Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells
Abstract
:1. Introduction
2. Electrode Materials
2.1. Carbon Electrodes
Anode (Non-Modification) | Reactor Configuration | Substrate | Power Density | Anode Surface Characterization | Reference |
---|---|---|---|---|---|
GF | dual chamber | sodium acetate trihydrate | 0.48 A/m2 | disorganized web of fibers with a diameter of 10 to 14 μm | [46] |
Porous graphite | single chamber | glucose | 2.6 W/m2 | large number of pores with a diameter of 0 to 300 nm | [47] |
CP | dual chamber | distillery wastewater | 110 mW/m2 | water contact angle 126° (medium hydrophobicity) | [48] |
GF | dual chamber | glucose | 388 mW/m2 | water contact angle >120° (medium hydrophobicity) | [49] |
CC | single chamber | wastewater | 40 mW/m2 | smooth fibers of around 7 µm diameter | [50] |
CF | singe chamber | glucose | 680 mW/m2 | smooth surface | [51] |
Graphitized mesophase pitch-based carbon foam | 1800 mW/m2 | a well-developed macropore structure with a single hole diameter of around 300 μm | |||
Mesophase pitch-based carbon brush (CBr) | 1350 mW/m2 | smooth surface |
2.2. Metal Electrodes
3. Anode Modification
3.1. Metal Compounds
3.2. Carbon Composities
Anode Modification | Reactor Configuration | Substrate | Power Density | Inoculum | Reference |
---|---|---|---|---|---|
LS/CB/H2O2 | Dual chamber | Sodium acetate | 62 W/m3 | MFC effluent | [113] |
CVe/ACP | MFC stack | Urine | 21 W/m3 | Anaerobic activated sludge | [115] |
CC/CB | - | Sodium acetate | 12 A/m2 | MFC effluent | [116] |
CC/MWCNT-COOH | Single chamber | Glucose | 560 mW/m2 | Activated sludge | [117] |
Carbon fiber brush/MWCNT | Dual chamber | Wastewater | 1278 mW/m3 | Wastewater | [118] |
SS/AC SS/CNT SS/SWCNhorns | Single chamber | Acetate | 244 mW/m2 261 mW/m2 327 mW/m2 | MFC effluent | [119] |
Sponge/nitrogen-doped CNT | Dual chamber | Sodium acetate | 2.8 W/m3 | - | [120] |
3D G/MWCNTs/SS | Dual chamber | Lactate | 502 W/m3 | Shewanella oneidensis | [121] |
GOA-GFB graphite fiber brush/graphene oxide aerogel | Dual chamber | Sodium lactate | 54 W/m3 | Shewanella oneidensis MR-1 | [122] |
Nitrogen-doped CNS/CC | Dual chamber | Sodium acetate | 1122 mW/m2 | anaerobic sludge | [123] |
3.3. Polymers
Anode Modification | Reactor Configuration | Substrate | Power Density | Inoculum | Reference |
---|---|---|---|---|---|
PPy-CMC-CNTs/CBr | Dual chamber | Sodium acetate | 2970 mW/m2 | Mixed culture | [138] |
PPy-CMC-TiN/CBr hydrogel anode | Dual chamber | Sodium acetate | 14 W/m3 | Anaerobic mixed culture | [139] |
SS/PPy-W | Single chamber | Sodium acetate | 1870 mW/m2 | Landfill leachate | [140] |
PPy/MWNT/graphite rods | Single chamber | Saccharose | 201 mW/m2 | Anaerobic sludge | [141] |
magnetic PPy/nanofibers/SrFe12O19/nonwoven textile | Dual chamber | Glucose | 3317 mW/m2 | MFC effluent | [142] |
PPy/SAC/SS | Dual chamber | Sodium acetate | 45 W/m3 | Geobacter sulfurreducens | [143] |
Ti4O7/GO/PANI | Single chamber | Oil-containing restaurant wastewater | 2073 mW/m2 | mixed bacterial culture | [144] |
PANI/GF | Dual chamber | Sodium acetate | 216 mW/m2 | Anaerobic sludge with Chaetoceros | [145] |
Au/PANI/CC | Dual chamber | Glucose | 804 mW/m2 | Escherichia coli ATCC 27325 | [127] |
TiO2-20 *PANI/CP | Dual chamber | NaHCO3 | 813 mW/m2 | Shewanella loihica PV-4 | [146] |
rGO/PANI/CBr | Single chamber | Glucose | 862 mW/m2 | Sludge | [147] |
PANI/Fe/GF | Bentos MFC | Seawater and marine sediment | 17 mW/m2 | Marine sediment | [148] |
PANI nanoflower/CC | Dual chamber | Mixed medium containing M9 salt medium, 5% LB broth, and 10 mM sodium lactate | 389 mW/m2 | Shewanella oneidensis MR-1 | [149] |
PDA/rGO/CC | Dual chamber | Sodium acetate | 2047 mW/m2 | Activated anaerobic sludge | [131] |
PDA/Mo2C-MoO2/GF | Single chamber | Glucose | 1640 mW/m2 | E. coli | [130] |
PDA **/AC/SS | Single chamber | Wastewater with acetate | 803 mW/m2 | Wastewater | [129] |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | active carbon |
ACNFN | activated carbon nanofiber nonwoven |
ACP | activated carbon powder |
BC | bacterial cellulose |
CB | carbon black |
CBr | carbon brush |
CC | carbon cloth |
CF/GF | carbon/graphite felt |
CMC | carboxymethylcellulose |
CMF | carbon microfiber |
CNF | carbon nanofiber |
CNS | caron nanosheet |
CNT | carbon nanotubes |
COD | chemical oxygen demand |
CP | carbon paper |
CVe | carbon veil |
GFB | graphite fiber brush |
GO | graphene oxide |
