A Genetic Algorithm Approach as a Self-Learning and Optimization Tool for PV Power Simulation and Digital Twinning
Abstract
:1. Introduction
- Offer a very accurate GA approach to learn and optimize unknown basic parameters of a PV system based on measured PV power data.
- Show the impact different data set sizes have on digital twinning.
- Create a precise digital twin of a PV system using either all-sky or clear-sky conditions as training data for now-casting purposes.
2. Previous Work
2.1. Machine Learning and Optimization in the PV Modelling Domain
2.2. Evaluation Metrics
3. Methodology and Data
3.1. Methods
3.1.1. PV System Simulation
Irradiance Transposition Mode, Albedo, and AOI Effect
DC Power
AC Power
3.1.2. PV System Parameters Optimization
- The initialization step creates a vector of different PV plants configurations (members), assigning random values (also known as population) based on the initial value to be optimized (initial parameters), with a randomness percentage defined beforehand. The PV power configuration can differ from several elements or only one.
- In the fitness scoring step, every single PV plant configuration of the population is compared with the monitoring data, evaluated, and a score is assigned based on the loss function defined.
- In the fit selection step, some PV plant configurations of the population are stochastically selected based on their scores; the higher the score, the higher the probability to be selected and passed to the next population.
- In the crossover step, some pairs of PV plant configurations resulting from the fit selection step are selected stochastically and their parameters are randomly combined. Hence, new PV plant configurations are added to the new population.
- In the mutation step, some parameters of the PV plant configurations are mutated due to a mutation probability assigned randomly to each parameter of every PV power plant configuration of the next generation.
- Finally, the next population is repopulated based on the parameters of the best PV plant configuration of the current population. The process stops when the stop criteria have been met; the stop criteria is defined in detail further in this section.
Irradiance Transposition Mode, Albedo, and AOI Effect
DC Power
AC Power
3.1.3. Clear-Sky Detection
- We used a Python function called detect_clearsky, available in PVLib library [38], to compare the statistical clear-sky curve based on measured PV power, with actual measured PV power. Hence, we were able to identify the clear-sky-like periods in the time series data set. It is important to mention that the parameters of the Python function were tuned by trial and error based on the input data, as suggested by [18].
3.2. Data Used in This Article
3.2.1. Weather Data
3.2.2. PV Power Measured Data
3.2.3. Initial Parameters
- Nominal power = 1 kWp
- Tilt angle = 25°
- Azimuth angle = 180° (south oriented)
- Albedo = 0.2
- Temperature coefficient = −0.43%/°C
- DC to AC ratio = 1
4. Results and Discussion
4.1. PV System Parametrization
4.2. Digital Twin Now-Casting
4.3. Limitations
4.4. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Energy Agency. Trends in Photovoltaic Applications; Technical Report No. IEA PVPS T1-36; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Wood Mackenzie. Ami Global Forecast 2019–2024; Technical Report No. H1 2019; Wood Mackenzie: Edinburgh, UK, 2020. [Google Scholar]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Ding, M.; Wang, L.; Bi, R. An ANN-based approach for forecasting the power output of photovoltaic system. Proc. Environ. Sci. 2011, 11, 1308–1315. [Google Scholar] [CrossRef] [Green Version]
- Mandal, P.; Madhira, S.T.S.; Haque, A.U.; Meng, J.; Pineda, R.L. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Proc. Comput. Sci. 2012, 12, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, I.A.; Mohamed, A.; Khatib, T. Modeling of photovoltaic array using random forests technique. In Proceedings of the IEEE Conference on Energy Conversion, Johor Bahru, Malaysia, 19–20 October 2015. [Google Scholar]
