothi, J.; Veena, M.B. An Efficient and Smart Control of Solar Panel Orientation using Machine Learning. In Proceedings of the 2019 Global Conference for Advancement in Technology (GCAT), Bangalore, India, 18–20 October 2019; pp. 1–5. [Google Scholar]
- Kim, G.Y.; Han, D.S.; Lee, Z. Solar Panel Tilt Angle Optimization Using Machine Learning Model: A Case Study of Daegu City, South Korea. Energies 2020, 13, 529. [Google Scholar] [CrossRef] [Green Version]
- El-Kassaby, M. Monthly and daily optimum tilt angle for south facing solar collectors; theoretical model, experimental and empirical correlations. Sol. Wind. Technol. 1988, 5, 589–596. [Google Scholar] [CrossRef]
- Morcos, V. Optimum tilt angle and orientation for solar collectors in Assiut, Egypt. Renew. Energy 1994, 4, 291–298. [Google Scholar] [CrossRef]
- Hartley, L.E.; Lozano, J.A.M.; Utrillas, M.; Tena, F.; Pedrós, R. The optimisation of the angle of inclination of a solar collector to maximise the incident solar radiation. Renew. Energy 1999, 17, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Yakup, M.A.B.H.M.; Malik, A. Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renew. Energy 2001, 24, 223–234. [Google Scholar] [CrossRef]
- Tang, R.; Wu, T. Optimal tilt-angles for solar collectors used in China. Appl. Energy 2004, 79, 239–248. [Google Scholar] [CrossRef]
- Ulgen, K. Optimum tilt angle for solar collectors. Energy Sources Part A Recovery Util. Environ. Eff. 2006, 28, 1171–1180. [Google Scholar] [CrossRef]
- Skeiker, K. Optimum tilt angle and orientation for solar collectors in Syria. Energy Convers. Manag. 2009, 50, 2439–2448. [Google Scholar] [CrossRef]
- Talebizadeh, P.; Mehrabian, M.A.; Abdolzadeh, M. Determination of Optimum Slope Angles of Solar Collectors Based on New Correlations. Energy Sources Part A Recovery Util. Environ. Eff. 2011, 33, 1567–1580. [Google Scholar] [CrossRef]
- Darhmaoui, H.; Lahjouji, D. Latitude Based Model for Tilt Angle Optimization for Solar Collectors in the Mediterranean Region. Energy Procedia 2013, 42, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Khasawneh, Q.A.; Damra, Q.A.; Salman, B.; Husni, O. Determining the Optimum Tilt Angle for Solar Applications in Northern Jordan. Jordan J. Mech. Ind. Eng. 2015, 9, 187–193. [Google Scholar]
- Hartner, M.; Ortner, A.; Hiesl, A.; Haas, R. East to west—The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Appl. Energy 2015, 160, 94–107. [Google Scholar] [CrossRef]
- Safdarian, F.; Nazari, M.E. Optimal tilt angle and orientation for solar collectors in Iran. In Proceedings of the 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Guarda, Portugal, 1–4 September 2015; pp. 494–500. [Google Scholar]
- Berisha, X.; Zeqiri, A.; Meha, D. Solar Radiation–The Estimation of the Optimum Tilt Angles for South-Facing Surfaces in Pristina. 2017. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjZoeyVo7PtAhUOA4gKHWNoBC0QFjAEegQIAhAC&url=https%3A%2F%2Fwww.preprints.org%2Fmanuscript%2F201708.0010%2Fv1%2Fdownload&usg=AOvVaw3wBnBGjwMOe3yc41wJimo6 (accessed on 1 December 2020).
