Enhancing the Economic Viability of Anaerobic Digestion by Exploiting the Whole Biomass of Mango Waste and Its Residues after Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup, Substrates and Inoculum Characterization and Preparation
2.1.1. Experimental Setup
2.1.2. Substrates and Inoculum Characterization
2.1.3. Preparation
2.2. Measurement of the TS, MS and VS
2.3. Optimisation
2.4. Energy Balance
- The total capacity of the water bath was utilised.
- Only one reactor with a volume of 2/3 of the total volume of the water bath was utilised. The volume of the reactor used was 400 mL thus, the assumed reactor was equivalent to the volume of 75 reactors of the reactors have been used in the experiment (30 L).
- The remaining capacity (1/3) was the water volume which is used to heat up the reactor in the bath.
3. Results and Discussion
3.1. Results
3.1.1. Quantity and Quality of the Biogas Produced before/after the Separation of Starch and Mango Seed Coats
- (1)
- Biogas volume per each gram-VS
- (2)
- Methane concentration
- (3)
- Carbon dioxide concentration
3.1.2. Optimisation
3.1.3. Energy Balance
3.1.4. The Validation of Using the Digestate in Agriculture
3.2. Discussion
4. Conclusions
- ❖
- The effect of the starch on the quantity and quality of the biogas produced from the AD of mango waste is quite low and can be neglected.
- ❖
- The digestate based on the AD of mango waste contains the basic nutrients of a conventional fertiliser in varied amounts and can be used in agricultural applications as another AD product. In order to fully assured its quality, further tests on the digestate are suggested.
- ❖
- The employment of the Hollander beater for pre-treating mango seed coats is not sufficient. The coats require further pre-treatment to increase the accessible surface area and size of pores available for the hydrolytic enzymes. Alternatively, it can be utilised in waste-to-energy plants or in other industrial or commercial applications as a biofiller, biofibre, etc.
- ❖
- The amounts of the substrates and sludge must be carefully balanced. Extremely high or low feeding of the digester negatively influencing the biogas production and quality.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description |
AD | Anaerobic digestion |
Adeq. Precision | Adequate Precision |
Adj. R2 | Adjusted R2 |
ANOVA | An analysis of variance |
BBD | Box-Behnken design |
Cor. Total | Total sum of the squares corrected for the mean |
C1 | The organic concentration resulted |
C2 | The concentration required |
df | Degree of freedom |
DOE | Design of experiment |
D | The amount required to be added/removed to adjust the organic concentration at the predetermined concentration |
HRT | Hydraulic retention time |
ISR | Inoculum to substrate ratio |
Ms | Moisture content |
Pred. R2 | Predicated R2 |
RSM | Response surface methodology |
TS | Total solid |
VFA | The volatile fatty acid |
VS | Volatile solid |
V1 | The volume of the mixture at (C1) |
V2 | The volume of the mixture at (C2) |
References
- Saxena, R.C.; Adhikari, D.K.; Goyal, H.B. Biomass-based energy fuel through biochemical routes: A review. Renew. Sustain. Energy Rev. 2007, 13, 168–170. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Nguyen, D.; Surendra, K.C.; Shrestha, S.; Rajendran, K.; Oechsner, H.; Khanal, S.K. Review; Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresour. Technol. 2016, 215, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Surendra, K.C.; Sawatdeenarunat, C.; Shrestha, S.; Sung, S.; Khanal, S.K. Anaerobic digestion-based biorefinery for bioenergy and biobased products. Ind. Biotechnol. 2015, 11, 103–112. [Google Scholar] [CrossRef]
- Alrefai, R.A.; Benyounis, K.; Stokes, J. An Evaluation of the Effects of the Potato Starch on the Biogas Produced from the Anaerobic Digestion of Potato Wastes. Energies 2020, 13, 2399. [Google Scholar] [CrossRef]
- Wang, D.; Xi, J.; Ai, P.; Yu, L.; Zhai, H.; Yan, S.; Zhang, Y. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment. Bioresour. Technol. 2016, 207, 52–58. [Google Scholar] [CrossRef] [PubMed]
- WRAP. Quality Digestate-Using Quality Anaerobic Digestate to Benefit Crops; Waste & Resources Action Programme: Banbury, UK, 2012; pp. 1–12. [Google Scholar]
- Mouat, A.; Barclay, A.; Mistry, P.; Webb, J. Digestate Market Development in Scotland; Natural Scotland, Scottish Government: Inverness, UK, 2010.
