Modelling and Fault Current Characterization of Superconducting Cable with High Temperature Superconducting Windings and Copper Stabilizer Layer
Abstract
:1. Introduction
1.1. Characteristics of Superconducting Cables
1.2. Challenges Associated with the High Temperature Superconducting Cables Installation and the Superconducting Cables (SCs)
2. Modelling of SCs with 2G HTS Wires
2.1. Configuration and Design Specifications
2.2. Development of SCs Model
2.2.1. Equivalent Circuit
2.2.2. Modelling Methodology
2.2.3. Thermal Transfer Analysis during the Quenching
3. Simulation Results
3.1. Fault Analysis of the SCs
3.2. Current Limitation
3.3. Simulation Analysis of Fault Resistance Effect on the Quenching Process
4. Conclusions and Verifications
5. Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Z.; Venuturumilli, S.; Zhang, M.; Yuan, W. Superconducting cables—Network feasibility study work package 1. In Innovation, Next Generation Networks; Western Power Distribution: Castle Donington, UK, 2016; Volume 9, pp. 8–15. [Google Scholar]
- Blair, S.M.; Booth, C.D.; Burt, G.M. Current-Time Characteristics of Resistive Superconducting Fault Current Limiters. IEEE Trans. Appl. Supercond. 2012, 22, 5600205. [Google Scholar] [CrossRef] [Green Version]
- Blair, S.M.; Booth, C.D.; Elders, I.M.; Singh, K.N.; Burt, G.M.; McCarthy, J. Suprconducting fault current limiter application in power dense marine electrical system. IET Elect. Sust. Transp. 2011, 1, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Blair, S.M.; Singh, N.K.; Booth, C.D. Operational control and protection implications of fault current limitation in distribution networks. In Proceedings of the 2009 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK, 1–4 September 2009; pp. 1–5. [Google Scholar]
- Albany Power Cables. Available online: https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/Albany__03_05_08.pdf (accessed on 6 June 2020).
- Kojima, H.; Kotari, M.; Kito, T.; Hayakawa, N.; Hanai, M.; Okubo, H. Current Limiting and Recovery Characteristics of 2 MVA Class Superconducting Fault Current Limiting Transformer (SFCLT). IEEE Trans. Appl. Supercond. 2010, 21, 1401–1404. [Google Scholar] [CrossRef]
- Liang, F.; Yuan, W.; Baldan, C.A.; Zhang, M.; Lamas, J.S. Modeling and Experiment of the Current Limiting Performance of a Resistive Superconducting Fault Current Limiter in the Experimental System. J. Supercond. Nov. Magn. 2015, 28, 2669–2681. [Google Scholar] [CrossRef] [Green Version]
- Stuart, W.; Strickland, N. Critical Current Characterization of THEVA Production 2G HTS Superconducting Wire. Available online: https://figshare.com/articles/dataset/Critical_current_characterisation_of_THEVA_pre-oduction_2G_HTS_superconducting_wire/375932 (accessed on 7 June 2020).
