GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal, Scope, and Functional Unit
2.2. Biogas Production Pathways
2.2.1. Feedstock
2.2.2. Biogas Production
2.2.3. Digestate Utilization
2.3. Energy Model
- Es—cumulative energy demand (GJ ha−1);
- En—direct energy input from fuel (GJ ha−1);
- Em—indirect energy input from materials (GJ ha−1);
- Ei—indirect energy input from machinery (GJ ha−1);
- Ep—indirect energy input from labor (GJ ha−1).
- Ei—indirect energy input from machinery (GJ ha−1);
- n—number of machineries used;
- Dk—the energy of machinery per hour (GJ h−1);
- tk—a time of usage of machinery “k” throughout the year (h);
- Ak—area (ha).
- D—energy of machinery (GJ h−1);
- mk—a mass of machinery “k” (kg);
- wc—energy consumption indicator for machinery (GJ kg−1);
- mzk—mass of spare parts (kg);
- wz—energy consumption indicator for spare parts (GJ kg−1);
- mmk—a mass of materials for repairs (kg);
- wm—energy consumption indicator for materials for repairs (GJ kg−1);
- Tk—a time of usage throughout the year (h);
- Lk—number of years of usage.
- Ep—energy input from labor (GJ ha−1);
- l—human labor (rbh ha−1);
- wl—energy consumption indicator for human labor (GJ rbh−1).
2.3.1. Feedstock and Digestate Transportation
2.3.2. Anaerobic Digestion
2.3.3. Digestate
2.3.4. Composting of Digestate
2.4. The GHG Calculations
- Cel—fraction of exergy in the electricity;
- Ch—fraction of exergy in the heat (Carnot efficiency = 0.3546);
- ƞel—electric efficiency;
- ƞh—heat efficiency.
2.5. The Sensitivity Analysis
3. Results
3.1. Energy
3.2. GHG Emissions
4. Discussion
4.1. Searching for Substitutes for Energy Crops
4.2. Energy Efficiency and GHG Emissions from Energy Production Based on Conservation Biomass
5. Conclusions: Climate—Wetlands—Nature Conservation
Author Contributions
Funding
Conflicts of Interest
References
- Brief on Biomass for Energy in the European Union. The European Commission’s Knowledge Centre for Bioeconomy, European Union. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC109354/biomass_4_energy_brief_online_1.pdf (accessed on 15 September 2020).
- Koponen, K.; Sokka, L.; Salminen, O.; Sievänen, R.; Pingoud, K.; Ilvesniemi, H.; Routa, J.; Ikonen, T.; Koljonen, T.; Alakangas, E.; et al. Sustainability of forest energy in Northern Europe. In VTT Technology 237; VTT Technical Research Centre of Finland Ltd: Espoo, Finland, 2015. [Google Scholar]
- Welfle, A.; Gilbert, P.; Thornley, P. Increasing biomass resource availability through supply chain analysis. Biomass Bioenergy 2014, 70, 249–266. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energ. Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Paolini, V.; Petracchini, F.; Segreto, M.; Tomassetti, L.; Naja, N.; Cecinato, A. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health A 2018, 53, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhao, F.; Liu, S.; Wang, L.; Qiu, L.; Alexandrov, G.; Jothiprakash, V. Bioenergy production and environmental impacts. Geosci. Lett. 2018, 5, 8886. [Google Scholar] [CrossRef] [Green Version]
- Reid, W.V.; Ali, M.K.; Field, C.B. The future of bioenergy. Glob Chang. Biol. 2020, 26, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Kluts, I.; Wicke, B.; Leemans, R.; Faaij, A. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renew. Sustain. Energy Rev. 2017, 69, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Odum, H.T. Environment, Power, and Society for the Twenty-First Century: The Hierarchy of Energy; Columbia University Press: New York, NY, USA, 2007. [Google Scholar]
- Hof, C.; Voskamp, A.; Biber, M.F.; Böhning-Gaese, K.; Engelhardt, E.-K.; Niamir, A.; Willis, S.G.; Hickler, T. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl. Acad. Sci. USA 2018, 115, 13294–13299. [Google Scholar] [CrossRef] [Green Version]
- Solinas, S.; Deligios, P.A.; Sulas, L.; Carboni, G.; Virdis, A.; Ledda, L. A land-based approach for the environmental assessment of Mediterranean annual and perennial energy crops. Eur. J. Agron. 2019, 103, 63–72. [Google Scholar] [CrossRef]
- Couto, A.A., Jr.; da Conceição, F.T.; Fernandes, A.M.; Spatti, E.P., Jr.; Lupinacci, C.M.; Moruzzi, R.B. Land use changes associated with the expansion of sugar cane crops and their influences on soil removal in a tropical watershed in São Paulo State (Brazil). Catena 2019, 172, 313–323. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Text with EEA Relevance). Off. J. Eur. Union 2018, L 328, 82–209. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG&toc=OJ:L:2018:328:TOC (accessed on 2 September 2020).
