Fluid-Dynamic Force Measurement of Ahmed Model in Steady-State Cornering
Abstract
:1. Introduction
2. Methods
2.1. Investigated Vehicle Model and Vehicle Motion
2.2. Experimental Setup
2.3. Measurement Conditions
3. Results
3.1. Validation of Measurement Results
3.1.1. Slant Angle Dependency
3.1.2. Submersion Depth Dependency
3.1.3. Towing Speed Dependency
3.1.4. Comparison of Cornering Effect with the Previous Numerical Result
3.2. Results of CMT
3.3. Results of SCW
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tunay, T.; Firat, E.; Sahin, B. Experimental investigation of the flow around a simplified ground vehicle under effects of the steady crosswind. Int. J. Heat Fluid Flow 2018, 71, 137–152. [Google Scholar] [CrossRef]
- Bonitz, S.; Larsson, L.; Sebben, S. Unsteady pressure analysis of the near wall flow downstream of the front wheel of a passenger car under yaw conditions. Int. J. Heat Fluid Flow 2018, 73, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Guilmineau, E.; Chikhaoui, O.; Deng, G.; Visonneau, M. Cross wind effects on a simplified car model by a DES approach. Comput. Fluids 2013, 78, 29–40. [Google Scholar] [CrossRef]
- Meile, W.; Ladinek, T.; Brenn, G.; Reppenhagen, A.; Fuchs, A. Non-symmetric bi-stable flow around the Ahmed body. Int. J. Heat Fluid Flow 2016, 57, 34–47. [Google Scholar] [CrossRef]
- Wieser, D.; Vayeri, C.N.; Paschereit, C.O. Wake structures and surface patterns of the DrivAer Notchback car model under side wind conditions. Energies 2020, 13, 320. [Google Scholar] [CrossRef] [Green Version]
- Wordley, S.; Saunders, J. On-road turbulence. SAE Int. J. Passeng. Cars Mech. Syst. 2009, 1, 341–360. [Google Scholar] [CrossRef]
- Wordley, S.; Saunders, J. On-road turbulence: Part 2. SAE Int. J. Passeng. Cars Mech. Syst. 2009, 2, 111–137. [Google Scholar] [CrossRef]
- Carlino, G.; Cogotti, A. Simulation of Transient Phenomena with the Turbulence Generation System in the Pininfarina Wind Tunnel; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2006. [Google Scholar] [CrossRef]
- Carlino, G.; Cardano, D.; Cogotti, A. A New Technique to Measure the Aerodynamic Response of Passenger Cars by a Continuous Flow Yawing; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Stoll, D.; Schoenleber, C.; Wittmeier, F.; Kuthada, T.; Wiediemann, J. Investigation of Aerodynamic Drag in Turbulent Flow Conditions. SAE Int. J. Passeng. Cars Mech. Syst. 2016, 9, 733–742. [Google Scholar] [CrossRef]
- Shimizu, K.; Nakashima, T.; Hiraoka, T.; Nakamura, Y.; Nouzawa, T.; Doi, Y. Aerodynamic drag change of simplified automobile models influenced by a passing vehicle. Mech. Eng. J. 2020, 7, 19–00366. [Google Scholar] [CrossRef]
- Keogh, J.; Doig, G.; Diasinos, S.; Barber, T. The influence of cornering on the vortical wake structures of an inverted wing. Proc. Inst. Mech. Eng. D J. Automob. Eng. 2015, 229, 1817–1829. [Google Scholar] [CrossRef] [Green Version]
- Keogh, J.; Barber, T.; Diasinos, S.; Doig, G. The aerodynamic effects on a cornering Ahmed body. J. Wind Eng. Ind. Aerodyn. 2016, 154, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Josefsson, E.; Hagvall, R.; Urquhart, M.; Sebben, S. Numerical Analysis of Aerodynamic Impact on Passenger Vehicles during Cornering; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Tsubokura, M.; Ikawa, Y.; Nakashima, T.; Okada, Y.; Kamioka, T.; Nouzawa, T. Unsteady vehicle aerodynamics during a dynamic steering action: 2nd report, numerical analysis. SAE Int. J. Passeng. Cars Mech. Syst. 2012, 5, 340–357. [Google Scholar] [CrossRef]