GOA | graphene oxide aerogel |
GP | graphite paper |
kWh | kilowatt hour |
LS | loofah sponge |
MFC | microbial fuel cell |
MWCNT | multi-walled carbon nanotube |
PANI | polyaniline |
PDA | polydopamine |
PDDA | polydiallyldimethylammonium |
PEM | proton exchange membrane |
PPy | polypyroles |
Rct | charge transfer resistance |
rGO | reduced graphene oxide |
SAC | sargassum activated carbon |
SS | stainless-steel |
SWCNhorns | single-walled carbon nanohorns |
TiN | titanium nanoparticle |
References
- Commisson European. Sustainable and Optimum Use of Biomass for Energy in the EU beyond 2020. Final Report. 2017. Available online: https://ec.europa.eu/energy/studies/sustainable-and-optimal-use-biomass-energy-eu-beyond-2020_en (accessed on 9 September 2020).
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, A.J.; Lee, J.H.; Lee, J.; Cho, M.C. Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies. ACS Sustain. Chem. Eng. 2014, 2, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.E.; Khan, M.M.; Min, B.K.; Cho, M.H. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 2018, 8, 1723. [Google Scholar] [CrossRef] [Green Version]
- Catal, T.; Li, K.; Bermek, H.; Liu, H. Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources 2008, 175, 196–200. [Google Scholar] [CrossRef]
- Jachimowicz, P.; Cydzik-Kwiatkowska, A.; Szklarz, P. Effect of aeration mode on microbial structure and efficiency of treatment of TSS-rich wastewater from meat processing. Appl. Sci. 2020, 10, 7414. [Google Scholar] [CrossRef]
- Capodaglio, A.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2019, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Chae, K.J.; Choi, M.J.; Lee, J.W.; Kim, K.Y.; Kim, I.S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 2009, 100, 3518–3525. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, Q.; Wang, X.; Liu, Y.; Lee, H.; Ren, N. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour. Technol. 2011, 102, 411–415. [Google Scholar] [CrossRef]
- Lanas, V.; Ahn, Y.; Logan, B.E. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. J. Power Sources 2014, 247, 228–234. [Google Scholar] [CrossRef]
- Logan, B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381. [Google Scholar] [CrossRef]
- Shen, H.B.; Yong, X.Y.; Chen, Y.L.; Liao, Z.H.; Si, R.W.; Zhou, J.; Zheng, T. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresour. Technol. 2014, 167, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Von Canstein, H.; Ogawa, J.; Shimizu, S.; Lloyd, J.R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 2008, 74, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAnulty, M.J.; Wood, T.K. YeeO from Escherichia coli exports flavins. Bioengineered 2014, 5, 386–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.T.; Browne, W.R.; Van Dijl, J.M.; Harmsen, H.J.M. How can faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer? Antioxidants Redox. Signal. 2012, 17, 1433–1440. [Google Scholar] [CrossRef]
- Zhang, E.; Cai, Y.; Luo, Y.; Piao, Z. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells. Can. J. Microbiol. 2014, 60, 753–759. [Google Scholar] [CrossRef]
- Cornejo, J.A.; Lopez, C.; Babanova, S.; Santoro, C.; Artyushkova, K.; Ista, L.; Schuler, A.J.; Atanassov, P. Surface modification for enhanced biofilm formation and electron transport in shewanella anodes. J. Electrochem. Soc. 2015, 162, H597–H603. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.H.; Park, H.S.; Kim, H.J.; Kim, G.T.; Chang, I.S.; Lee, J.; Phung, N.T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 2004, 63, 672–681. [Google Scholar] [CrossRef]
- Jadhav, D.A.; Ghangrekar, M.M. Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. Int. J. Environ. Technol. Manag. 2020, 23, 50. [Google Scholar] [CrossRef]
- Esfandyari, M.; Fanaei, M.A.; Gheshlaghi, R.; Akhavan Mahdavi, M. Dynamic modeling of a continuous two-chamber microbial fuel cell with pure culture of Shewanella. Int. J. Hydrogen Energy 2017, 42, 21198–21202. [Google Scholar] [CrossRef]
- Hassan, S.H.A.; Kim, Y.S.; Oh, S.E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzyme Microb. Technol. 2012, 51, 269–273. [Google Scholar] [CrossRef]