- Guo, M.; Zang, H.; Gao, S.; Chen, T.; Xiao, J.; Cheng, L.; Wei, Z.; Sun, G. Optimal Tilt Angle and Orientation of Photovoltaic Modules Using HS Algorithm in Different Climates of China. Appl. Sci. 2017, 7, 1028. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z.; Jadhav, V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Abdulsalam, H.S.; Alibaba, H.Z. Optimum Tilt Angle for Photovoltaic Panels in Famagusta, Cyprus. IJSSHR 2019, 7, 29–35. [Google Scholar]
- Sahu, S.K.; Tripathi, N.; Tripathi, S. A model driven optimization approach to determine tilt angle of solar collector in India. Int. J. Adv. Res. Eng. Technol. 2019, 10, 2019. [Google Scholar] [CrossRef]
- Adu, T.F.; Anto, E.K.; Ramde, E.; Mensah, L.D. Determination of Optimum Tilt Angle for Rooftop Solar Photovoltaic System Installation for KikuKinderhaus in Kumasi. Int. J. Energy Environ. Sci. 2020, 5, 7. [Google Scholar] [CrossRef]
- Kallioğlu, M.A.; Durmuş, A.; Karakaya, H.; Yılmaz, A. Empirical calculation of the optimal tilt angle for solar collectors in northern hemisphere. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1335–1358. [Google Scholar] [CrossRef]
- Pourfayaz, F.; Shirmohammadi, R.; Maleki, A.; Kasaeian, A. Improvement of solar flat-plate collector performance by optimum tilt angle and minimizing top heat loss coefficient using particle swarm optimization. Energy Sci. Eng. 2020, 8, 2771–2783. [Google Scholar] [CrossRef] [Green Version]
- Sugirianta, I.B.K.; Sunaya, I.; Saputra, I. Optimization of tilt angle on-grid 300Wp PV plant model at Bukit Jimbaran Bali. J. Phys. Conf. Ser. 2020, 1450, 012135. [Google Scholar] [CrossRef] [Green Version]
- Alyami, F.H.; Gomez, P. Semi-Seasonally Optimized Tilt Angles for Design of Utility-Scale Photovoltaic Generation Station. In Proceedings of the 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6–7 February 2020; pp. 1–5. [Google Scholar]
- Schuster, C.S. The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation. Renew. Energy 2020, 152, 1186–1191. [Google Scholar] [CrossRef]
- CM SAF: Climate Monitoring Satellite Application Facility. Available online: https://www.cmsaf.eu/EN/Home/home_node.html (accessed on 1 December 2020).
- NREL: National Solar Radiation Database. Available online: https://nsrdb.nrel.gov/data-sets/archives.html (accessed on 1 December 2020).
- ECMWF: European Centre for Medium-Range Weather Forecasts. Available online: https://www.ecmwf.int/en/forecasts/documentation-and-support/medium-range-forecasts (accessed on 1 December 2020).
- Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems; Addison-Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Yu, H.; Wilamowski, B.M. Levenberg–Marquardt Training. In The Industrial Electronics Handbook, 2nd ed.; Intelligent Systems; CRC Press: Boca Raton, FL, USA, 2011; Volume 5, Available online: http://www.eng.auburn.edu/~{}wilambm/pap/2011/K10149_C012.pdf (accessed on 1 December 2020).
- Jayalakshmi, T.; Santhakumaran, A. Statistical normalization and back propagation for classification. Int. J. Comput. Theory Eng. 2011, 3, 1793–8201. [Google Scholar]
- Cömert, Z.; Kocamaz, A.F. A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals. Bitlis Eren Univ. J. Sci. Technol. 2017, 7, 93–103. [Google Scholar] [CrossRef]
- Samara, S.; Natsheh, E. Intelligent Real-Time Photovoltaic Panel Monitoring System Using Artificial Neural Networks. IEEE Access 2019, 7, 50287–50299. [Google Scholar] [CrossRef]