- Mark, F.M. Ampacity Project-Worldwide First Superconducting Cable and Fault Current Limiter intallation in a German City center. In Proceedings of the 22nd International Conference on Electricity Distribution, Stockholm, Sweden, 10–13 June 2013. [Google Scholar]
- Shibata, T.; Watanabè, M.; Suzawa, C.; Isojima, S.; Fujikami, J.; Sato, K.; Ishii, H.; Honjo, S.; Iwata, Y. Development of high temperature superconducting power cable prototype system. IEEE Trans. Power Deliv. 1999, 14, 182–187. [Google Scholar] [CrossRef]
- Sohn, S.; Lim, J.; Yang, B.; Lee, S.; Jang, H.; Kim, Y.; Yang, H.; Kim, D.; Kim, H.; Yim, S.; et al. Design and development of 500m long HTS cable system in the KEPCO power grid, Korea. Phys. C Supercond. 2010, 470, 1567–1571. [Google Scholar] [CrossRef]
- Ballarino, A.; Bruzek, C.E.; Dittmar, N.; Giannelli, S.; Goldacker, W.; Grasso, G.; Grilli, F.; Haberstroh, C.; Hole, S.; Lesur, F.; et al. The BEST PATHS Project on MgB2Superconducting Cables for Very High Power Transmission. IEEE Trans. Appl. Supercond. 2016, 26, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kalsi, S.S. HTS Superconductors. Appl. High Temperarure Supercond. Electr. Power Equip. 2011, 9, 219–259. [Google Scholar]
- Muncho, J.M. Development trend of Superconducting Cable Technology for Power Transmission Applications. World Congr. Eng. Comput. 2015, 1, 1–4. [Google Scholar]
- Snitcher, G.; Kalsi, S.S.; Manlief, M.; Schwall, E.E.; Sidi-Yekhief, A.; Ige, S.; Francavilla, T.L.; Gusber, D.U. High-filed warm-bore HTS conduction cooled magnet. IEEE Trans. Appl. Supercond. 1999, 9, 553–558. [Google Scholar] [CrossRef]
- Luiz, A. Applications of High-Tc Superconductivity; IntechOpen: Rijeka, Croatia, 2011; Volume 3, pp. 46–72. [Google Scholar]
- Akhtar, M.J. 100 Years of Superconductivity (1911–2011). Nuclues 2011, 48, 261. [Google Scholar]
- Huebener, R.R. Conductors, Semiconductors, Superconductors: An introduction tosolid state physics. Univ. Tub. 2004, 3, 120–141. [Google Scholar]
- Young, M.A. An investigation of the current distribution in the trixial cable and its operational impacts on power systems. IEEE Trans. Appl. Supercond. 2005, 15, 1751–1754. [Google Scholar] [CrossRef]
- Bang, J. Critical current, criticial temperature anf magnetic filed based EMTDC model components for HTS power cables. IEEE Trnas. Appl. Supercond. 2007, 17, 1726–1729. [Google Scholar] [CrossRef]
- Yoon, D.-H. A Feasibility Study on HTS Cable for the Grid Integration of Renewable Energy. Phys. Procedia 2013, 45, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Malozemoff, A.P. High Temperature Seperconducting HTS AC Cables for Power Grid Applications. In Superconductors in Power Grid; Woodhead Publishing: Sawston, UK, 2015; pp. 133–188. [Google Scholar]
- Jipping, J.; Mansoldo, A.; Wakefield, C. The impact of HTS cables on power flow distribution and short-circuit currents within a meshed network. In Proceedings of the 2001 IEEE/PES Transmission and Distribution Conference and Exposition, Developing New Perspectives (Cat. No.01CH37294), Atlanta, GA, USA, 2 November 2002; pp. 736–741. [Google Scholar] [CrossRef]
- Maruyama, O.; Nakano, T.; Mimura, T.; Morimura, T.; Masuda, T.; Takagi, T.; Yagi, M. Fundamental Study of Ground Fault Accident in HTS Cable. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Ishiyama, A.; Wang, X.; Ueda, H.; Uryu, T.; Yagi, M.; Fujiwara, N. Over-Current Characteristics of 275-kV Class YBCO Power Cable. IEEE Trans. Appl. Supercond. 2010, 21, 1017–1020. [Google Scholar] [CrossRef]
- Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; et al. Status and progress of a fault current limiting hts cable to be installed in the con edison grid. AIP Conf. Proc. 2010, 1218, 445. [Google Scholar]
- Maguire, J.; Folts, D.; Yuan, J.; Lindsay, D.; Knoll, D.; Bratt, S.; Wolff, Z.; Kurtz, S. Development and Demonstration of a Fault Current Limiting HTS Cable to be Installed in the Con Edison Grid. IEEE Trans. Appl. Supercond. 2009, 19, 1740–1743. [Google Scholar] [CrossRef]
- Liang, S.; Ren, L.; Ma, T. Study on quenching characteristics and resistance equievalent estimation method of second-generation High Temperature Superconducting tape under different overcurrent. Materials 2019, 12, 2374. [Google Scholar] [CrossRef] [Green Version]
- Doukas, D.I.; Chrysochos, A.I.; Labridis, D.P.; Harnefors, L.; Velotto, G. Coupled electro-mechanical transient analysis of superconducting DC transmission system using FDTD and VEM modelling. IEEE Trans. Appl. Supercond. 2017, 27, 1–8. [Google Scholar] [CrossRef]
- Fukui, S.; Ogawa, J.; Suzuki, N.; Oka, T.; Sato, T.; Tsukamoto, O.; Takao, T. Numerical Analysis of AC Loss Characteristics of Multi-Layer HTS Cable Assembled by Coated Conductors. IEEE Trans. Appl. Supercond. 2009, 19, 1714–1717. [Google Scholar] [CrossRef]
- Yao, M. Numerical Modelling of Superconducting Power Cables with Second Generation High Temperature Superconductors. Ph.D. Thesis, University of Edinburgh, Scotland, UK, 2019. [Google Scholar]
- Su, R.; Shi, J.; Yan, S.; Li, P.; Wng, W.; Hu, Z.; Zhang, B.; Tnag, Y.; Ren, L. Numerical model of HTS cable and its electri-thermal properties. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar]
- Shaghai Superconductors. Available online: http://www.shsctec.com/en/introduce/89 (accessed on 10 June 2020).