- Tye, H. The Lowland Grasslands of Central and Eastern Europe; Monographic Series 004; IUCN, East European Programme; Information Press: Oxford, UK, 1991. [Google Scholar]
- Diekmann, M.; Andres, C.; Becker, T.; Bennie, J.; Blüml, V.; Bullock, J.M.; Culmsee, H.; Fanigliulo, M.; Hahn, A.; Heinken, T.; et al. Patterns of long-term vegetation change vary between different types of semi-natural grasslands in Western and Central Europe. J. Veg. Sci. 2019, 30, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Kołos, A.; Banaszuk, P. Mowing may bring about vegetation change, but its effect is strongly modified by hydrological factors. Wetl. Ecol. Manag. 2018, 26, 879–892. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, C.; Prochnow, A.; Heiermann, M.; Idler, C. Biomass from landscape management of grassland used for biogas production: Effects of harvest date and silage additives on feedstock quality and methane yield. Grass Forage Sci. 2013, 69, 549–566. [Google Scholar] [CrossRef]
- Roj-Rojewski, S.; Wysocka-Czubaszek, A.; Czubaszek, R.; Banaszuk, P. Does wetland biomass provide an alternative to maize in biogas generation? In Renewable Energy Sources: Engineering, Technology, Innovation; Springer Proceedings in Energy; Mudryk, K., Werle, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 127–137. [Google Scholar] [CrossRef]
- Noll, R.; Wern, B.; Peters, W.; Schicketanz, S.; Kinast, P.; Müller-Rüster, G.; Clemens, D. Naturschutzbezogene Optimierung der Rohstoffbereitstellung für Biomasseanlage, Endbericht im Projekt BiogasNatur, BfN-Skripten 555; Bundesamt für Naturschutz: Bonn-Bad Godesberg, Germany, 2020. [Google Scholar]
- Dornburg, V.; van Vuuren, D.; van de Ven, G.; Langeveld, H.; Meeusen, M.; Banse, M.; van Oorschot, M.; Ros, J.; van den Born, G.J.; Aiking, H.; et al. Bioenergy revisited: Key factors in global potentials of bioenergy. Energy Environ. Sci. 2010, 3, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Pfau, S.F.; Hanssen, S.V.; Straatsma, M.W.; Koopman, K.R.; Leuven, R.S.E.W.; Huijbregts, M.A.J. Life cycle greenhouse gas benefits or burdens of residual biomass from landscape management. J. Clean. Prod. 2019, 220, 698–706. [Google Scholar] [CrossRef]
- Banaszuk, P.; Kamocki, A.K.; Wysocka-Czubaszek, A.; Czubaszek, R.; Roj-Rojewski, S. Closing the loop—Recovery of nutrients and Energy from wetland biomass. Ecol. Eng. 2020, 143, 105–643. [Google Scholar] [CrossRef]
- Sauter, P.; Billig, E.; Döhling, F.; Pilz, A.; Brosowski, A.; Kirsten, C.; Bosch, J.; Büchner, D.; Majer, S.; Weller, N.; et al. Grünlandenergie Havelland Entwicklung von üBertragbaren Konzepten zur Naturverträglichen Energetischen Nutzung von Gras und Schilf am Beispiel der Region Havelland (Endbericht); Deutsches Biomasse Forschungs Zentrum (DBFZ): Leipzig, Germany, 2013. [Google Scholar]
- Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energe 2016, 179, 669–686. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew. Sustain. Energe Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- Ertem, F.C.; Neubauer, P.; Junne, S. Environmental life cycle assessment of biogas production from marine macroalgal feedstock for the substitution of energy crops. J. Clean. Prod. 2017, 140, 977–985. [Google Scholar] [CrossRef]
- Lansche, J.; Müller, J. Life cycle assessment (LCA) of biogas versus dung combustion household cooking systems in developing countries—A case study in Ethiopia. J. Clean. Prod. 2017, 165, 828–835. [Google Scholar] [CrossRef]
- Mezzullo, W.G.; McManus, M.C.; Hammond, G.P. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste. Appl. Energy 2013, 102, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Buratti, C.; Babanera, M.; Fantozzi, F. Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy. Appl. Energy 2013, 108, 128–136. [Google Scholar] [CrossRef]
- Chen, B.; Chen, S. Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system. Energy Policy 2013, 62, 707–716. [Google Scholar] [CrossRef]