- Breyer, C.; Schmid, J. Global Distribution of optimal Tilt Angles for fixed tilted PV Systems. In Proceedings of the 25th European Photovoltaic Solar Energy Conference/WCPEC-5, Valencia, Spain, 6–10 September 2010. [Google Scholar]
- Zsiborács, H.; Bai, A.; Popp, J.; Gabnai, Z.; Pályi, B.; Farkas, I.; Baranyai, N.H.; Veszelka, M.; Zentkó, L.; Pintér, G. Change of Real and Simulated Energy Production of Certain Photovoltaic Technologies in Relation to Orientation, Tilt Angle and Dual-Axis Sun-Tracking. A Case Study in Hungary. Sustainability 2018, 10, 1394. [Google Scholar] [CrossRef] [Green Version]
- Raskutti, G.; Wainwright, M.J.; Yu, B. Early stopping for non-parametric regression: An optimal data-dependent stopping rule. In Proceedings of the 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 28–30 September 2011; pp. 1318–1325. [Google Scholar]
Country or Region | City | Latitude (φ) (°) | Optimum Tilt Angle (β) (°) Annually | Reference | ||
---|---|---|---|---|---|---|
Jordan | Mu’tah | 31.7 | 28.5 | A mathematical model is developed [28]. | ||
Egypt | Assiut | 27.2 | 27 | Moncos (1994) developed a mathematical model [29]. | ||
Spain | Valencia | 28.5 | 31 | The Hay model was used to assess the hourly variance of the optimal tilt angle for a solar collector facing south and to measure the annual average of this angle [30]. | ||
Darussalam | Brunei | 4.5 | 3.3 | A mathematical model was used [31]. | ||
China | Beijing | 39.9 | 39.2 | A mathematical model is developed [32]. | ||
Kunming | 24.9 | 27.9 | ||||
Shanghai | 31.2 | 28 | ||||
Guangzhou | 23.1 | 22 | ||||
Chengdu | 30.6 | 23 | ||||
Xi’an | 34.3 | 30.1 | ||||
Yinchuang | 38.5 | 38.3 | ||||
Shenyang | 41.8 | 40.3 | ||||
Turkey | Izmir | 38.4 | June: 0 December: 61 | A mathematical model is developed [33]. | ||
Syria | Damascus | 33.5 | 30.56 | A mathematical model is used [34]. | ||
Iran | Zahedan | 29.5 | 26.70 | A more precise equation than the Nijegorodov one is formed to measure the monthly optimum tilt angle using a new correlation for each month [35]. | ||
Birjand | 32.9 | 29.93 | ||||
Shraz | 52.9 | 25.88 | ||||
Tabas | 33.6 | 30.16 | ||||
Yazd | 31.9 | 29.05 | ||||
Kerman | 36.7 | 23.95 | ||||
Mediterranean Region | Gaza Strip (Palestine) | 31.5 | 32.1 | As a function of the tilt angle, a mathematical model is used to measure the solar radiation on a tilted surface [36]. | ||
Damascus (Syria) | 33.5 | 33.7 | ||||
Beirut (Lebanon) | 33.9 | 33.8 | ||||
Tunis (Tunisia) | 33.9 | 35.2 | ||||
Seville (Spain) | 37.4 | 36.6 | ||||
Milan (Italy) | 45.5 | 41.8 Summer: β = φ − 15° Winter: β = φ + 15° | ||||
Jordan | Northern Jordan | 32.5° | 30 Summer: 10 Winter: 50 | Based on the results of the PVsyst simulation for Northern Jordan [37]. | ||
Austria and Germany | Germany | 51.2 | 30–45 | A PV-simulation model is provided for the measurement of angle-dependent PV performance. For Germany and Austria, a linear power and simplified dispatch model was calibrated and used [38]. | ||
Austria | 47.5 | 30–45 | ||||
Iran | Tehran | 35.7 | 35.7 | For measuring solar radiation on a tilted surface, a mathematical model is suggested. The maximum angle of incidence is detected using the Gravitational Search Algorithm (GSA) [39]. | ||
Isfahan | 36.5 | 32 | ||||
Shiraz | 29.6 | 29.4 | ||||
