A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties
Abstract
:1. Introduction
2. Problem Description on Disturbances and Uncertainties of MCTs
2.1. Effect of MCT under Disturbances
2.2. Effect of Generator under Uncertainties
2.3. Rotor Speed Performance under PI Control
3. The Fuzzy Adaptive Backstepping Control (F-A-BC)
3.1. Adaptive Backstepping Control (A-BC) Design
3.1.1. Speed-Loop Control Design
3.1.2. Current-Loop Control Design
3.2. The Stability Analysis of Proposed Adaptive Backstepping Control
3.3. Adjusting the Parameters by Fuzzy Logic Control
- (a)
- Acquisition of the rotor speed: the turbine mechanical torque and the three-phase stator current of the generator: , , , and are obtained by the sensors and the Park transformation is applied to transform the measured three-phase stator current signals into and .
- (b)
- Speed loop control: first, the rotor speed reference is calculated by the TSR method. then the gains (, ) are updated by the fuzzy logic control and the rotor speed error is calculated to obtain the compensation η of q-axis current. Finally, the q-axis current reference is obtained by the derived speed loop control based on A-BC method.
- (c)
- Current loop control: the tracking errors (, ) and the d-q axis current are calculated to update the compensations (, ) for uncertain parameters then the derivative of the reference voltages (, ) is computed based on the A-BC method.
4. Simulation Results and Analysis
4.1. Disturbance Rejection of Swell Effect
4.2. Disturbance Rejection of Marine Current and Turbine Torque
4.3. Parameters Variation of MCT Generator Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Parameters | Value |
---|---|
Sea water density | 1027 kg/m3 |
Radius of turbine blade | 0.3 m |
Maximum Cp value for MPPT | 0.48 |
Stator resistance | 3.3 Ω |
q-axis inductance | 11.875 mH |
d-axis inductance | 11.875 mH |
Permanent magnet flux | 0.1775 Wb |
Pole pair number | 8 |
System total inertia | 3.5 kg m2 |
Generator friction coefficient | 0.0035 N m/rad |
References
- Zhang, Z.; Zhang, Y.; Huang, Q. Market-oriented optimal dispatching strategy for a wind farm with a multiple stage hybrid energy storage system. CSEE J. Power Energy Syst. 2018, 4, 417–424. [Google Scholar] [CrossRef]
- Umoh, K.; Lemon, M. Drivers for and Barriers to the Take up of Floating Offshore Wind Technology: A Comparison of Scotland and South Africa. Energy 2020, 13, 5618. [Google Scholar] [CrossRef]
- Chen, H.; Tang, T.; Aït-Ahmed, N.; Benbouzid, M.E.H.; Machmoum, M.; Zaïm, M.E. Attraction, Challenge and Current Status of Marine Current Energy. IEEE Access 2018, 6, 12665–12685. [Google Scholar] [CrossRef]
- Xie, T.; Wang, T.; Diallo, D.; Christophe, C. A review of current issues of marine current turbine blade fault detection. Ocean Eng. 2020, 218, 108194. [Google Scholar] [CrossRef]
- Forslund, J.; Goude, A.; Thomas, K. Validation of a Coupled Electrical and Hydrodynamic Simulation Model for a Vertical Axis Marine Current Energy Converter. Energies 2018, 11, 3067. [Google Scholar] [CrossRef] [Green Version]
- Goundar, J.N.; Ahmed, M.R. Marine current energy resource assessment and design of a marine current turbine for Fiji. Renew. Energ. 2014, 65, 14–22. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Benbouzid, M.; Charpentier, J.F.; Scuiller, F.; Tang, T.H. Developments in large marine current turbine technologies–A review. Renew. Sustain. Energy Rev. 2017, 71, 852–858. [Google Scholar] [CrossRef]
- Song, K.; Wang, W.Q.; Yan, Y. The hydrodynamic performance of a tidal-stream turbine in shear flow. Ocean Eng. 2020, 199, 107035–107050. [Google Scholar]