- Dupla, M.; Conte, T.; Bouvier, J.C.; Bernet, N.; Steyer, J.P. Dynamic evaluation of a fixed bed anaerobic-digestion process in response to organic overloads and toxicant shock loads. Water Sci. Technol. 2004, 49, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Labatut, R.A.; Gooch, C.A. Monitoring of Anaerobic Digestion Process to Optimize Performance and Prevent System Failure. In Proceedings of the Got Manure? Enhancing Environmental and Economic Sustainability Conference, Holiday Inn, NY, USA, 27–29 March 2012. [Google Scholar]
- Clark, J.H.; Deswarte, F.E.I. The biorefinery concept- An integrated approach. In Introduction to Chemicals from Biomass; Clark, J.H., Deswarte, F., Eds.; John Wiley and Sons Ltd.: Sussex, UK, 2008; pp. 1–20. [Google Scholar]
- Alrefai, R.; Benyounis, K.Y.; Stokes, J. Integration Approach of Anaerobic Digestion and Fermentation Process Towards Producing Biogas and Bioethanol with Zero Waste: Technical. Fundam. Renew. Energy 2017, 7, 1–6. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization: Geneva; FAO: Rome, Italy, 2009. [Google Scholar]
- Calatrava, J. Economic importance and world trade. In Mango International Encyclopedia; Royal Court Affairs, Ed.: Muscat, Oman, 2014; pp. 1–45. [Google Scholar]
- Torres-León, C.; Rojas, R.; Contreras-Esquivel, J.C.; Serna-Cock, L.; Belmares-Cerda, R.E.; Aguilar, C.N. Review; Mango seed: Functional and nutritional properties. Trends Food Sci. Technol. 2016, 55, 109–117. [Google Scholar] [CrossRef]
- FAOSTAD. Available online: http://faostat.fao.org/site/339/default.aspx (accessed on 15 February 2019).
- Wu, J.S.B.; Chen, H.; Fang, T. Mango Juice. In Fruit Juice Processing Technology; Nagy, S., Chen, C.S., Shaw, P.E., Eds.; Agscience Inc.: Auburndale, FL, USA, 1993; pp. 620–655. [Google Scholar]
- Evans, E.A.; Mendoza, O.J. Crop production: Propagation. In The Mango: Botany, Production and Uses; Litz, R.E., Ed.; CAB International: Wallinford, UK, 2009; pp. 367–403. [Google Scholar]
- O’Shea, N.; Arendt, E.; Gallagher, E. Dietary fiber and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Leanpolchareanchai, J.; Padois, K.; Falson, F.; Bavovada, R.; Pithayanukul, P. Microemulsion system for topical delivery of thai mango seed kernel extract: Development, physicochemical characterization and ex vivo skin permeation studies. Molecules 2014, 19, 17107–17129. [Google Scholar] [CrossRef] [Green Version]
- Sonthalia, M.; Sikdar, D.C. Production Of Starch From Mango (Mangifera indica L.) Seed Kernel And Its Characterization. Int. J. Tech. Res. Appl. 2015, 3, 346–349. [Google Scholar]
- Arogba, S.S. Quality characteristics of a model biscuit containing processed mango (Mangifera indica) kernel flour. Int. J. Food Prop. 2002, 5, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Singh, N.; Sandhu, K.S.; Guraya, H.S. Physicochemical, morphological, thermal and rheological properties of starches separated from kernels of some Indian mango cultivars (Mangifera indica L.). Food Chem. 2004, 85, 131–140. [Google Scholar] [CrossRef]