- Landelius, T.; Andersson, S.; Abrahamsson, R. Modelling and forecasting PV production in the absence of behind-the-meter measurements. Prog. Photovolt Res. Appl. 2019, 27, 990–998. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.; Fernandez-Jimenez, L.A.; Ramirez-Rosado, I.J.; Muñoz-Jimenez, A.; Lara-Santillan, P.M. Short-term forecasting models for photovoltaic plants: Analytical vs. soft-computing techniques. Math. Probl. Eng. 2013, 2013, 767284. [Google Scholar] [CrossRef] [Green Version]
- Yona, A.; Senjyu, T.; Saber, A.Y.; Funabashi, T.; Sekine, H.; Kim, C.H. Application of neural network to 24-hour-ahead generating power forecasting for PV system. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting, Pittsburgh, PA, USA, 20–24 July 2008. [Google Scholar]
- Da Silva Fonseca, J.G.; Oozeki, T.; Takashima, T.; Koshimizu, G.; Uchida, Y.; Ogimoto, K. Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan. Prog. Photovolt: Res. Appl. 2012, 20, 874–882. [Google Scholar] [CrossRef]
- Dolara, A.; Grimaccia, F.; Leva, S.; Mussetta, M.; Ogliari, E. A physical hybrid artificial neural network for short term forecasting of pv plant power output. Energies 2015, 8, 1138. [Google Scholar] [CrossRef] [Green Version]
- Muhsen, D.H.; Ghazali, A.B.; Khatib, T.; Abed, I.A. A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module’s model. Renew. Energy 2016, 96, 377–389. [Google Scholar] [CrossRef]
- Ma, J.; Bi, Z.; Ting, T.O.; Hao, S.; Hao, W. Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms. Sol. Energy 2016, 132, 606–616. [Google Scholar] [CrossRef]
- Kichou, S.; Silvestre, S.; Guglielminotti, L.; Mora-López, L.; Muñoz-Cerón, E. Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification. Renew. Energy 2016, 99, 270–279. [Google Scholar] [CrossRef]
- Bastidas-Rodriguez, J.D.; Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G. A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel. Math. Comput. Simul. 2017, 131, 38–54. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Convers. Manag. 2013, 73, 10–25. [Google Scholar] [CrossRef]
- Saint-Drenan, Y.M.; Bofinger, S.; Fritz, R.; Vogt, S.; Good, G.H.; Dobschinski, J. An empirical approach to parameterizing photovoltaic plants for power forecasting and simulation. Sol. Energy 2015, 120, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Killinger, S.; Engerer, N.; Müller, B. QCPV: A quality control algorithm for distributed photovoltaic array power output. Sol. Energy 2017, 143, 120–131. [Google Scholar] [CrossRef]
- Mason, K.; Reno, M.J.; Blakely, L.; Vejdan, S.; Grijalva, S. A deep neural network approach for behind-the-meter residential PV size, tilt and azimuth estimation. Sol. Energy 2020, 196, 260–269. [Google Scholar] [CrossRef]
- Müller, B.; Hardt, L.; Armbruster, A.; Kiefer, K.; Reise, C. Yield predictions for photovoltaic power plants: Empirical validation, recent advances and remaining uncertainties. Prog. Photovolt Res. Appl. 2016, 24, 570–583. [Google Scholar] [CrossRef]
- Dirnberger, D.; Müller, B.; Reise, C. PV module energy rating: Opportunities and limitations. Prog. Photovolt Res. Appl. 2015, 23, 1754–1770. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Klucher, T.M. Evaluation of models to predict insolation on tilted surfaces. Sol. Energy 1979, 23, 111–114. [Google Scholar] [CrossRef]
- Hay, J.E. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Sol. Energy 1979, 23, 301–307. [Google Scholar] [CrossRef]
- Gueymard, C. An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithms. Sol. Energy 1987, 38, 367–386. [Google Scholar] [CrossRef]
- Martín, N.; Ruiz, J.M. A new model for PV modules angular losses under field conditions. Int. J. Sol. Energy 2002, 22, 19–31. [Google Scholar] [CrossRef]
- Heydenreich, W.; Müller, B.; Reise, C. Describing the world with three parameters: A new approach to PV module power modelling. In Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 1–5 September 2008; pp. 2786–2789. [Google Scholar]