- Polak, M.; Krempaský, L.; Chromik, Š.; Wehler, D.; Moenter, B. Magnetic field in the vicinity of YBCO thin film strip and strip with filamentary structure. Phys. C Supercond. 2002, 372, 1830–1834. [Google Scholar] [CrossRef]
- Du, H.-I.; Kim, T.-M.; Han, B.-S.; Hong, G.-H. Study on Verification for the Realizing Possibility of the Fault-Current-Limiting-Type HTS Cable Using Resistance Relation With Cable Former and Superconducting Wire. IEEE Trans. Appl. Supercond. 2015, 25, 1–5. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Lee, W.-G.; Lee, S.-J.; Park, M.; Kim, H.-M.; Won, D.; Yoo, J.; Yang, H.S. A Simplified Model of Coaxial, Multilayer High-Temperature Superconducting Power Cables with Cu Formers for Transient Studies. Energies 2019, 12, 1514. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Kim, J.; Kim, Y.; Ko, T.; Lee, H.; Kim, J.; Choi, Y. Quench and recovery characteristics of second-generation high-temperature superconducting GdBCO coated conductor with various patterns of stabilizers. Results Phys. 2018, 10, 222–226. [Google Scholar] [CrossRef]
- Fu, Y.; Tsukamoto, O.; Furuse, M. Copper stabilization of YBCO coated conductor for quench protectio. IEEE Trans. Appl. Supercond. 2003, 13, 1780–1783. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Z.; Zhang, M.; Zhang, M.; Qiu, M.; Yuan, W. Electric Measurement of the Critical Current, AC Loss, and Current Distribution of a Prototype HTS Cable. IEEE Trans. Appl. Supercond. 2013, 24, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Elshiekh, M.; Zhang, M.; Ravindra, H.; Chen, X.; Venuturumilli, S.; Huang, X.; Schoder, K.; Steurer, M.; Yuan, W. Effectiveness of Superconducting Fault Current Limiting Transformers in Power Systems. IEEE Trans. Appl. Supercond. 2018, 28, 1–7. [Google Scholar] [CrossRef]
- Torii, S.; Kasahara, H.; Akita, S. Temperature dependence of critical current density of AC superconductor and the effect on AC quench current degradation. IEEE Trans. Appl. Supercond. 1995, 5, 369–372. [Google Scholar] [CrossRef]
- Hong, Z.; Campbell, A.M.A.; Coombs, T. Numerical solution of critical state in superconductivity by finite element software. Supercond. Sci. Technol. 2006, 19, 1246–1252. [Google Scholar] [CrossRef]
- Serway, R.A.; Kirkpatrick, L.D. Physics for Scientists and Engineers with Modern Physics. Phys. Teach. 1988, 26, 254–255. [Google Scholar] [CrossRef]
- Jin, T.; Hong, J.-P.; Zheng, H.; Tang, K.; Gan, Z.-H. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method. J. Zhejiang Univ. A 2009, 10, 691–696. [Google Scholar] [CrossRef]
- Colombus HTS Cables. Available online: https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/columbus_03.05.08.pdf (accessed on 7 June 2020).