- Saadany, R.; Foda, Y.; Saadany, F. Studies on starch extracted from mango seeds (Mangifira indica) as a new source of starch. Starch 1980, 32, 113–116. [Google Scholar] [CrossRef]
- Manimaran, D.S.; Nadaraja, K.R.; Vellu, J.P.; Francisco, V.; Kanesen, K.; BinYusoff, Z. Production of biodegredable plastic from Banan peel. Petrochem. Eng. 2016, 1, 1–7. [Google Scholar]
- Vilpoux, O.; Averous, L. starch based plastics. In Technology, use and potentialities of Latin American starchy tubers, NGO Raízes and Cargill Foundation; Cereda, M.P., Ed.; NGO Raízes and Cargill Foundation: São Paolo, Brazil, 2004; pp. 521–553. [Google Scholar]
- Wani, A.A.; Singh, P. Application of life cycle assessment for starch and starch blends. In Starch-Based Polymeric Materials and Nanocomposites: Chemistry, Processing, and Applications; Jasim Ahmed, B.K.T., Syed, H.I., Rao, M.A., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2012; pp. 373–396. [Google Scholar]
- Ahmed, A.; Khan, F. Extraction of Starch from Taro (Colocasiaesculenta) and Evaluating it and further using Taro Starch as Disintegrating Agent in Tablet Formulation with Over All Evaluation. Inventi Rapid Nov. Excip. 2013, 2, 1–5. [Google Scholar]
- Abd-Allah, M.A.; Foda, Y.H.; Hamed, G.E. Characteristics and “Fodal”-Factor of Mango Seed Kernel Starch. Starch 1974, 26, 426–433. [Google Scholar] [CrossRef]
- Hawkes, D.L. Factors affecting net energy production from mesophilic anaerobic digestion: Anaerobic digestion. In Proceedings of the First International Symposium on Anaerobic Digestion; Applied Science Publishers: Cardiff, UK, 1980. [Google Scholar]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Ehimen, E.A.; Sun, Z.F.; Carrington, C.G.; Birch, E.J.; Eaton-Rye, J.J. Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl. Energy 2011, 88, 3454–3463. [Google Scholar] [CrossRef]
- Vilanova, P.; Noche, B. A review of the current digestate distribution models: Storage and transport. In Proceedings of the 8 International Conference on Waste Management and The Environment (WM 2016), Valencia, Spain, 7–9 June 2016; WIT Press: Valencia, Spain, 2016. [Google Scholar]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef]
- AlSeadi, T. More about Anaerobic digestion (AD). In Biogas Handbook; Seadi, T.A., Ed.; Syddansk Universitet: Esbjerg, Denmark, 2008; pp. 16–29. [Google Scholar]
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Wolfe, J. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples: Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2008; pp. 1–6.
- Ehrman, T. Standard Method for Ash in Biomass; Laboratory Analytical Procedure LAP-005; National Renewable Energy Laboratory: Golden, CO, USA, 1994; pp. 1–6.