- Okada, Y.; Nakashima, T.; Tsubokura, M.; Morikawa, Y.; Kouno, R.; Okamoto, S.; Nouzawa, T. Aerodynamics Evaluation of Road Vehicles in Dynamic Maneuvering; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Keogh, J.; Barber, T.; Diasinos, S.; Doig, G. Techniques for Aerodynamic Analysis of Cornering Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Schuetz, T. Aerodynamics of Road Vehicles, 5th ed.; SAE International: Warrendale, PA, USA, 2015; pp. 282–290. [Google Scholar]
- Gordes, A. Process for Simulating Curved Airflows on Wheeled Vehicles in Fluid Flow Channels with a Straight Measuring Section. Patent No. EP1610111A2, 28 December 2005. [Google Scholar]
- Keogh, J.; Barber, T.; Diasinos, S.; Doig, G. A New Type of Wind Tunnel for the Evaluation of Curved Motion. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. No. AIAA 2016-1774. [Google Scholar] [CrossRef] [Green Version]
- Ueno, M.; Yoshimura, Y.; Tsukada, Y.; Miyazaki, H. Circular motion tests and uncertainty analysis for ship maneuverability. J. Mar. Sci. Technol. 2009, 14, 469. [Google Scholar] [CrossRef]
- Vorwaller, M.L.; Germane, G.J. Aerodynamic Drag Studies on Rolling Vehicles by Underwater Tow Testing; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1986. [Google Scholar] [CrossRef]
- Larsson, L.; Hammar, L.; Nilsson, L.U.; Berndtsson, A.; Knutson, K.; Danielson, H. A Study of Ground Simulation Correlation between Wind Tunnel and Water-Basin Tests of a Full-Scale Car; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1989. [Google Scholar] [CrossRef]
- Aoki, K.; Miyata, H.; Kanai, M.; Hanaoka, Y.; Zhu, M. A Water-Basin Test Technique for the Aerodynamic Design of Road Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1992. [Google Scholar] [CrossRef]
- Ogawa, A.; Mashio, S.; Yano, S.; Kawamura, T. Quantitative representations of aerodynamic effects on handling response and flat ride of vehicles. SAE Int. J. Passeng. Cars Mech. Syst. 2012, 5, 304–323. [Google Scholar] [CrossRef]
- Nakashima, T.; Tsubokura, M.; Okada, Y.; Nouzawa, T.; Mizokane, M.; Doi, Y. Aerodynamic force acting on a road vehicle in steady-state cornering. Trans. JSME (in Japanese) 2014, 80, FE0301. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, T.; Tsubokura, M.; Okada, Y.; Nouzawa, T.; Kono, R.; Doi, Y. Aerodynamic Characteristics of a Road Vehicle in Steady-State Cornering. In Proceedings of the ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, Seoul, Korea, 26–31 July 2015. V01AT17A002. [Google Scholar] [CrossRef]
- Ahmed, S.; Ramm, G.; Faltin, G. Some Salient Features of the Time-Averaged Ground Vehicle Wake; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1984. [Google Scholar] [CrossRef]
- Lienhart, H.; Stoots, C.; Becker, S. Flow and Turbulence Structures in the Wake of a Simplified Car Model (Ahmed Modell). In New Results in Numerical and Experimental Fluid Mechanics III. Notes on Numerical Fluid Mechanics (NNFM); Wagner, S., Rist, U., Heinemann, H.J., Hilbig, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 77. [Google Scholar] [CrossRef]
- Kohri, I.; Yamanashi, T.; Nasu, T.; Hashizume, Y.; Katoh, D. Study on the transient behaviour of the vortex structure behind Ahmed body. SAE Int. J. Passeng. Cars Mech. Syst. 2014, 7, 586–602. [Google Scholar] [CrossRef]