- Di Maria, F.; Sisani, F. Greenhouse gas emissions and environmental impact from recycling the organic fraction of solid waste: Comparison of different treatment schemes from a life cycle perspective. Recycling 2017, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, O.; Tappen, S.; Effenberger, M. Environmental impacts concerning flexible power generation in a biogas production. Carbon Resour. Convers. 2019, 2, 117–125. [Google Scholar] [CrossRef]
- Lask, J.; Guajardo, A.M.; Weik, J.; von Cossel, M.; Lewandowski, I.; Wagner, M. Comparative environmental and economic life cycle assessment of biogas production from perennial wild plant mixtures and maize (Zea mays L.) in southwest Germany. GCB Bioenergy 2020, 12, 571–585. [Google Scholar] [CrossRef]
- Woon, K.S.; Lo, I.M.C.; Chiu, S.L.H.; Yan, D.Y.S. Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach. Waste Manag. 2016, 50, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Bartocci, P.; Zampilli, M.; Liberti, F.; Pistolesi, V.; Massoli, S.; Bidini, G.; Fantozzi, F. LCA analysis of food waste co-digestion. Sci. Total Environ. 2020, 709, 136–187. [Google Scholar] [CrossRef]
- Brunklaus, B.; Rex, E.; Carlsson, E.; Berlin, J. The future of Swedish food waste: An environmental assessment of existing and prospective valorization techniques. J. Clean. Prod. 2018, 202, 1–10. [Google Scholar] [CrossRef]
- Bühle, L.; Hensgen, F.; Donnison, I.; Heinsoo, K.; Wachendorf, M. Life cycle assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems. Bioresour. Technol. 2012, 111, 230–239. [Google Scholar] [CrossRef]
- Colón, J.; Cadena, E.; Pognani, M.; Barrena, R.; Sánchez, A.; Font, X.; Artola, A. Determination of the energy and environmental burdens associated with the biological treatment of source-separated Municipal Solid Wastes. Energy Environ. Sci. 2012, 2, 5731–5741. [Google Scholar] [CrossRef] [Green Version]
- Evangelisti, S.; Lettieri, P.; Borello, D.; Clift, C. Life cycle assessment of energy from waste via anaerobic digestion: A UK case study. Waste Manag. 2014, 34, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Budzianowski, W.M.; Postawa, K. Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures. Renew. Sustain. Energy Rev. 2017, 68, 852–868. [Google Scholar] [CrossRef]
- Börjesson, P.; Berglund, M. Environmental system analysis of biogas systems - Part I: Fuel-cycle emissions. Biomass Bioenergy 2005, 30, 469–485. [Google Scholar] [CrossRef]
- Collet, P.; Hélias, A.; Lardon, L.; Ras, M.; Goy, R.A.; Steyer, J.P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour. Technol. 2011, 102, 207–214. [Google Scholar] [CrossRef]
- Berglund, M.; Börjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Chevalier, C.; Meunier, F. Environmental assessment of biogas co- or tri-generation units by life cycle analysis methodology. Appl. Therm. Eng. 2005, 25, 3025–3041. [Google Scholar] [CrossRef]
- Timonen, K.; Sinkko, T.; Luostarinen, S.; Tampio, E.; Joensuu, K. LCA of anaerobic digestion: Emission allocation for energy and digestate. J. Clean. Prod. 2019, 235, 1567–1579. [Google Scholar] [CrossRef]
- Lyng, K.-A.; Brekke, A. Environmental Life Cycle Assessment of biogas as a fuel for transport compared with alternative fuels. Energies 2019, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Florio, C.; Fiorentino, G.; Corcelli, F.; Ulgiati, S.; Dumontet, S.; Güsewell, J.; Eltrop, L. A Life Cycle Assessment of biomethane production from waste feedstock through different upgrading technologies. Energies 2019, 12, 718. [Google Scholar] [CrossRef] [Green Version]