- Eriksson, O. Environmental technology assessment of natural gas compared to biogas. In Natural Gas; Potocnik, P., Ed.; InTechOpen: London, UK, 2010; pp. 127–146. [Google Scholar]
- Montingelli, M. Development and application of a mechanical pretreatment to increase the biogas produced from Irish macroalgal biomass. In Mechanical and Manufacturing Engineering Department; Dublin City University: Dublin, Ireland, 2015. [Google Scholar]
- Al Seadi, T.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Silke Volk, R.J. Biogas Handbook; Seadi, T.A., Ed.; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008. [Google Scholar]
- Dutta, K.; Daverey, A.; Lin, J.G. Evolution retrospective for alternative fuels: First to fourth generation. Renew. Energy 2014, 69, 114–122. [Google Scholar] [CrossRef]
- Ajila, C.M.; Bhat, S.G.; Prasada Rao, U.J.S. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007, 102, 1006–1011. [Google Scholar] [CrossRef]
- Tamrat, T. Valorisation of Mango Fruit By-products: Physicochemical Characterisation and Future Prospect. Chem. Process Eng. Res. 2017, 50, 22–34. [Google Scholar]
- Mayer, F.; Adam, C.; Noo, A.; Guignard, C.; Hoffmann, L.; Delfosse, P. Monitoring volatile fatty acid production during mesophilic anaerobic digestion exposed to increasing feeding rate. In Proceedings of the Third International Symposium on Energy from Biomass and Waste, Venice, Italy, 8–11 November 2010; CISA, Environmental Sanitary Engineering Centre: Venice, Italy, 2010. [Google Scholar]
- Edwards, V.H. The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 1970, 12, 679–712. [Google Scholar] [CrossRef]
Variable Coded | Units | Limits | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Temperature (A) | °C | 32 | 35 | 38 |
Organic concentration (B) | g-VS | 1.6 | 4.05 | 6.5 |
Sludge concentration (C) | % | 20 | 35 | 50 |
Std | Run | Parameter 1 A: Temperature (°C) | Parameter 2 B: Organic Concentration (g-VS) | Parameter 3 C: Sludge Concentration (%) |
---|---|---|---|---|
1 | 12 | 32 | 1.6 | 35 |
2 | 9 | 38 | 1.6 | 35 |
3 | 13 | 32 | 6.5 | 35 |
4 | 4 | 38 | 6.5 | 35 |
5 | 8 | 32 | 4.05 | 20 |
6 | 6 | 38 | 4.05 | 20 |
7 | 15 | 32 | 4.05 | 50 |
8 | 10 | 38 | 4.05 | 50 |
9 | 1 | 35 | 1.6 | 20 |
10 | 2 | 35 | 6.5 | 20 |
11 | 3 | 35 | 1.6 | 50 |
12 | 7 | 35 | 6.5 | 50 |
13 | 5 | 35 | 4.05 | 35 |
14 | 14 | 35 | 4.05 | 35 |
15 | 11 | 35 | 4.05 | 35 |
16 | 17 | 35 | 4.05 | 35 |
17 | 16 | 35 | 4.05 | 35 |
Name | Goals | Lower Limit | Upper Limit | Importance | ||
---|---|---|---|---|---|---|
1st Criterion | 2nd Criterion | 3rd Criterion | ||||
Temp., °C | is in range | minimise | minimise | 32 | 38 | 3 |
Organic Concentration, g-VS | is in range | is in range | maximise | 1.6 | 6.5 | 3 |
Sludge Concentration, % | is in range | minimise | minimise | 20 | 50 | 3 |