- Cao, Y.; Mu, H.; Liu, W.; Zhang, R.; Guo, J.; Xian, M.; Liu, H. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microb. Cell Fact. 2019, 18, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiely, P.D.; Regan, J.M.; Logan, B.E. The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Curr. Opin. Biotechnol. 2011, 22, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Rossi, R.; Ragab, A.; Saikaly, P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, L.; Zularisam, A.W. Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sustain. Energy Rev. 2016, 56, 1322–1336. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, D.; Chen, C.; Li, X.; Jia, R.; Zhang, D.; Sand, W.; Wang, F.; Gu, T. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. J. Mater. Sci. Technol. 2018, 34, 1713–1718. [Google Scholar] [CrossRef]
- Mitra, P.; Hill, G.A. Continuous microbial fuel cell using a photoautotrophic cathode and a fermentative anode. Can. J. Chem. Eng. 2012, 90, 1006–1010. [Google Scholar] [CrossRef]
- Eyiuche, N.J.; Asakawa, S.; Yamashita, T.; Ikeguchi, A.; Kitamura, Y.; Yokoyama, H. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates. BMC Microbiol. 2017, 17, 145. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, B.; Yu, J. Effect of HRT and external resistances on power generation of sidestream microbial fuel cell with CNT-coated SSM anode treating actual fermentation filtrate of municipal sludge. Sci. Total Environ. 2019, 675, 390–396. [Google Scholar] [CrossRef]
- Chignell, J.F.; De Long, S.K.; Reardon, K.F. Meta-proteomic analysis of protein expression distinctive to electricity-generating biofilm communities in air-cathode microbial fuel cells. Biotechnol. Biofuels 2018, 11, 121. [Google Scholar] [CrossRef]
- Carmona-Martínez, A.A.; Harnisch, F.; Kuhlicke, U.; Neu, T.R.; Schröder, U. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry 2013, 93, 23–29. [Google Scholar] [CrossRef]
- Wei, J.; Liang, P.; Cao, X.; Huang, X. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ. Sci. Technol. 2010, 44, 3187–3191. [Google Scholar] [CrossRef]
- Parameswaran, P.; Bry, T.; Popat, S.C.; Lusk, B.G.; Rittmann, B.E.; Torres, C.I. Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environ. Sci. Technol. 2013, 47, 4934–4940. [Google Scholar] [CrossRef]
- Malvankar, N.S.; Lau, J.; Nevin, K.P.; Franks, A.E.; Tuominen, M.T.; Lovley, D.R. Electrical conductivity in a mixed-species biofilm. Appl. Environ. Microbiol. 2012, 78, 5967–5971. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, L.; Wahid, Z.A.; Din, M.F.M. Exoelectrogens in microbial fuel cells toward bioelectricity generation: A review. Int. J. Energy Res. 2015, 39, 1048–1067. [Google Scholar] [CrossRef]
- Zhou, M.; Chi, M.; Luo, J.; He, H.; Jin, T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196, 4427–4435. [Google Scholar] [CrossRef]
- Narayanasamy, S.; Jayaprakash, J. Application of carbon-polymer based composite electrodes for Microbial fuel cells. Rev. Environ. Sci. Biotechnol. 2020, 19, 595–620. [Google Scholar] [CrossRef]
- Li, S.; Cheng, C.; Thomas, A. Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Slate, A.J.; Whitehead, K.A.; Brownson, D.A.; Banks, C.E. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rodríguez-Couto, S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem. Eng. J. 2020, 164, 107779. [Google Scholar] [CrossRef]
- Hindatu, Y.; Annuar, M.S.M.; Gumel, A.M. Mini-review: Anode modification for improved performance of microbial fuel cell. Renew. Sustain. Energy Rev. 2017, 73, 236–248. [Google Scholar] [CrossRef]
- Santoro, C.; Guilizzoni, M.; Baena, J.C.; Pasaogullari, U.; Casalegno, A.; Li, B.; Babanova, S.; Artyushova, K.; Atanassov, P. The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 2014, 67, 128–139. [Google Scholar] [CrossRef]
- Bujdáková, H.; Didiášová, M.; Drahovská, H.; Černáková, L. Role of cell surface hydrophobicity in Candida albicans biofilm. Open Life Sci. 2013, 8, 259–262. [Google Scholar] [CrossRef]
- Penteado, E.D.; Fernandez-Marchante, C.M.; Zaiat, M.; Gonzalez, E.R.; Rodrigo, M.A. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell. Environ. Technol. 2017, 38, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Feng, L.; He, Y.; Yang, L.; Xun, Y. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J. Hazard. Mater. 2021, 401, 123394. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.L.; Pichiah, S.; Ibrahim, S. Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. Int. J. Hydrog. Energy 2017, 42, 1661–1671. [Google Scholar] [CrossRef]
- Xiong, J.; Hu, M.; Li, X.; Li, H.; Li, X.; Liu, X.; Cao, G.; Li, W. Porous graphite: A facile synthesis from ferrous gluconate and excellent performance as anode electrocatalyst of microbial fuel cell. Biosens. Bioelectron. 2018, 109, 116–122. [Google Scholar] [CrossRef]