- Bacenetti, J.; Negri, M.; Fiala, M.; González-García, S. Anaerobic digestion of different feedstocks: Impact on energetic and environmental balances of biogas process. Sci. Total Environ. 2013, 463–464, 541–551. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A.; Negri, M.; Guidetti, R.; Fiala, M. Environmental assessment of two different crop systems in terms of biomethane potential production. Sci. Total Environ. 2014, 466–467, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Statistics Poland. Production of Agricultural and Horticultural Crops in 2017; Statistical information, Statistics Poland: Warsaw, Poland, 2018. [Google Scholar]
- Thrän, D.; Lenz, V.; Zeller, V.; Schwenker, A.; Lorenz, H.; Peters, W. Gutachterliche Einordnung des Landschaftspflegebonus im EEG 2009; Deutsches Biomasse Forschungs Zentrum (DBFZ): Leipzig, Germany, 2009. [Google Scholar]
- Al Seadi, T. Biogas Handbook; University of Southern Denmark: Esbjerg, Denmark, 2008. [Google Scholar]
- Roj-Rojewski, S.; Wysocka-Czubaszek, A.; Czubaszek, R.; Kamocki, A.; Banaszuk, P. Anaerobic digestion of wetland biomass from conservation management for biogas production. Biomass Bioenergy 2019, 122, 126–132. [Google Scholar] [CrossRef]
- Wilken, D.; Rauh, S.; Fruhner-Weiß, R.; Strippel, F.; Bontempo, G.; Kramer, A.; Fürst, M.; Wiesheu, M.; Kedia, G.; Hernández Chanto, C.; et al. Digestate as fertilizer. Biogas Know-How 4; Fachverband Biogas e.V.: Freising, Germany, 2018. [Google Scholar]
- Holka, M.; Bieńkowski, J.; Jankowiak, J. Cumulated energy consumption in intensive crop production (in Polish). Fragm. Agron. 2019, 36, 16–26. [Google Scholar] [CrossRef]
- Pawlak, J. Consumption of the diesel oil in Polish agriculture (in Polish). Probl. Agric. Eng. 2012, 3, 57–64. [Google Scholar]
- Evrenosoğlu, M.; Borowski, P. An optimization study on corn silage mechanization in Ege University Agricultural Research Farm. J. Agric. Mach. Sci. 2014, 10, 87–92. [Google Scholar]
- Budzyński, W.; Szempliński, W.; Parzonka, A.; Sałek, T. Agricultural, energy and economic efficiency of biomass production of selected plant species for biogas. In Model Agro-Energy Complexes: Technologies for Obtaining and Conditioning Agricultural and Water Biomass for Biogas Plants and Gas Generators; Gołaszewski, J., Ed.; Wydawnictwo UWM: Olsztyn, Poland, 2014; pp. 11–282. (In Polish) [Google Scholar]
- ÖKL-Richtwerte für die Maschinenselbstkosten 2008; Österreichisches Kuratorium für Landtechnik und Landentwicklung: Wien, Austria, 2008.
- Li, Y.; Manandhar, A.; Li, G.; Shah, A. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment. Waste Manag. 2018, 76, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Souček, J.; Kocánová, V.; Novák, M. Parameters of energy crop biomass handling. Res. Agric. Eng. 2007, 53, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Piętak, A.; Meus, M.; Nitkiewicz, S. The demand analysis of the biogas plant with CHP system on substrate, the aim to obtain required electrical and thermal power. J. Kones Powertrain Transp. 2012, 19, 335–344. [Google Scholar] [CrossRef]
- Agostini, A.; Battini, F.; Giuntoli, J.; Tabaglio, V.; Padella, M.; Baxter, D.; Marelli, L.; Amaducci, S. Environmentally sustainable biogas? The key role of manure co-digestion with energy crops. Energies 2015, 8, 5234–5265. [Google Scholar] [CrossRef]
- López-Vázquez, A.; Cadena-Zapata, M.; Campos-Magaña, S.; Zermeño-Gonzalez, A.; Mendez-Dorado, M. Comparison of energy used and effects on bulk density and yield by tillage systems in a semiarid condition of Mexico. Agronomy 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Wysocka-Czubaszek, A.; Czubaszek, R.; Roj-Rojewski, S.; Banaszuk, P. The fate of nitrogen derived from mown wetland biomass in a swampy river valley landscape. Mires Peat 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Gáborčík, N. Relationship between contents of chlorophyll (a+b) (SPAD values) and nitrogen of some temperate grasses. Photosynthetica 2003, 41, 285–287. [Google Scholar] [CrossRef]
- Journal of Laws. Act. of 10 July 2007 on Fertilisers and Fertilizing; Journal of Laws of 2007, No. 147, Item 1033; Prime Minister of Poland: Warsaw, Poland, 2007.