- Xie, T.; Wang, T.; Diallo, D.; Razik, H. Imbalance Fault Detection Based on the Integrated Analysis Strategy for Marine Current Turbines under Variable Current Speed. Entropy 2020, 22, 1069. [Google Scholar] [CrossRef]
- Pham, H.; Bourgeot, J.; Benbouzid, M. Comparative Investigations of Sensor Fault-Tolerant Control Strategies Performance for Marine Current Turbine Applications. IEEE J. Ocean. Eng. 2018, 43, 1024–1036. [Google Scholar] [CrossRef]
- Linares-Flores, J.; García-Rodríguez, C.; Sira-Ramírez, H.; Ramírez-Cárdenas, O.D. Robust Backstepping Tracking Controller for Low-Speed PMSM Positioning System: Design, Analysis, and Implementation. IEEE Trans. Ind. Inform. 2015, 11, 1130–1141. [Google Scholar] [CrossRef]
- Lian, C.; Xiao, F.; Gao, S.; Liu, J. Load Torque and Moment of Inertia Identification for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Observer. IEEE Trans. Power Electron. 2019, 34, 5675–5683. [Google Scholar] [CrossRef]
- Das, S.; Subudhi, B. A H∞ Robust Active and Reactive Power Control Scheme for a PMSG-Based Wind Energy Conversion System. IEEE Trans. Energy Convers. 2018, 33, 980–990. [Google Scholar] [CrossRef]
- Zhou, Z.; Benelghali, S.; Benbouzid, M. Tidal stream turbine control: An active disturbance rejection control approach. Ocean Eng. 2020, 202, 107190–107198. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, H.; Li, W. Integrated design and implementation of 120-kW horizontal-axis tidal current energy conversion system. Ocean Eng. 2018, 158, 339–349. [Google Scholar] [CrossRef]
- Eltag, K.; Aslamx, M.S.; Ullah, R. Dynamic Stability Enhancement Using Fuzzy PI Control Technology for Power System. Int. J. Control Autom. Syst. 2019, 17, 234–242. [Google Scholar] [CrossRef]
- Falahati, S.; Taher, S.A.; Shahidehpour, M. Grid Secondary Frequency Control by Optimized Fuzzy Control of Electric Vehicles. IEEE Trans. Smart Grid 2018, 9, 5613–5621. [Google Scholar] [CrossRef]
- Yang, B.; Yu, T.; Shu, H. Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine. Renew. Energy 2018, 119, 577–589. [Google Scholar] [CrossRef]
- Kalla, U.K.; Singh, B.; Murthy, S.S. Slide mode control of microgrid using small hydro driven single-phase SEIG integrated with solar PV array. Renew. Power Gener. IET 2017, 11, 1464–1472. [Google Scholar] [CrossRef]
- Gu, Y.J.; Yin, X.X.; Liu, H.W. Fuzzy terminal sliding mode control for extracting maximum marine current energy. Energy 2017, 90, 258–265. [Google Scholar] [CrossRef]
- Benelghali, S.E.; Benbouzid, M.E.H.; Ahmed-Ali, T.; Charpentier, J.F. High-Order Sliding Mode Control of a Marine Current Turbine Driven Doubly-Fed Induction Generator. IEEE J. Ocean. Eng. 2010, 35, 402–411. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Yan, Z.; Sun, C. Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle with Disturbance Observer. IEEE Trans. Cybern. 2017, 47, 3452–3465. [Google Scholar] [CrossRef]
- Zeng, G.Q.; Xie, X.Q.; Chen, M.R. Adaptive population extremal optimization-based PI neural network for multivariable nonlinear control systems. Swarm Evol. Comput. 2018, 44, 320–334. [Google Scholar] [CrossRef]
- Ma, Y.F.; Liu, J.; Liu, H.; Zhao, S. Active-Reactive Additional Damping Control of a Doubly-Fed Induction Generator Based on Active Disturbance Rejection Control. Energies 2018, 11, 1314. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, J. Output Predictor based Active Disturbance Rejection Control for a Wind Energy Conversion System with PMSG. IEEE Access 2017, 5, 5205–5214. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Li, J. On the rejection of internal and external disturbances in a wind energy conversion system with direct-driven PMSG. ISA Trans. 2016, 61, 95–103. [Google Scholar] [CrossRef]