- Harshiny, M.; Samsudeen, N.; Kameswara, R.J.; Matheswaran, M. Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell. Int. J. Hydrog. Energy 2017, 42, 26488–26495. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Y.; Li, T.; Dong, Z.; Wang, Y. Modification of carbon felt anodes using double-oxidant HNO3/H2O2 for application in microbial fuel cells. RSC Adv. 2018, 8, 2059–2064. [Google Scholar] [CrossRef] [Green Version]
- Sayed, E.T.; Alawadhi, H.; Elsaid, K.; Olabi, A.G.; Adel Almakrani, M.; Bin Tamim, S.T.; Alafranji, G.H.M.; Abdelkareem, M.A.A. Carbon-cloth anode electroplated with iron nanostructure for microbial fuel cell operated with real wastewater. Sustainability 2020, 12, 6538. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, Z.; Song, H.; Zhang, M.; Xu, H.; Zhao, N. Macroporous carbon foam with high conductivity as an efficient anode for microbial fuel cells. Int. J. Hydrog. Energy 2020, 45, 12121–12129. [Google Scholar] [CrossRef]
- Kou, T.; Yang, Y.; Yao, B.; Li, Y. Interpenetrated bacteria-carbon nanotubes film for microbial fuel cells. Small Methods 2018, 2, 1800152. [Google Scholar] [CrossRef]
- Tang, X.; Guo, K.; Li, H.; Du, Z.; Tian, J. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol. 2011, 102, 3558–3560. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chi, M.; Wang, H.; Jin, T. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochem. Eng. J. 2012, 60, 151–155. [Google Scholar] [CrossRef]
- Scott, K.; Rimbu, G.A.; Katuri, K.P.; Prasad, K.K.; Head, I.M. Application of modified carbon anodes in microbial fuel cells. Process Saf. Environ. Prot. 2007, 85, 481–488. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, Q.; Wang, X.; Logan, B.E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources 2010, 195, 1841–1844. [Google Scholar] [CrossRef]
- Sanchez, D.; Jacobs, D.; Gregory, K.; Huang, J.; Hu, Y.; Vidic, R.; Yun, M. Changes in carbon electrode morphology affect microbial fuel cell performance with Shewanella oneidensis MR-1. Energies 2015, 8, 1817–1829. [Google Scholar] [CrossRef] [Green Version]
- McDonough, J.R.; Choi, J.W.; Yang, Y.; La Mantia, F.; Zhang, Y.; Cui, Y. Carbon nanofiber supercapacitors with large areal capacitances. Appl. Phys. Lett. 2009, 95, 243109. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, H.; Ju, X. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal. Chem. 2006, 79, 453–458. [Google Scholar] [CrossRef]
- Ra, E.J.; Raymundo-Piñero, E.; Lee, Y.H.; Béguin, F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon N. Y. 2009, 47, 2984–2992. [Google Scholar] [CrossRef]
- Manickam, S.S.; Karra, U.; Huang, L.; Bui, N.N.; Li, B.; McCutcheon, J.R. Activated carbon nanofiber anodes for microbial fuel cells. Carbon N. Y. 2013, 53, 19–28. [Google Scholar] [CrossRef]
- Bian, B.; Shi, D.; Cai, X.; Hu, M.; Guo, Q.; Zhang, C.; Wang, Q.; Sun, A.X.; Yang, J. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 2018, 44, 174–180. [Google Scholar] [CrossRef]
- Leng, Y.; Ming, P.; Yang, D.; Zhang, C. Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes. J. Power Sources 2020, 451, 227783. [Google Scholar] [CrossRef]
- Pocaznoi, D.; Erable, B.; Etcheverry, L.; Delia, M.L.; Bergel, A. Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells. Phys. Chem. Chem. Phys. 2012, 14, 13332–13343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.; Liu, Z.; Yang, S.; Zhou, Y. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J. Power Sources 2014, 258, 204–209. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, F.; Chen, S.; Liu, L.; Xiong, Q.; Yu, T.; Zhao, F.; Schröder, U.; Hou, H. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J. Power Sources 2015, 284, 252–257. [Google Scholar] [CrossRef]
- Kargi, F.; Eker, S. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes. J. Chem. Technol. Biotechnol. 2007, 82, 658–662. [Google Scholar] [CrossRef]
- Rodenas Motos, P.; ter Heijne, A.; van der Weijden, R.; Saakes, M.; Buisman, C.J.N.; Sleutels, T.H.J.A. High rate copper and energy recovery in microbial fuel cells. Front. Microbiol. 2015, 6, 527. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Cao, R.; Huang, M.; Chen, D.; Zheng, W.; Lin, L. Effect of light irradiation on the photoelectricity performance of microbial fuel cell with a copper oxide nanowire photocathode. J. Photochem. Photobiol. A Chem. 2015, 300, 38–43. [Google Scholar] [CrossRef]