- Breitenbeck, G.A.; Schellinger, D. Calculating the reduction in material mass and volume during composting. Compos. Sci. Util. 2004, 12, 365–371. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Richard, T.L.; Honeyman, M.S. Carbon, nutrient, and mass loss during composting. Nutr. Cycl. Agroecosys. 2002, 62, 15–24. [Google Scholar] [CrossRef]
- Eghball, B.; Power, J.F.; Gilley, J.E.; Doran, J.W. Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J. Environ. Qual. 1997, 26, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Uvarov, R.; Briukhanov, A.; Shalavina, E. Study results of mass and nutrient loss in technologies of different composting rate: Case of bedding poultry manure. In Proceedings of the 15th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 25–27 May 2016; 851–857. [Google Scholar]
- Franke-Whittle, I.H.; Confalonieri, A.; Insam, H.; Schlegelmilch, M.; Körner, I. Changes in the microbial communities during co-composting of digestates. Waste Manag. 2014, 34, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Giuntoli, J.; Agostini, A.; Edwards, R.; Marelli, L. Solid and Gaseous Bioenergy Pathways: Input Values and GHG Emissions. Calculated According to the Methodology Set in COM(2016) 767, EUR 27215 EN; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Lazzerini, G.; Migliorini, P.; Moschini, V.; Pacini, C.; Merante, P.; Vazzana, C. A simplified method for the assessment of carbon balance in agriculture: An application in organic and conventional micro-agroecosystems in a long-term experiment in Tuscany, Italy. Ital. J. Agron. 2014, 9, 55–62. [Google Scholar] [CrossRef] [Green Version]
- PGE. Communication on the Structure of Fuels; Polska Grupa Energetyczna: Rzeszów, Poland, 2020. (In Polish) [Google Scholar]
- BioGrace-II. BioGrace-II GHG Calculation Tool for Electricity, Heat and Cooling—Version 3. 2015. Available online: https://www.biograce.net/app/webroot/biograce2/content/ghgcalculationtool_electricityheatingcooling/overview (accessed on 2 September 2020).
- Eggleston, H.S.; Miwa, K.; Srivastava, N.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas. Inventories—A Primer, Prepared by the National Greenhouse Gas. Inventories Programme; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2008. [Google Scholar]
- Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C. Mass balances and life-cycle inventory for a garden waste windrow composting plant (Aarhus, Denmark). Waste Manag. Res. 2010, 28, 1010–1020. [Google Scholar] [CrossRef]
- Boldrin, A.; Andersen, J.K.; Møller, J.; Christensen, T.H.; Favoino, E. Composting and compost utilization: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 800–812. [Google Scholar] [CrossRef] [Green Version]
- IPCC. 9th Corrigenda for the 2006 IPCC Guidelines. Intergovernmental Panel on Climate Change. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/corrigenda9.html. (accessed on 18 September 2020).
- Olecka, A.; Bebkiewicz, K.; Chłopek, Z.; Dębski, B.; Doberska, A.; Jędrysiak, P.; Kanafa, M.; Kargulewicz, I.; Rutkowski, J.; Sędziwa, M.; et al. Poland’s National Inventory Report 2019. In Greenhouse Gas Inventory for 1988-2017; Submission under the UN Framework Convention on Climate Change and its Kyoto Protocol; National Centre for Emissions Management at the Institute of Environmental Protection—National Research Institute: Warsaw, Poland, 2019. [Google Scholar]
- Sánchez, A.; Artola, A.; Font, X.; Gea, T.; Barrena, R.; Gabriel, D.; Sánchez-Monedero, M.Á.; Roig, A.; Cayuela, M.L.; Mondini, C. Greenhouse gas emissions from organic waste composting. Environ. Chem. Lett. 2015, 13, 223–238. [Google Scholar] [CrossRef] [Green Version]
- NL Agency. Methodology CO2—Tool for Electricity, Gas, and Heat from Biomass, version 1; Ministry of Economic Affairs, Agriculture and Innovation: Den Haag, The Netherlands, 2011.