- Müller, B.; Kräling, U.; Heydenreich, W.; Reise, C.; Kiefer, K. Simulation of irradiation and temperature dependent efficiency of thin film and crystalline silicon modules based on different parameterization. In Proceedings of the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 6–10 September 2010; pp. 4240–4243. [Google Scholar]
- Müller, B.; Heydenreich, W.; Kiefer, K.; Reise, C. More Insights from the monitoring of real world PV power plants—A comparison of measured to predicted performance of PV systems. In Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21–25 September 2009; pp. 3888–3892. [Google Scholar]
- Müller, B.; Reise, C.; Heydenreich, W.; Kiefer, K. Are Yield Certificates Reliable? A Comparison to Monitored Real World Results. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milano, Italy, 3–7 September 2007. [Google Scholar]
- Schmidt, H.; Sauer, D. Wechselrichter-wirkungsgrade—Praxisgerechte modellierung und abschätzung. Sonnenenergie 1994, 1996, 154. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975; ISBN 0472084607. [Google Scholar]
- Lorenz, E.; Hurka, J.; Heinemann, D.; Beyer, H.G. Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 2–10. [Google Scholar] [CrossRef]
- Lonij, V.P.A.; Jayadevan, V.T.; Brooks, A.E.; Rodriguez, J.J.; Koch, K.; Leuthold, M.; Cronin, A.D. Forecasts of PV power output using power measurements of 80 residential PV installs. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Reno, M.J.; Hansen, C.W. Identification of periods of clear sky irradiance in time series of GHI measurements. Renew. Energy 2016, 90, 520–531. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.S.; Hansen, C.W.; Reno, M.J. Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis; Technical Report No. 2012–2389; Sandia National Labaratories: Albuquerque, NM, USA, 2012. [Google Scholar]
- Holmgren, W.; Calama-Consulting; Lorenzo, T.; Hansen, C.; Mikofski, M.; Krien, U.; Bmu; DaCoEx; Driesse, A.; Konstant_t; et al. Pvlib/Pvlib-Python, v0.7.1; Zenodo; 2020. [Google Scholar]
- Suri, M.; Cebecauer, T.; Skoczek, A. SolarGIS: Solar data and online applications for PV planning and performance assessment. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 5–9 September 2011; pp. 3930–3934. [Google Scholar]
- Louwen, A.; de Waal, A.C.; Schropp, R.E.I.; Faaij, A.P.C.; van Sark, W.G.J.H.M. Comprehensive characterisation and analysis of PV module performance under real operating conditions. Prog. Photovolt Res. Appl. 2017, 25, 218–232. [Google Scholar] [CrossRef]
- Ernst, M.; Thomson, A.; Haedrich, I.; Blakers, A. Comparison of Ground-based and Satellite-based Irradiance Data for Photovoltaic Yield Estimation. Energy Proc. 2016, 92, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Dürr, B.; Zelenka, A. Deriving surface global irradiance over the Alpine region from METEOSAT Second Generation data by supplementing the HELIOSAT method. Int. J. Remote Sens. 2009, 30, 5821–5841. [Google Scholar] [CrossRef]
- Jordan, D.C.; Kurtz, S.R.; VanSant, K.; Newmiller, J. Compendium of photovoltaic degradation rates. Prog. Photovolt Res. Appl. 2016, 24, 978–989. [Google Scholar] [CrossRef]
- Kiefer, K.; Farnung, B.; Müller, B.; Reinartz, K.; Rauschen, I.; Klünter, C. Degradation in PV power plants: Theory and practice. In Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France, 9–13 September 2018; pp. 1331–1335. [Google Scholar]
- Liu, B.Y.H.; Jordan, R.C. The long-term average performance of flat-plate solar-energy collectors. Sol. Energy 1963, 7, 53–74. [Google Scholar] [CrossRef]
- Ineichen, P.; Guisan, O.; Perez, R. Ground-reflected radiation and albedo. Sol. Energy 1990, 44, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Ineichen, P.; Perez, R.; Seals, R. The importance of correct albedo determination for adequately modeling energy received by tilted surfaces. Sol. Energy 1987, 39, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M. Ground Albedo: An Introduction to Solar Radiation; Elsevier: Amsterdam, The Netherlands, 1983; pp. 281–293. ISBN 9780123737502. [Google Scholar]
Parameter | Value |