- Myung, J.; Yang, W.; Saikaly, P.E.; Logan, B.E. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells. Environ. Sci. Water Res. Technol. 2018, 4, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Baudler, A.; Schmidt, I.; Langner, M.; Greiner, A.; Schröder, U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Xi, H.; Lin, F.J.; Wang, B.S.; Chen, Q.Y. The effect of substrates and anodes on microbial fuel cell performance. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011; pp. 1841–1843. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Krishnaraj, N.; Selvam, A.; Wong, J.W.C.; Lee, P.K.H.; Leung, M.K.H.; Berchmans, S. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour. Technol. 2016, 217, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, J.; He, W.; Qu, Y.; Ren, N.; Feng, Y. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. J. Power Sources 2014, 265, 391–396. [Google Scholar] [CrossRef]
- Champigneux, P.; Renault-Sentenac, C.; Bourrier, D.; Rossi, C.; Délia, M.L.; Bergel, A. Effect of surface roughness, porosity and roughened micro-pillar structures on the early formation of microbial anodes. Bioelectrochemistry 2019, 128, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, K.; Freguia, S.; Dennis, P.G.; Chen, X.; Donose, B.C.; Keller, J.; Gooding, J.J.; Rabaey, K. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 2013, 47, 7563–7570. [Google Scholar] [CrossRef]
- Engel, C.; Schattenberg, F.; Dohnt, K.; Schröder, U.; Müller, S.; Krull, R. Long-term behavior of defined mixed cultures of Geobacter sulfurreducens and Shewanella oneidensis in bioelectrochemical systems. Front. Bioeng. Biotechnol. 2019, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Lovley, D.R. Electromicrobiology. Annu. Rev. Microbiol. 2012, 66, 391–409. [Google Scholar] [CrossRef]
- Ahmed, M.; Lin, O.; Saup, C.M.; Wilkins, M.J.; Lin, L.S. Effects of Fe/S ratio on the kinetics and microbial ecology of an Fe(III)-dosed anaerobic wastewater treatment system. J. Hazard. Mater. 2019, 369, 593–600. [Google Scholar] [CrossRef]
- Qian, G.; Ye, L.; Li, L.; Hu, X.; Jiang, B.; Zhao, X. Influence of electric field and iron on the denitrification process from nitrogen-rich wastewater in a periodic reversal bio-electrocoagulation system. Bioresour. Technol. 2018, 258, 177–186. [Google Scholar] [CrossRef]
- Lovley, D.R.; Phillips, E.J.P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 1986, 51, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Wang, H.; Huang, Q.; Song Shun, T.; Xie, J. Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell. Bioprocess Biosyst. Eng. 2020, 43, 373–381. [Google Scholar] [CrossRef]
- Yu, B.; Li, Y.; Feng, L. Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe3O4 modified anode. J. Hazard. Mater. 2019, 377, 70–77. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; He, H.; Cao, J.; Zhou, S. Adding zero-valent iron to enhance electricity generation during MFC start-up. Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Quan, X.; Xiao, Z.; Chen, L. Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem. Eng. J. 2018, 335, 539–547. [Google Scholar] [CrossRef]
- Li, X.; Hu, M.; Zeng, L.; Xiong, J.; Tang, B.; Hu, Z.; Xing, L.; Huang, Q.; Li, W. Co-modified MoO2 nanoparticles highly dispersed on N-doped carbon nanorods as anode electrocatalyst of microbial fuel cells. Biosens. Bioelectron. 2019, 145. [Google Scholar] [CrossRef]
- Alahmadi, N.S.; Betts, J.W.; Cheng, F.; Francesconi, M.G.; Kelly, S.M.; Kornherr, A.; Prior, T.J.; Wadhawan, J.D. Synthesis and antibacterial effects of cobalt–cellulose magnetic nanocomposites. RSC Adv. 2017, 7, 20020–20026. [Google Scholar] [CrossRef] [Green Version]
- Kooti, M.; Saiahi, S.; Motamedi, H. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J. Magn. Magn. Mater 2013, 333, 138–143. [Google Scholar] [CrossRef]
- Veeramani, V.; Rajangam, K.; Nagendran, J. Performance of cobalt oxide/carbon cloth composite electrode in energy generation from dairy wastewater using microbial fuel cells. Sustain. Environ. Res. 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, X.; Pan, Z.; Wang, Y.; Xu, Q.; Bai, J.; Jia, H.; Zhou, J.; Yong, X.; Wu, X. Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell. Bioresour. Technol. 2020, 318, 124095. [Google Scholar] [CrossRef]
- Deng, X.; Dohmae, N.; Kaksonen, A.H.; Okamoto, A. Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria. Angew. Chemie 2020, 132, 6051–6055. [Google Scholar] [CrossRef]