Mashhad | 36.3 | 36.2 | ||||
Tabriz | 38.1 | 38 | ||||
Kosovo | Pristina | 42.7 | 34.7 Summer: 8.9 Spring: 25.7 Autumn: 50.9 Winter: 62.1 | Based on isotropic sky analysis models, namely Liu and Jordan models, the incident plane’s solar radiation is calculated [40]. | ||
China | Sanya | 11.5 | −18 (June) to 49.9 (Dec.) | The algorithm Harmony (meta-heuristic) determines the azimuth angle and optimum tilt [41]. The findings are built on the ergodic mechanism [41]. | ||
Shanghai | 31.2 | −7.6 (June) to 61.4 (Dec.) | ||||
Zhengzhou | 34.7 | 5.5 (June) to 64.3 (Dec.) | ||||
Harbin | 45.8 | 12.6 (June) to 73.7 (Dec.) | ||||
Mohe | 52.9 | 16.6 (June) to 80.0 (Dec.) | ||||
Lhasa | 29.7 | −8.9 (June) to 59.9 (Dec.) | ||||
All Countries Worldwide | Canada (Montreal) | 45.5 | 37 | This study uses the PVWatts program to calculate the optimal tilt angles for all countries worldwide [42]. | ||
Bordeaux (France) | 44.8 | 33 | ||||
Cologne (Germany) | 50.9 | 32 | ||||
Hong Kong | 22.4 | 20 | ||||
Rajko (India) | 42.1 | 24 | ||||
Beek (Netherlands) | 50.9 | 34 | ||||
Castellón (Spain) | 39.1 | 36 | ||||
Austin, TX (United States) | 30.3 | 28 | ||||
London (United Kingdom) | 51.5 | 34 | ||||
Jerusalem (Palestine) | 31.8 | 28 | ||||
Casablanca (Morocco) | 33.6 | 28 | ||||
Beirut (Lebanon) | 33.9 | 28 | ||||
Kuwait City (Kuwait) | 29.3 | 26 | ||||
Amman (Jordan) | 31.9 | 28 | ||||
Tehran (Iran) | 35.68 | 31 | ||||
Aswan (Egypt) | 24.1 | 24 | ||||
Abu Dhabi (United Arab Emirates) | 24.5 | 25 | ||||
Cyprus | Famagusta | 35.1 | 28 to 30 Summer: 20 Winter: 50 | PV simulation software will be used to determine the average solar radiation on different tilt. From this, to assess an optimal tilt angle, the peak annual average solar radiation shall be obtained on various tilted surfaces [43]. | ||
Palestine | West Bank Gaza Strip | 31.9 | 29 | 1. For determining the optimum tilt angle, a mathematical model is used [20]. | ||
2. PVWatts | 3. PVGIS | |||||
India | Analytical | PSO Estimator | 1. To find an optimal tilt angle, a model-driven optimization focus has been proposed, such as a particle swarm optimization (PSO) estimator [44] 2. Analytical method | |||
Minicoy | 8.3 | 11.00 | 10.51 | |||
Ahmadabad | 23.0 | 26.00 | 25.83 | |||
New Delhi | 28.6 | 27.00 | 26.92 | |||
Ghana | Kumasi | 6.7 | 10 | System simulation RETScreen 4. For all the three systems’ orientation, the electrical energy output produced by the solar module was calculated [45]. | ||
Turkey | Antalya | 36.9 | Winter: β = φ + 17° Spring: β = φ – 18° Summer: β = φ – 34° Autumn: β = φ + 7° Annual: β = φ – 7° | For the Northern Hemisphere and sample provinces, various mathematical models have been developed. PVGIS, NASA, and other approaches [46]. | ||
Kayseri | 38.7 | |||||
Trabzon | 41.0 | |||||
Iran | Bandar Abbas | 27.13 | 18.84 | The optimal tilt angle is calculated using a distributed software developed on MATLAB. Based on particle swarm optimization (PSO) approach [47]. | ||
Yazd | 31.54 | 21.47 | ||||
Isfahan | 32.57 | 22.04 | ||||
Tehran | 35.41 | 23.59 | ||||
Urmia | 37.32 | 23.27 β = 0.4663φ + 6.5489° | ||||
Indonesia | Bukit Jimbaran Bali | 5.4 | φ from 12–18 in the azimuth of 0. (Apr. to Sep.): 32 (Oct. to Mar.): 24 | Simulations found that for fixed solar panels in a year. Data of solar radiation and the simulation of PV system are from Metronome 7.2 [48]. | ||
