Synthesis, Crystal Structure, and Ionic Conductivity of MgAl2-xGaxCl8 and MgGa2Cl7Br
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Patterns and Crystal Structure
3.2. AC Conductivity
3.3. X-ray Fluorescence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable batteries. J. Power Sources 2011, 196, 6688–6694. [Google Scholar] [CrossRef]
- Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724. [Google Scholar] [CrossRef]
- Saha, P.; Datta, M.K.; Velikokhatnyi, O.I.; Manivannan, A.; Alman, D.; Kumta, P.N. Rechargeable magnesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1–86. [Google Scholar] [CrossRef]
- Matsui, M. Study on electrochemically deposited Mg metal. J. Power Sources 2011, 196, 7048–7055. [Google Scholar] [CrossRef]
- Gregory, T.; Hoffman, R.J.; Winterton, R.C. Nonaqueous Electrochemistry of Magnesium: Applications to Energy Storage. J. Electrochem. Soc. 1990, 137, 775–780. [Google Scholar] [CrossRef]
- Orikasa, Y.; Masese, T.; Koyama, Y.; Mori, T.; Hattori, M.; Yamamoto, K.; Okado, T.; Huang, Z.D.; Minato, T.; Tassel, C.; et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 2014, 4, 5622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagane, F.; Ogi, K.; Konno, A.; Egashira, M.; Kanamura, K. The Effect of the Cyclic Ether Additives to the Ethereal Electrolyte Solutions for Mg Secondary Battery. Electrochemistry 2016, 84, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Omote, A.; Yotsuhashi, S.; Zenitani, Y.; Yamada, Y. High Ion Conductivity in MgHf (WO4)3 Solids with Ordered Structure: 1-D Alignments of Mg2+ and Hf4+ Ions. J. Am. Ceram. Soc. 2011, 94, 2285–2288. [Google Scholar] [CrossRef]
- Tamura, S.; Yamane, M.; Hoshino, Y.; Imanaka, N. Highly conducting divalent Mg2þ cation solid electrolytes with well-ordered three-dimensional network structure. J. Solid State Chem. 2016, 235, 7–11. [Google Scholar] [CrossRef]
- Yamanaka, T.; Hayashi, A.; Yamauchi, A.; Tatsumisago, M. Preparation of magnesium ion conducting MgS–P2S5–MgI2 glasses by a mechanochemical technique. Solid State Ion. 2014, 262, 601–603. [Google Scholar] [CrossRef]
- Ruyet, R.L.; Berthelot, R.; Salager, E.; Florian, P.; Fleutot, B.; Janot, R. Investigation of Mg(BH4)(NH2)-Based Composite Materials with Enhanced Mg2+ Ionic Conductivity. J Phys. Chem. C 2019, 123, 10756–10763. [Google Scholar] [CrossRef]
- Kisu, K.; Kim, S.; Inukai, M.; Oguchi, H.; Takagi, S.; Orimo, S. Magnesium Borohydride Ammonia Borane as a Magnesium Ionic Conductor. ACS Appl. Energy Mater. 2020, 3, 3174–3179. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, R.; Yang, S.; Ma, H.; Liang, J.; Chen, J. Rechargeable Mg Batteries with Graphene-like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode. Adv. Mater. 2011, 23, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Truong, Q.D.; Devaraju, M.K.; Tran, P.D.; Gambe, Y.; Nayuki, K.; Sasaki, Y.; Honma, I. Unravelling the Surface Structure of MgMn2O4 Cathode Materials for Rechargeable Magnesium-Ion Battery. Chem. Mater. 2017, 29, 6245–6251. [Google Scholar] [CrossRef]