- Murugan, M.; Miran, W.; Masuda, T.; Lee, D.S.; Okamoto, A. Biosynthesized iron sulfide nanocluster enhanced anodic current generation by sulfate reducing bacteria in microbial fuel cells. Chem. Electro. Chem. 2018, 5, 4015–4020. [Google Scholar] [CrossRef]
- Blázquez, E.; Baeza, J.A.; Gabriel, D.; Guisasola, A. Treatment of real flue gas desulfurization wastewater in an autotrophic biocathode in view of elemental sulfur recovery: Microbial communities involved. Sci. Total Environ. 2019, 657, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Miran, W.; Jang, J.; Nawaz, M.; Shahzad, A.; Lee, D.S. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells. J. Hazard. Mater. 2018, 352, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.C.B.; Leão, V.A. Producing electrical energy in microbial fuel cells based on sulphate reduction: A review. Environ. Sci. Pollut. Res. 2020, 27, 36075–36084. [Google Scholar] [CrossRef]
- Huo, Y.C.; Li, W.W.; Chen, C.B.; Li, C.X.; Zeng, R.; Lau, T.C.; Huang, T.Y. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32. Enzyme Microb. Technol. 2016, 95, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Blatter, M.; Furrer, C.; Cachelin, C.P.; Fischer, F. Phosphorus, chemical base and other renewables from wastewater with three 168-L microbial electrolysis cells and other unit operations. Chem. Eng. J. 2020, 390, 124502. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, J.; Dong, F. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Nosek, D.; Cydzik-Kwiatkowska, A. Microbial structure and energy generation in microbial fuel cells powered with waste anaerobic digestate. Energies 2020, 13, 4712. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064–2077. [Google Scholar] [CrossRef]
- Perreault, F.; De Faria, A.F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226–7236. [Google Scholar] [CrossRef]
- Kim, H.; Abdala, A.A.; MacOsko, C.W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, L.; Jin, M.; Kong, F.; Qi, H.; Nan, J. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. Bioresour. Technol. 2019, 283, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Noori, M.T.; Rajesh, P.P.; Ghangrekar, M.M.; Mitra, A. Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustain. Energy Technol. Assessments 2018, 26, 77–82. [Google Scholar] [CrossRef]
- Poland, C.; Hankin, S.; de Brouwere, K.; Holderberke, V.M. Carbon Nanotubes Criteria Document for the Scientific Committee on Occupational Exposure Limits (SCOEL); Finish Raport; European Commission Joint Research Centre: Ispra, Italy, 2012. [Google Scholar]
- Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 2014, 24, 3661–3682. [Google Scholar] [CrossRef]
- Liang, Y.; Zhai, H.; Liu, B.; Ji, M.; Li, J. Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. Sci. Total Environ. 2020, 713. [Google Scholar] [CrossRef]
- Thepsuparungsikul, N.; Ng, T.C.; Lefebvre, O.; Ng, H.Y. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Water Sci. Technol. 2014, 69, 1900–1910. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Yuan, Y.; Lu, X.; Yang, Z.; Wang, Y.; Sun, J. Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells. Int. J. Hydrogen Energy 2018, 43, 16240–16247. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wen, Q.; Zheng, H.; Xu, H.; Qi, L. Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy 2019, 189, 116342. [Google Scholar] [CrossRef]
- Silva, T.A.; Moraes, F.C.; Janegitz, B.C.; Fatibello-Filho, O.; Ganta, D. Electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomater. 2017, 4571614. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Cheng, C.; Zhang, J.; Wu, X. Appropriate mechanical strength of carbon black-decorated loofah sponge as anode material in microbial fuel cells. Int. J. Hydrogen Energy 2016, 41, 23156–23163. [Google Scholar] [CrossRef]
- Liu, S.H.; Lai, Y.C.; Lin, C.W. Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions. Appl. Energy 2019, 233–234, 922–929. [Google Scholar] [CrossRef]
- Gajda, I.; Greenman, J.; Ieropoulos, I. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl. Energy 2020, 262, 114475. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Li, J.; Feng, Q.; Zhang, L.; Fu, Q.; Zhu, X.; Liao, Q. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells. Int. J. Hydrogen Energy 2020, 45, 3833–3839. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, W.; Sun, J.; Chen, L.; Li, P.; Chen, Y.; Zhu, S.; Shen, S. Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells. Int. J. Hydrogen Energy 2017, 42, 22786–22795. [Google Scholar] [CrossRef]