Biogas, cc/g-VS | maximise | maximise | maximise | 3 | ||
CH4, % | maximise | maximise | maximise | 5 | ||
CO2, % | minimise | minimise | minimise | 3 |
Std | Run | pH Level | Biogas Vol. cc/g-VS | CH4 % | CO2 % |
---|---|---|---|---|---|
1 | 12 | 7.7 | 681.7 | 54.9 | 32.8 |
2 | 9 | 7.7 | 745.9 | 59.6 | 25.6 |
3 | 13 | 6.9 | 274.9 | 44.8 | 44.9 |
4 | 4 | 7.0 | 379.8 | 51.3 | 38.2 |
5 | 8 | 7.0 | 319.4 | 47.0 | 36.8 |
6 | 6 | 7.3 | 426.3 | 56.9 | 32.4 |
7 | 15 | 7.8 | 701.9 | 52.0 | 29.5 |
8 | 10 | 8.0 | 834.5 | 61.9 | 28.8 |
9 | 1 | 7.4 | 440.1 | 53.8 | 30.3 |
10 | 2 | 6.5 | 132.6 | 20.4 | 61.0 |
11 | 3 | 7.9 | 984.0 | 42.8 | 40.8 |
12 | 7 | 7.9 | 573.0 | 54.6 | 30.1 |
13 | 5 | 7.8 | 473.1 | 68.9 | 25.8 |
14 | 14 | 7.7 | 490.9 | 65.9 | 25.9 |
15 | 11 | 7.7 | 497.1 | 65.4 | 26.1 |
16 | 17 | 7.6 | 503.4 | 65.8 | 26.2 |
17 | 16 | 7.6 | 464.6 | 65.5 | 22.8 |
Sample no. | Temp., °C | Organic Conc., g-VS | Sludge Conc., % | pH Level | Biogas, cc/g-VS | CH4, % | CO2, % | |
---|---|---|---|---|---|---|---|---|
Actual (Controls) | 1 | 32 | 6.5 | 50 | 7.9 | 336.8 | 48.1 | 38.3 |
2 | 35 | 7.8 | 434.8 | 62.5 | 27.4 | |||
3 | 38 | 7.8 | 492 | 65.4 | 30.2 | |||
Predicted | 1 | 32 | 6.5 | 50 | 528.1 | 48.9 | 34.6 | |
2 | 35 | 542.9 | 52.8 | 32.2 | ||||
3 | 38 | 630.3 | 56.7 | 29.9 | ||||
Difference % | −56.82 | −1.71 | 9.65 | |||||
−24.85 | 15.52 | −17.62 | ||||||
−28.12 | 13.35 | 1.15 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 711,662.02 | 6 | 118,610.34 | 161.60 | 2.29E-09 2.29 × 109 | significant |
A-Temperature, °C | 20,869.25 | 1 | 20,869.25 | 28.43 | 0.000332 | |
B-Organic Conc., g-VS | 278,034.25 | 1 | 278,034.25 | 378.81 | 2.8E-9 2.8 × 109 | |
C-Sludge Conc., % | 393,828.13 | 1 | 393,828.13 | 536.57 | 5.08E-9 5.08 × 109 | |
BC | 2678.06 | 1 | 2678.06 | 3.65 | 0.085183 | |
A2 | 5575.69 | 1 | 5575.69 | 7.60 | 0.020262 | |
C2 | 9804.95 | 1 | 9804.95 | 13.36 | 0.004426 | |
Residual | 7339.77 | 10 | 733.98 | |||
Lack of Fit | 6265.58 | 6 | 1044.26 | 3.89 | 0.104812 | not significant |
Pure Error | 1074.19 | 4 | 268.55 | |||
Cor. Total | 719,001.79 | 16 | ||||
R2 = 0.99 | Pred. R2 = 0.95 | |||||
Adj. R2 = 0.98 | Adeq. Precision = 46.97 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 2210.69 | 6 | 368.449 | 79.446 | 7.43E-087.43 × 108 | significant |
A-Temperature, °C | 120.13 | 1 | 120.125 | 25.902 | 0.000471 | |
B-Organic Conc., g-VS | 200.00 | 1 | 200.000 | 43.125 | 6.34E-5 6.34 × 105 | |
C-Sludge Conc., % | 137.78 | 1 | 137.780 | 29.709 | 0.000281 | |
BC | 510.76 | 1 | 510.760 | 110.132 | 1.02E-6 1.02 × 106 | |
B2 | 676.21 | 1 | 676.213 | 145.807 | 2.75E-7 2.75 × 107 | |
C2 | 497.53 | 1 | 497.533 | 107.280 | 1.15E-6 1.15 × 106 | |
Residual | 46.38 | 10 | 4.638 | |||
Lack of Fit | 37.76 | 6 | 6.293 | 2.920 | 0.159492 | not significant |