USA | Eaton County, Michigan | 39.7 | 42.7 | Oracle Crystal Ball program using Microsoft Excel (OptQuest Solver Engine) was used to calculate optimal tilt angles [49]. | ||
South Korea | Daegu City | 35.9 | 1 to 29 | Optimization model using machine learning algorithms: Gradient Boosting Algorithm [27]. | ||
Norway | Trondheim | 63.4 | 52 | A proposed approach to use real historical solar spectra to test a panel’s tilt at a given location rigorously [50]. | ||
France | Paris | 48.9 | 43 | |||
Egypt | Cairo | 30.0 | 29 | |||
Kenya | Nairobi | −1.3 | 3 |
Stage 1 Structure (Angle Prediction) | Stage 2 Structure (Annual Irradiation Prediction) | ||
---|---|---|---|
Attribute | Choice | Attribute | Choice |
Number of inputs | 2 | Number of inputs | 4 |
Number of outputs | 2 | Number of outputs | 3 |
The hidden layer activation function | Hyperbolic Tangent | The hidden layer activation function | Hyperbolic Tangent |
Output layer activation function | Linear (Regression) | Output layer activation function | Linear (Regression) |
Normalization interval of the dataset | [−1, 1] | Normalization interval of the dataset | [−1, 1] |
Training approach | Levenberg-Marquardt | Training approach | Levenberg-Marquardt |
Error | Mean Squared Error | Error | Mean Squared Error |
Stage 1 Structure(Angle Prediction) | Stage 2 Structure(Annual Irradiation Prediction) | ||||||
---|---|---|---|---|---|---|---|
Nodes | MSE Train | MSE Validation | MSE Test | Number of Nodes | MSE Train | MSE Validation | MSE Test |
100 | 12.5169 | 8.3296 | 17.861 | 100 | 50.6192 | 150.9851 | 212.771 |
150 | 7.8641 | 2.0191 | 11.218 | 150 | 13.8712 | 33.8164 | 41.831 |
200 | 4.0127 | 1.1729 | 6.071 | 200 | 2.1176 | 3.8155 | 7.981 |
250 | 3.810 × 10−1 | 4.7263 | 5.291 | 250 | 6.1839 × 10−1 | 1.0069 | 4.441 |
300 | 6.211 × 10−2 | 2.1058 × 10−1 | 8.16 × 10−1 | 300 | 2.0174 × 10−2 | 5.9816 × 10−2 | 7.97 × 10−1 |
350 | 2.527 × 10−2 | 1.1688 × 10−3 | 4.0 × 10−2 | 350 | 7.3972 × 10−3 | 1.5783 × 10−4 | 6.26 × 10−3 |
400 | 8.875 × 10−2 | 4.6688 × 10−2 | 1.94 × 10−1 | 400 | 2.9261 × 10−3 | 7.2705 × 10−3 | 7.91 × 10−2 |
300 × 300 | 2.1197 × 10−2 | 8.9912 × 10−1 | 1.368 | 300 × 300 | 4.2281 × 10−1 | 2.8861 × 10−1 | 1.891 |
350 × 350 | 7.9712 × 10−1 | 9.1862 × 10−1 | 2.261 | 350 × 350 | 8.6691 × 10−2 | 7.6331 × 10−1 | 3.225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, R.; Natsheh, E.; Juaidi, A.; Samara, S.; Manzano-Agugliaro, F. A Multi-Level World Comprehensive Neural Network Model for Maximum Annual Solar Irradiation on a Flat Surface. Energies 2020, 13, 6422. https://doi.org/10.3390/en13236422
Abdallah R, Natsheh E, Juaidi A, Samara S, Manzano-Agugliaro F. A Multi-Level World Comprehensive Neural Network Model for Maximum Annual Solar Irradiation on a Flat Surface. Energies. 2020; 13(23):6422. https://doi.org/10.3390/en13236422
Chicago/Turabian StyleAbdallah, Ramez, Emad Natsheh, Adel Juaidi, Sufyan Samara, and Francisco Manzano-Agugliaro. 2020. "A Multi-Level World Comprehensive Neural Network Model for Maximum Annual Solar Irradiation on a Flat Surface" Energies 13, no. 23: 6422. https://doi.org/10.3390/en13236422
APA StyleAbdallah, R., Natsheh, E., Juaidi, A., Samara, S., & Manzano-Agugliaro, F. (2020). A Multi-Level World Comprehensive Neural Network Model for Maximum Annual Solar Irradiation on a Flat Surface. Energies, 13(23), 6422. https://doi.org/10.3390/en13236422