- Aryal, R.; Beltran, D.; Liu, J. Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell. Int. J. Green Energy 2019, 16, 1391–1399. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, S.; Sun, Y.; Li, C. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Biotechnol. Lett. 2017, 39, 1515–1520. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, X.; Chen, Y.; Wen, Q.; Lin, C.; Zheng, J.; Li, W.; Xu, H.; Qi, L. A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells. J. Appl. Electrochem. 2020, 50, 1281–1290. [Google Scholar] [CrossRef]
- Song, R.B.; Zhao, C.E.; Jiang, L.P.; Abdel-Halim, E.S.; Zhang, J.R.; Zhu, J.J. Bacteria-affinity 3D macroporous graphene/MWCNTs/Fe3O4 foams for high-performance microbial fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 16170–16177. [Google Scholar] [CrossRef]
- Yang, X.; Ma, X.; Wang, K.; Wu, D.; Lei, Z.; Feng, C. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim. Acta 2016, 210, 846–853. [Google Scholar] [CrossRef]
- Xing, X.; Liu, Z.; Chen, W.; Lou, X.; Li, Y.; Liao, Q. Self-nitrogen-doped carbon nanosheets modification of anodes for improving microbial fuel cells’ performance. Catalysts 2020, 10, 381. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, X.; Zhang, Q.; Li, C. Microbial fuel cells: Nanomaterials based on anode and their application. Energy Technol. 2020, 8, 2000206. [Google Scholar] [CrossRef]
- Lai, B.; Tang, X.; Li, H.; Du, Z.; Liu, X.; Zhang, Q. Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens. Bioelectron. 2011, 28, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Mashkour, M.; Rahimnejad, M.; Mashkour, M.; Soavi, F. Electro-polymerized polyaniline modified conductive bacterial cellulose anode for supercapacitive microbial fuel cells and studying the role of anodic biofilm in the capacitive behavior. J. Power Sources 2020, 478, 228822. [Google Scholar] [CrossRef]
- Kirubaharan, C.J.; Kumar, G.G.; Sha, C.; Zhou, D.; Yang, H.; Nahm, K.S.; Raj, B.S.; Zhang, Y.; Yong, Y.C. Facile fabrication of Au/polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells. Electrochim. Acta 2019, 328, 135136. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, B.; Yang, L.; Liang, D.; Zhu, Y.; Liu, H. Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell. Bioresour. Technol. 2017, 233, 291–295. [Google Scholar] [CrossRef]
- Du, Q.; An, J.; Li, J.; Zhou, L.; Li, N.; Wang, X. Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells. J. Power Sources 2017, 343, 477–482. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, X.; Li, H.; Xiong, J.; Hu, M.; Li, X.; Li, W. Highly dispersed polydopamine-modified Mo2C/MoO2 nanoparticles as anode electrocatalyst for microbial fuel cells. Electrochim. Acta 2018, 283, 528–537. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Chen, X.; Yuan, X.; Li, N.; He, W.; Feng, Y. Enhanced electricity generation and extracellular electron transfer by polydopamine–reduced graphene oxide (PDA–rGO) modification for high-performance anode in microbial fuel cell. Chem. Eng. J. 2020, 387, 123408. [Google Scholar] [CrossRef]
- Pu, K.B.; Ma, Q.; Cai, W.F.; Chen, Q.Y.; Wang, Y.H.; Li, F.J. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem. Eng. J. 2018, 132, 255–261. [Google Scholar] [CrossRef]
- Ghasemi, M.; Wan Daud, W.R.; Hassan, S.H.A.; Jafary, T.; Rahimnejad, M.; Ahmad, A.; Yazdi, M.H. Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell. Int. J. Hydrogen Energy 2016, 41, 4872–4878. [Google Scholar] [CrossRef]
- Zhao, X.; Deng, W.; Tan, Y.; Xie, Q. Promoting electricity generation of Shewanella putrefaciens in a microbial fuel cell by modification of porous poly(3-aminophenylboronic acid) film on carbon anode. Electrochim. Acta 2020, 354, 136715. [Google Scholar] [CrossRef]
- Cui, H.F.; Du, L.; Guo, P.B.; Zhu, B.; Luong, J.H. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J. Power Sources 2015, 283, 46–53. [Google Scholar] [CrossRef]