- Barzegar-Bafrooei, M.R.; Foroud, A.A. Impact of fault resistance and fault distance on fault current reduction ratio of hybrid SFCL. Int. Trans. Electr. Energy Syst. 2017, 27, e2409. [Google Scholar] [CrossRef]
- Mansour, D.-E.A. Effect of fault resistance on the behavior of superconducting fault current limiter in power systems. In Proceedings of the 2014 IEEE International Conference on Power and Energy (PECon), Kuching, Malaysia, 1–3 December 2014; pp. 212–216. [Google Scholar] [CrossRef]
- Kalsi, S.S. Applications of High Temperature Superconductors to Electric Power Equipment; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 173–217. [Google Scholar] [CrossRef]
- Xie, Y.-Y.; Tekletsadik, K.; Hazelton, D.; Selvamanickam, V. Second Generation High-Temperature Superconducting Wires for Fault Current Limiter Applications. IEEE Trans. Appl. Supercond. 2007, 17, 1981–1985. [Google Scholar] [CrossRef]
- Lin, B.; Ying, L.; Sheng, J.; Zhang, J.; Yao, L.; Li, Y.; Jin, Z.; Hong, Z. Test of Maximum Endurable Quenching Voltage of YBCO-Coated Conductors for Resistive Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond. 2011, 22, 5602904. [Google Scholar] [CrossRef]
Quenching Process | |||
---|---|---|---|
Parameters | 1. Supercondu-Cting State | 2. Quenching: Flux Flow State | 3. Quenching: Normal State |
Critical current/temperature | |||
Resistivity of HTS layer | |||
Resistivity of Copper layer | |||
Current distribution |
Number | Components |
---|---|
1 | Grid |
2 | Transformers 275 kV/132 kV, 150 MVA |
3 | 10 km transmission lines |
4 | Transformers 132 kV/33 kV |
5 | 5 km SC |
6 | Converter-interfaced generator (Wind farm) |
7 | Synchronous generator |
Cable Parameters | ||
---|---|---|
Parameters | Symbol | Value |
Cable length | ||
No. of YBCO tapes | 15 | |
Critical current | ||
Critical temperature | ||
Width of YBCO tape | w | |
Thickness of YBCO tape | ||
Thickness of copper tape | ||
Density of YBCO tape | ||
Density of copper tape |
Cable Specifications | ||
---|---|---|
Parameters | Symbol | Value |
Rated Voltage | ||
Operating Temperature | ||
Rated Capacity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsotsopoulou, E.; Dyśko, A.; Hong, Q.; Elwakeel, A.; Elshiekh, M.; Yuan, W.; Booth, C.; Tzelepis, D. Modelling and Fault Current Characterization of Superconducting Cable with High Temperature Superconducting Windings and Copper Stabilizer Layer. Energies 2020, 13, 6646. https://doi.org/10.3390/en13246646
Tsotsopoulou E, Dyśko A, Hong Q, Elwakeel A, Elshiekh M, Yuan W, Booth C, Tzelepis D. Modelling and Fault Current Characterization of Superconducting Cable with High Temperature Superconducting Windings and Copper Stabilizer Layer. Energies. 2020; 13(24):6646. https://doi.org/10.3390/en13246646
Chicago/Turabian StyleTsotsopoulou, Eleni, Adam Dyśko, Qiteng Hong, Abdelrahman Elwakeel, Mariam Elshiekh, Weijia Yuan, Campbell Booth, and Dimitrios Tzelepis. 2020. "Modelling and Fault Current Characterization of Superconducting Cable with High Temperature Superconducting Windings and Copper Stabilizer Layer" Energies 13, no. 24: 6646. https://doi.org/10.3390/en13246646
APA StyleTsotsopoulou, E., Dyśko, A., Hong, Q., Elwakeel, A., Elshiekh, M., Yuan, W., Booth, C., & Tzelepis, D. (2020). Modelling and Fault Current Characterization of Superconducting Cable with High Temperature Superconducting Windings and Copper Stabilizer Layer. Energies, 13(24), 6646. https://doi.org/10.3390/en13246646