- Yan, L.; Song, X. Design and Implementation of Luenberger Model-Based Predictive Torque Control of Induction Machine for Robustness Improvement. IEEE Trans. Power Electron. 2020, 35, 2257–2262. [Google Scholar] [CrossRef]
- Ren, H.; Wang, X.; Fan, J.; Kaynak, O. Adaptive Backstepping Control of a Pneumatic System with Unknown Model Parameters and Control Direction. IEEE Acces. 2019, 7, 64471–64482. [Google Scholar] [CrossRef]
- Liu, W.; Xie, F. Backstepping-Based Adaptive Control for Nonlinear Systems with Actuator Failures and Uncertain Parameters. Circuits Syst. Signal Process. 2019, 39, 138–153. [Google Scholar] [CrossRef]
- Roy, T.K.; Mahmud, M.A. Robust Adaptive Backstepping Excitation Controller Design for Higher-Order Models of Synchronous Generators in Multimachine Power Systems. IEEE Trans. Power Syst. 2019, 34, 40–51. [Google Scholar] [CrossRef]
- Sun, X.; Yu, H.; Yu, J.; Liu, X. Design and implementation of a novel adaptive backstepping control scheme for a PMSM with unknown load torque. IET Electr. Power Appl. 2019, 13, 445–455. [Google Scholar] [CrossRef]
- Li, D.; Cai, W.; Li, P.; Xue, S.; Song, Y.; Chen, H. Dynamic Modeling and Controller Design for a Novel Front-End Speed Regulation (FESR) Wind Turbine. IEEE Trans. Power Electron. 2018, 33, 4073–4087. [Google Scholar] [CrossRef]
- Zhang, M.L.; Wang, T.Z.; Tang, T.H.; Benbouzid, M.; Diallo, D. An imbalance fault detection method based on data normalization and EMD for marine current turbines. ISA Trans. 2017, 68, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Chandra, D.; Kar, H. Optimal Routh approximants through integral squared error minimisation: Computer-aided approach. IEEE Proc. Control Theory Appl. 2004, 151, 53–58. [Google Scholar] [CrossRef]
NB | NM | NS | ZO | PS | PM | PB | ||
---|---|---|---|---|---|---|---|---|
NB | PB | PB | PM | PM | PS | ZO | ZO | |
NM | PB | PB | PM | PS | PS | ZO | NS | |
NS | PM | PM | PM | PS | ZO | NS | NS | |
ZO | PM | PM | PS | ZO | NS | NM | NM | |
PS | PS | PS | ZO | NS | NS | NM | NM | |
PM | PS | ZO | NS | NM | NM | NM | NB | |
PB | ZO | ZO | NM | NM | NM | NB | NB |
NB | NM | NS | ZO | PS | PM | PB | ||
---|---|---|---|---|---|---|---|---|
NB | NB | NB | NM | NM | NS | ZO | ZO | |
NM | NB | NB | NM | NS | NS | ZO | ZO | |
NS | NB | NM | NS | NS | ZO | PS | PS | |
ZO | NM | NM | NS | ZO | PS | PM | PM | |
PS | NM | NS | ZO | PS | PS | PM | PB | |
PM | ZO | ZO | PS | PS | PM | PB | PB | |
PB | ZO | ZO | PS | PM | PM | PB | PB |
Controllers | Swell Effect | Torque Disturbance |
---|---|---|
F-A-BC | 0.00038 | 0.000053 |
A-BC | 0.0066 | 0.00032 |
SMC | 0.0243 | 0.003 |
Fuzzy PI | 0.8035 | 0.0259 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Xie, T.; Wang, T. A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties. Energies 2020, 13, 6550. https://doi.org/10.3390/en13246550
Shen X, Xie T, Wang T. A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties. Energies. 2020; 13(24):6550. https://doi.org/10.3390/en13246550
Chicago/Turabian StyleShen, Xusheng, Tao Xie, and Tianzhen Wang. 2020. "A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties" Energies 13, no. 24: 6550. https://doi.org/10.3390/en13246550
APA StyleShen, X., Xie, T., & Wang, T. (2020). A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties. Energies, 13(24), 6550. https://doi.org/10.3390/en13246550