- Mukherjee, P.; Saravanan, P. Graphite nanopowder functionalized 3-D acrylamide polymeric anode for enhanced performance of microbial fuel cell. Int. J. Hydrog. Energy 2020, 45, 23411–23421. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Xu, Y.; Tan, X.; Yue, Z.; Ma, K.; Wang, Y. Reduced graphene oxide@ polydopamine decorated carbon cloth as an anode for a high-performance microbial fuel cell in Congo red/saline wastewater removal. Bioelectrochemistry 2020, 137, 107675. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; An, L. Electricity generation and storage in microbial fuel cells with porous polypyrrole-base composite modified carbon brush anodes. Renew. Energy 2020, 162, 2220–2226. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Q.; Chen, Y.; Li, W. Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells. Energy 2020, 204. [Google Scholar] [CrossRef]
- Sonawane, J.M.; Patil, S.A.; Ghosh, P.C.; Adeloju, S.B. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J. Power Sources 2018, 379, 103–114. [Google Scholar] [CrossRef]
- Jia, Y.; Ma, D.; Wang, X. Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech 2020, 10, 3. [Google Scholar] [CrossRef]
- Li, F.; Wang, D.; Liu, Q.; Wang, B.; Zhong, W.; Li, M.; Liu, K.; Lu, Z.; Jiang, H.; Zhao, Q.; et al. The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density. J. Power Sources 2019, 412, 514–519. [Google Scholar] [CrossRef]
- Wu, G.; Bao, H.; Xia, Z.; Yang, B.; Lei, L.; Li, Z.; Liu, C. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells. J. Power Sources 2018, 384, 86–92. [Google Scholar] [CrossRef]
- Li, Z.L.; Yang, S.K.; Song, Y.; Xu, H.Y.; Wang, Z.Z.; Wang, W.K.; Zhao, Y.Q. Performance evaluation of treating oil-containing restaurant wastewater in microbial fuel cell using in situ graphene/polyaniline modified titanium oxide anode. Environ. Technol. 2020, 41, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, P.P.; Noori, M.T.; Ghangrekar, M.M. Improving performance of microbial fuel cell by using polyaniline-coated carbon–felt anode. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020024. [Google Scholar] [CrossRef]
- Yin, T.; Zhang, H.; Yang, G.; Wang, L. Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells. Synth. Met. 2019, 252, 8–14. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, Z.; Song, H.; Wang, D.; Xie, Y. Polyaniline/reduced graphene oxide-modified carbon fiber brush anode for high-performance microbial fuel cells. Int. J. Hydrogen Energy 2018, 43, 17867–17872. [Google Scholar] [CrossRef]
- Jia, Y.H.; Qi, Z.L.; You, H. Power production enhancement with polyaniline composite anode in benthic microbial fuel cells. J. Cent. South Univ. 2018, 25, 499–505. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Yu, Y.Y.; Wang, Y.Z.; Shi, Y.T.; Cheng, Q.W.; Fang, Z.; Yong, Y.C. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim. Acta 2017, 255, 41–47. [Google Scholar] [CrossRef]
- Sumisha, A.; Haribabu, K. Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications a comparative study. Int. J. Hydrogen Energy 2018, 43, 3308–3316. [Google Scholar] [CrossRef]
- Wang, G.; Feng, C. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell. Polymers 2017, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Zhong, D.; Liao, X.; Liu, Y.; Zhong, N.; Xu, Y. Quick start-up and performance of microbial fuel cell enhanced with a polydiallyldimethylammonium chloride modified carbon felt anode. Biosens. Bioelectron. 2018, 119, 70–78. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Yuan, X.; Li, N.; He, W.; Liu, J. Synergistic effect between poly (diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell. Electrochim. Acta 2020, 359, 136949. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wang, H.Y. Fabrication and characterization of polyelectrolyte microcarriers for microorganism cultivation through a microfluidic droplet system. Biomicrofluidics 2016, 10, 014126. [Google Scholar] [CrossRef]
- Lin, X.Q.; Li, Z.L.; Liang, B.; Nan, J.; Wang, A.J. Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere 2019, 219, 358–364. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosek, D.; Jachimowicz, P.; Cydzik-Kwiatkowska, A. Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. Energies 2020, 13, 6596. https://doi.org/10.3390/en13246596
Nosek D, Jachimowicz P, Cydzik-Kwiatkowska A. Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. Energies. 2020; 13(24):6596. https://doi.org/10.3390/en13246596
Chicago/Turabian StyleNosek, Dawid, Piotr Jachimowicz, and Agnieszka Cydzik-Kwiatkowska. 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells" Energies 13, no. 24: 6596. https://doi.org/10.3390/en13246596
APA StyleNosek, D., Jachimowicz, P., & Cydzik-Kwiatkowska, A. (2020). Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. Energies, 13(24), 6596. https://doi.org/10.3390/en13246596