- Hoekman, S.K.; Broch, A. Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II—Biodiversity, land use change, GHG emissions, and sustainability. Renew. Sustain. Energy Rev. 2018, 81, 3159–3177. [Google Scholar] [CrossRef]
- Phillips, D.; Mitchell, E.J.S.; Lea-Langton, A.R.; Parmar, K.R.; Jones, J.M.; Williams, A. The use of conservation biomass feedstocks as potential bioenergy resources in the United Kingdom. Bioresour. Technol. 2016, 212, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Wichtmann, W.; Schröder, C.; Joosten, H. (Eds.) Paludiculture—Productive Use of Wet Peatlands. Climate Protection—Biodiversity—Regional Economic Benefits, 1st ed.; Schweizerbart Science Publisher: Stuttgart, Germany, 2016. [Google Scholar]
- Lehtomäki, A. Biogas Production from Energy Crops and Crop Residues. Ph.D. Thesis, University of Jyväskylä, Jyväskylä, Finland, 2006. [Google Scholar]
- Murphy, J.; Braun, R.; Weiland, P.; Wellinger, A. Biogas from Crop. Digestion. IEA Bioenergy, Task 37—Energy from Biogas. 2011. Available online: https://www.ieabioenergy.com/wp-content/uploads/2011/10/Update_Energy_crop_2011.pdf (accessed on 10 October 2020).
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Poeschl, M.; Ward, S.; Owende, P. Environmental impacts of biogas deployment—Part II: Life cycle assessment of multiple production and utilization pathways. J. Clean. Prod. 2012, 24, 184–201. [Google Scholar] [CrossRef]
- Fernando, A.L.; Duarte, M.P.; Almeida, J.; Boléo, S.; Mendes, B. Environmental impact assessment of energy crops cultivation in Europe. Biofuels Bioprod. Biorefining 2010, 4, 594–604. [Google Scholar] [CrossRef]
- Wysocka-Czubaszek, A.; Czubaszek, R.; Roj-Rojewski, S.; Banaszuk, P. Methane and nitrous oxide emissions from agriculture on a regional scale. J. Ecol. Eng. 2018, 19, 206–217. [Google Scholar] [CrossRef]
- Von Carsten, H.E.; Theuvsen, L. Einfluss der Biogasproduktion auf den regionalen Pachtmarkt. Ber. Ldw. 2012, 90, 84–112. [Google Scholar]
- Sands, R.D.; Malcolm, S.A.; Suttles, S.A.; Marshall, E. Dedicated Energy Crops and Competition for Agricultural Land; Economic Research Report 223; United States Department of Agriculture: Washington, DC, USA, 2017.
- European Environment Agency. How Much Bioenergy Can. Europe Produce Without Harming the Environment? EEA Report 7; Office for Official Publications of the European Communities: Copenhagen, Denmark, 2006. [Google Scholar]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.-L. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Tanenbaum, D.J. Food vs. Fuel. Diversion of crops could cause more hunger. Environ. Health Perspect. 2008, 116, A254–A257. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Ingle, A.P. Impacts of sustainable biofuels production from biomass. In Sustainable Bioenergy. Advances and Impacts; Rai, M., Ingle, A., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK, 2019; pp. 327–346. [Google Scholar] [CrossRef]
- Von Bauhus, J.; Christen, O.; Dabbert, S.; Gauly, M.; Heissenhuber, A.; Hess, J.; Isermeyer, F.; Kirschke, D.; Latacz-Lohmann, U.; Otte, A.; et al. Ernährungssicherung und nachhaltige Produktivitätssteigerung Stellungnahme des Wissenschaftlichen Beirats für Agrarpolitik beim Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz. Ber. Ldw. 2012, 90, 5–34. [Google Scholar]
- Dias de Oliveira, M.E.; Vaughan, B.E.; Rykiel, E.J., Jr. Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint. BioScience 2005, 55, 593–602. [Google Scholar] [CrossRef]