Pure Error | 8.62 | 4 | 2.155 | |||
Cor. Total | 2257.07 | 16 | ||||
R2 = 0.98 | Pred. R2 = 0.90 | |||||
Adj. R2 = 0.97 | Adeq. Precision = 31.81 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 1390.90 | 6 | 231.817 | 62.00 | 2.47E-072.47× 107 | significant |
A-Temperature, °C | 45.13 | 1 | 45.125 | 12.07 | 0.005981 | |
B-Organic Conc., g-VS | 249.76 | 1 | 249.761 | 66.80 | 9.76E-6 9.76 × 106 | |
C-Sludge Conc., % | 122.46 | 1 | 122.461 | 32.75 | 0.000192 | |
BC | 428.49 | 1 | 428.490 | 114.60 | 8.48E-7 8.48 × 107 | |
B2 | 371.51 | 1 | 371.511 | 99.36 | 1.64E-6 1.64 × 106 | |
C2 | 145.99 | 1 | 145.994 | 39.05 | 9.52E-5 9.52 × 105 | |
Residual | 37.39 | 10 | 3.739 | |||
Lack of Fit | 29.10 | 6 | 4.850 | 2.34 | 0.215096 | not significant |
Pure Error | 8.29 | 4 | 2.073 | |||
Cor. Total | 1428.29 | 16 | ||||
R2 = 0.97 | Pred. R2 = 0.89 | |||||
Adj. R2 = 0.96 | Adeq. Precision = 28.63 |
Criterion | Temperature, °C | Organic Conc., g-VS | Sludge Conc., % | Biogas, cc/g-VS | CH4, % | CO2, % |
---|---|---|---|---|---|---|
1st | 38.00 | 3.53 | 46.00 | 804.88 | 65.66 | 24.41 |
2nd | 32.00 | 2.51 | 33.36 | 561.96 | 60.33 | 27.99 |
3rd | 32.00 | 3.93 | 37.02 | 510.59 | 62.49 | 27.41 |
Criterion | Energy Consumed, kWh | VS Weight, g | Bs, kWh/m3 | Ep, kWh/g-VS | Ec, kWh/g-VS | Net Ep, kWh/g-VS | Energy Gain/Loss, % |
---|---|---|---|---|---|---|---|
1st | 83.3 | 3.53 | 6.35 | 0.38 | 0.31 | 0.069 | 21.9 |
2nd | 41.3 | 2.51 | 5.83 | 0.25 | 0.22 | 0.026 | 12.0 |
3rd | 41.3 | 3.93 | 6.04 | 0.23 | 0.14 | 0.091 | 65.0 |
Item | Quantity | Unit |
---|---|---|
Total Phosphorous (P) | 762 | mg/kg |
Potassium (K) | 1251 | mg/kg |
Total Nitrogen (N) | 3951 | mg/kg |
Dry matter | 3.2 | g/100 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrefai, R.; Alrefai, A.M.; Benyounis, K.Y.; Stokes, J. Enhancing the Economic Viability of Anaerobic Digestion by Exploiting the Whole Biomass of Mango Waste and Its Residues after Digestion. Energies 2020, 13, 6683. https://doi.org/10.3390/en13246683
Alrefai R, Alrefai AM, Benyounis KY, Stokes J. Enhancing the Economic Viability of Anaerobic Digestion by Exploiting the Whole Biomass of Mango Waste and Its Residues after Digestion. Energies. 2020; 13(24):6683. https://doi.org/10.3390/en13246683
Chicago/Turabian StyleAlrefai, R., A.M. Alrefai, K.Y. Benyounis, and J. Stokes. 2020. "Enhancing the Economic Viability of Anaerobic Digestion by Exploiting the Whole Biomass of Mango Waste and Its Residues after Digestion" Energies 13, no. 24: 6683. https://doi.org/10.3390/en13246683
APA StyleAlrefai, R., Alrefai, A. M., Benyounis, K. Y., & Stokes, J. (2020). Enhancing the Economic Viability of Anaerobic Digestion by Exploiting the Whole Biomass of Mango Waste and Its Residues after Digestion. Energies, 13(24), 6683. https://doi.org/10.3390/en13246683