- Kasai, A.; Shiratori, S.; Kohri, I.; Kobayashi, Y.; Katoh, D.; Nagano, H.; Shimano, K. Large-scale separated vortex generated in a wake flow of Ahmed’s body. Flow Turbul. Combust. 2019, 102, 373–388. [Google Scholar] [CrossRef]
- Guilmineau, E. Computational study of flow around a simplified car body. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1207–1217. [Google Scholar] [CrossRef]
- Guilmineau, E.; Deng, G.B.; Leroyer, A.; Queutey, P.; Visonneau, M.; Wackers, J. Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body. Comput. Fluids 2018, 176, 302–319. [Google Scholar] [CrossRef]
- Sumida, M.; Hayakawa, K. Aerodynamic forces acting on Ahmed-type vehicles under fluctuating headwind conditions. J. Appl. Fluid Mech. 2019, 12, 1563–1574. [Google Scholar] [CrossRef]
- Bae, I.; Moon, J.; Seo, J. Toward a comfortable driving experience for a self-driving shuttle bus. Electronics 2019, 8, 943. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.; Minelli, G.; Basara, B.; Krajnović, S. On the two flow states in the wake of a hatchback Ahmed body. J. Wind Eng. Indust. Aerodyn. 2018, 173, 262–278. [Google Scholar] [CrossRef]
Test Series | Parameter | Value |
---|---|---|
CMT | ω’ (=1/R’) [–] | 0, ±0.0067, ±0.013, ±0.020 *, ±0.033 *, ±0.048, ±0.067, ±0.1 |
SCW | β [°] | 0, ±0.25, ±0.50 #, ±0.75, ±1.0, ±1.5 #, ±2.0 ##, ±2.5 ##, ±3.0 |
Reynolds No. Re × 10−6 | Drag Coefficient CD | Lift Coefficient CL | |||||
---|---|---|---|---|---|---|---|
θ = 25° | θ = 35° | Diff. | θ = 25° | θ = 35° | Diff. | ||
Present study | 0.63–0.65 | 0.333 | 0.310 | 0.023 | 0.255 | −0.057 | −0.312 |
Ahmed et al. [28] | 4.29 | 0.29 | 0.26 | 0.03 | N.A. | N.A. | N.A. |
Meile et al. [4] | 2.05 | 0.30 | 0.28 | 0.02 | 0.36 | 0.01 | −0.35 |
0.69 | 0.34 | N.A. | N.A. | 0.34 | N.A. | N.A. | |
0.65 | 0.347 † | N.A. | N.A. | N.A. | N.A. | N.A. | |
Sumida and Hayakawa [34] | 0.36 | 0.33 * | 0.32 ** | 0.01 | 0.32 * | 0.05 ** | −0.27 |
Kohri et al. [30] | 0.23 | 0.36 | 0.33 | 0.03 | N.A. | N.A. | N.A. |
Test Series | Model | Submersion Depth ds | Froude No. Frd | Reynolds No. Re |
---|---|---|---|---|
Straight motion, CMT (ω’ = ±0.067) | θ = 35° | 0.29 m (1.3H) | 0.47 | 6.25 × 105 (±0.02 × 105) |
0.42 m (1.8H) | 0.39 | |||
0.54 m (2.3H) | 0.35 | |||
0.65 m (2.8H) | 0.31 | |||
0.77 m (3.3H) * | 0.29 |
Test Series | Model | Towing Speed Ut | Froude No. Frd | Reynolds No. Re |
---|---|---|---|---|
Straight | θ = 35° | 1.3 m/s | 0.47 | 1.01 × 106 |
1.0 m/s | 0.35 | 7.53 × 105 | ||
0.8 m/s * | 0.29 | 6.25 × 105 | ||
0.7 m/s | 0.24 | 5.18 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakashima, T.; Mutsuda, H.; Kanehira, T.; Tsubokura, M. Fluid-Dynamic Force Measurement of Ahmed Model in Steady-State Cornering. Energies 2020, 13, 6592. https://doi.org/10.3390/en13246592
Nakashima T, Mutsuda H, Kanehira T, Tsubokura M. Fluid-Dynamic Force Measurement of Ahmed Model in Steady-State Cornering. Energies. 2020; 13(24):6592. https://doi.org/10.3390/en13246592
Chicago/Turabian StyleNakashima, Takuji, Hidemi Mutsuda, Taiga Kanehira, and Makoto Tsubokura. 2020. "Fluid-Dynamic Force Measurement of Ahmed Model in Steady-State Cornering" Energies 13, no. 24: 6592. https://doi.org/10.3390/en13246592
APA StyleNakashima, T., Mutsuda, H., Kanehira, T., & Tsubokura, M. (2020). Fluid-Dynamic Force Measurement of Ahmed Model in Steady-State Cornering. Energies, 13(24), 6592. https://doi.org/10.3390/en13246592