- Gurram, R.; Al-Shannag, M.; Knapp, S.; Das, T.; Singsaas, E.; Alkasrawi, M. Technical possibilities of bioethanol production from coffee pulp: A renewable feedstock. Clean. Technol. Environ. Policy 2016, 18, 269–278. [Google Scholar] [CrossRef]
- Arodudu, O.; Helming, K.; Wiggering, H.; Voinov, A. Bioenergy from low-Intensity agricultural systems: An energy efficiency analysis. Energies 2017, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Ahlers, J.-G. Gas aus Gras. Biogas J. 2008, 2, 46–49. [Google Scholar]
- Hartung, C.; Andrade, D.; Dandikas, V.; Eickenscheidt, T.; Drösler, M.; Zollfrank, C.; Heuwinkel, H. Suitability of paludiculture biomass as biogas substrate—Biogas yield and long-term effects on anaerobic digestion. Renew. Energy 2020, 159, 64–71. [Google Scholar] [CrossRef]
- Dragoni, F.; Giannini, V.; Ragaglini, G.; Bonari, E.; Silvestri, N. Effect of harvest time and frequency on biomass quality and biomethane potential of common reed (Phragmites australis) under paludiculture conditions. Bioenergy Res. 2017, 10, 1066–1078. [Google Scholar] [CrossRef]
- Eder, J.; Eder, B.; Hofmann, D.; Darnhofer, B.; Lichti, F. Silomais als Biogassubstrat. Bayern Biogas Forum 2012, I–4, 1–12. [Google Scholar]
- Bruckner, T.; Bashmakov, I.A.; Mulugetta, Y.; Chum, H.; de la Vega Navarro, A.; Edmonds, J.; Faaij, A.; Fungtammasan, B.; Garg, A.; Hertwich, E.; et al. Energy Systems. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Pereira, L.G.; Cavalett, O.; Bonomi, A.; Zhang, Y.; Warner, E.; Chum, H.L. Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat. Renew. Sustain. Energy Rev. 2019, 110, 1–12. [Google Scholar] [CrossRef]
- Bachmaier, J.; Effenberger, M.; Gronauer, A. Greenhouse gas balance and resource demand of biogas plants in agriculture. Eng. Life Sci. 2010, 10, 560–569. [Google Scholar] [CrossRef]
- Watkins, S.C.; Baldwin, D.S.; Waudby, H.P.; Ning, S.E.M.A. Managing rain-filled wetlands for carbon sequestration: A synthesis. Rangel. J. 2017, 39, 145–152. [Google Scholar] [CrossRef] [Green Version]
Unit | Emission Factor | Reference | |
---|---|---|---|
Fuel supply and consumption | g CO2 eq. MJ−1 | 95.1 | [73] |
Production of equipment and machinery | kg CO2 eq. kg−1 | 1.17 | [74] |
Electricity | g CO2 kWh−1 | 856 | [75] |
Seeding material | g CO2 eq. kg−1 | 317.5 | [76] |
Synthetic N-fertilizer | g CO2 eq. kg−1 | 4567.8 | [76] |
P2O5-fertilizer | g CO2 eq. kg−1 | 1176.1 | [76] |
K2O-fertilizer | g CO2 eq. kg−1 | 635.7 | [76] |
Pesticides | g CO2 eq. kg−1 | 13,896.3 | [76] |
N2O emissions from fertilized soil | kg N2O-N kg−1 | 0.01 | [77] |
Composting | g CO2 eq. kg−1 | 101.14 | Calculated as average from Colón et al. [38], Andersen et al. [78] and Boldrin et al. [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czubaszek, R.; Wysocka-Czubaszek, A.; Banaszuk, P. GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass. Energies 2020, 13, 6497. https://doi.org/10.3390/en13246497
Czubaszek R, Wysocka-Czubaszek A, Banaszuk P. GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass. Energies. 2020; 13(24):6497. https://doi.org/10.3390/en13246497
Chicago/Turabian StyleCzubaszek, Robert, Agnieszka Wysocka-Czubaszek, and Piotr Banaszuk. 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass" Energies 13, no. 24: 6497. https://doi.org/10.3390/en13246497
APA StyleCzubaszek, R., Wysocka-Czubaszek, A., & Banaszuk, P. (2020). GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass. Energies, 13(24), 6497. https://doi.org/10.3390/en13246497