- Tomita, Y.; Ohki, H.; Yamada, K.; Okuda, T. Ionic conductivity and structure of halocomplex salts of group 13 elements. Solid State Ion. 2000, 136–137, 351–355. [Google Scholar] [CrossRef]
- Weppner, W.; Huggins, R.A. Ionic conductivity of alkali metal chloroaluminates. Phys. Lett. A 1976, 58, 245–248. [Google Scholar] [CrossRef]
- Mairesse, G.; Barbier, P.; Wignacourt, J.P. Comparison of the crystal structures of alkaline (M = Li,Na,K,Rb,Cs) and pseudo-alkaline (M = NO,NH4) tetrachloroaluminates, MAlCl4. Acta. Cryst. B 1979, 35, 1573–1580. [Google Scholar] [CrossRef]
- Tomita, Y.; Yamada, K.; Ohki, H.; Okuda, T. Structure and Dynamics of Li3InBr6 and NaInBr4 by Means of Nuclear Magnetic Resonance. Bull. Chem. Soc. Jpn. 1997, 70, 2405–2410. [Google Scholar] [CrossRef]
- Einarsrud, M.A.; Justnes, H.; Rytter, E.; Øye, H.A. Structure and stability of solid and molten complexes in the MgCl2-AlCl3 system. Polyhedron 1987, 6, 975–986. [Google Scholar] [CrossRef]
- Izumi, F.; Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007, 130, 15–20. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Study of Inter Atomic Distances in Halides and Chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Chandra, S. Superionic Solid, Principles and Applications; North-Holland Publishing Company: Amsterdam, The Netherlands, 1981; p. 225. [Google Scholar]
- Imanaka, N.; Okazaki, Y.; Adachi, G. Divalent Magnesium Ionic Conduction in Mg1−2x(Zr1−xNbx)4P6O24(x = 0–0.4) Solid Solutions. Electrochem. Solid-State Lett. 2000, 3, 327. [Google Scholar] [CrossRef]
Compounds | Lattice Parameter | Bond Length (Avg.) | ||||
---|---|---|---|---|---|---|
a/Å | b/Å | c/Å | β/° | Mg-Cl/Å | M 1-Cl/Å | |
MgAl2Cl8 | 12.856(1) | 7.886(1) | 11.609(1) | 92.35(1) | 2.501 | 2.153 |
MgAl1.5Ga0.5Cl8 | 12.881(1) | 7.870(1) | 11.643(1) | 92.24(1) | 2.518 | 2.178 |
MgAlGaCl8 | 12.890(1) | 7.851(1) | 11.660(2) | 91.92(1) | 2.513 | 2.206 |
MgAl0.5Ga1.5Cl8 | 12.879(1) | 7.814(1) | 11.668(2) | 91.77(1) | 2.538 | 2.224 |
MgGa2Cl8 | 12.890(1) | 7.782(1) | 11.683(2) | 91.96 (1) | 2.560 | 2.220 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomita, Y.; Saito, R.; Nagata, A.; Yamane, Y.; Kohno, Y. Synthesis, Crystal Structure, and Ionic Conductivity of MgAl2-xGaxCl8 and MgGa2Cl7Br. Energies 2020, 13, 6687. https://doi.org/10.3390/en13246687
Tomita Y, Saito R, Nagata A, Yamane Y, Kohno Y. Synthesis, Crystal Structure, and Ionic Conductivity of MgAl2-xGaxCl8 and MgGa2Cl7Br. Energies. 2020; 13(24):6687. https://doi.org/10.3390/en13246687
Chicago/Turabian StyleTomita, Yasumasa, Ryo Saito, Ayaka Nagata, Yohei Yamane, and Yoshiumi Kohno. 2020. "Synthesis, Crystal Structure, and Ionic Conductivity of MgAl2-xGaxCl8 and MgGa2Cl7Br" Energies 13, no. 24: 6687. https://doi.org/10.3390/en13246687
APA StyleTomita, Y., Saito, R., Nagata, A., Yamane, Y., & Kohno, Y. (2020). Synthesis, Crystal Structure, and Ionic Conductivity of MgAl2-xGaxCl8 and MgGa2Cl7Br. Energies, 13(24), 6687. https://doi.org/10.3390/en13246687