---|---|
Tilt angle (°) | 20 |
Azimuth angle (°) | 181 |
Albedo | 0.2 |
Temperature coefficient (%/°C) | −0.43 |
Heydenreich a | 0.001084 |
Heydenreich b | −7.247061 |
Heydenreich c | −156.5457 |
DC to AC ratio | 1.04 |
Nominal power (kWp) | 553 |
Training Data Set Length | |||||||
---|---|---|---|---|---|---|---|
Parameter | Error Metric | All-Sky Conditions | Clear-Sky Conditions | ||||
30 Days | 60 Days | 90 Days | 30 Days | 60 Days | 90 Days | ||
Nominal Power | Reported (kWp) | 553 | 553 | ||||
Mean (kWp) | 468.76 | 890.13 | 954.05 | 509.19 | 517.5 | 503.17 | |
MBD (kWp) | −84.24 | 337.13 | 401.05 | −43.81 | −35.5 | −49.83 | |
MAPD (%) | 16.94 | 88.14 | 90.73 | 9.92 | 9.95 | 10.69 | |
RMSD (kWp) | 125.46 | 2073.5 | 1995.17 | 64.33 | 66.2 | 65.31 | |
Azimuth | Reported (°) | 181 | 181 | ||||
Mean (°) | 185.79 | 183.09 | 204.09 | 187.37 | 185.06 | 183.47 | |
MBD (°) | 4.79 | 2.09 | 23.09 | 6.37 | 4.06 | 2.47 | |
MAPD (%) | 6.63 | 8.55 | 13.51 | 4.58 | 4.24 | 2.53 | |
RMSD (°) | 22.18 | 33.43 | 50.81 | 13.91 | 15.79 | 9.3 | |
Tilt | Reported (°) | 20 | 20 | ||||
Mean (°) | 29.06 | 29.95 | 22.65 | 17.71 | 17.13 | 17.71 | |
MBD (°) | 9.06 | 9.95 | 2.65 | −2.29 | −2.87 | −2.29 | |
MAPD (%) | 66.16 | 77.56 | 52.12 | 28.23 | 25.83 | 17.71 | |
RMSD (°) | 25.72 | 38.88 | 26.02 | 7.29 | 6.72 | 5.1 | |
Albedo | Reported | 0.2 | 0.2 | ||||
Mean | 1.46 | 0.26 | 1.43 | 0.19 | 0.18 | 0.18 | |
MBD | 1.26 | 0.06 | 1.23 | −0.01 | −0.02 | −0.02 | |
MAPD (%) | 659.04 | 59.42 | 633.46 | 30.58 | 36.15 | 31.15 | |
RMSD | 8.02 | 0.34 | 6.85 | 0.08 | 0.09 | 0.07 | |
Temperature coefficient | Reported (%/°C) | −0.43 | −0.43 | ||||
Mean (%/°C) | −1.87 | −97.69 | −0.28 | −0.42 | −0.41 | −0.34 | |
MBD (%/°C) | −1.44 | −97.26 | 0.15 | 0.01 | 0.02 | 0.09 | |
MAPD (%) | 428.71 | 22702.5 | 46.15 | 39.04 | 35.87 | 28.89 | |
RMSD (%/°C) | 11.52 | 496.7 | 0.25 | 0.28 | 0.23 | 0.18 | |
DC to AC | Reported | 1.04 | 1.04 | ||||
Mean | 0.74 | 0.73 | 0.9 | 0.67 | 0.73 | 0.68 | |
MBD | −0.3 | −0.31 | −0.14 | −0.37 | −0.31 | −0.35 | |
MAPD (%) | 38.05 | 37.94 | 69.62 | 47.12 | 44.84 | 44.01 | |
RMSD | 0.5 | 0.53 | 1.72 | 0.57 | 0.58 | 0.57 |
Parameter | All-sky | Clear-Sky |
---|---|---|
Heydenreich a | 0.011515 | 0.003708 |
Heydenreich b | −11.160905 | −14.834605 |
Heydenreich c | −173.888934 | −208.739158 |
Parameter | Reported Value | Optimized Value (MBD) |
---|---|---|
Tilt angle (°) | 20 | 19.6 |
Azimuth angle (°) | 181 | 180.24 |
Albedo factor | 0.2 | 0.13 |
Temperature coefficient (%/°C) | −0.43 | −0.41 |
Heydenreich a | 0.001084 | 0.003708 |
Heydenreich b | −7.247061 | −14.834605 |
Heydenreich c | −156.5457 | −208.739158 |
DC to AC ratio | 1.04 | 0.87 |
Nominal power (kWp) | 553 | 482.9 |
Error Metric | Training Data Set Length | ||
---|---|---|---|
30 Days | 60 Days | 90 Days | |
All-sky conditions | |||
MBD (W/kWp) | −9.01 | 28.12 | −7.79 |
MAPD (%) | 6.18 | 10.59 | 5.74 |
RMSD (W/kWp) | 44.04 | 45.92 | 48.67 |
Clear-sky conditions | |||
MBD (W/kWp) | 1.53 | −1.3 | −0.39 |
MAPD (%) | 5.2 | 5.3 | 5.4 |
RMSD (W/kWp) | 41.32 | 41.96 | 41.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzman Razo, D.E.; Müller, B.; Madsen, H.; Wittwer, C. A Genetic Algorithm Approach as a Self-Learning and Optimization Tool for PV Power Simulation and Digital Twinning. Energies 2020, 13, 6712. https://doi.org/10.3390/en13246712
Guzman Razo DE, Müller B, Madsen H, Wittwer C. A Genetic Algorithm Approach as a Self-Learning and Optimization Tool for PV Power Simulation and Digital Twinning. Energies. 2020; 13(24):6712. https://doi.org/10.3390/en13246712
Chicago/Turabian StyleGuzman Razo, Dorian Esteban, Björn Müller, Henrik Madsen, and Christof Wittwer. 2020. "A Genetic Algorithm Approach as a Self-Learning and Optimization Tool for PV Power Simulation and Digital Twinning" Energies 13, no. 24: 6712. https://doi.org/10.3390/en13246712
APA StyleGuzman Razo, D. E., Müller, B., Madsen, H., & Wittwer, C. (2020). A Genetic Algorithm Approach as a Self-Learning and Optimization Tool for PV Power Simulation and Digital Twinning. Energies, 13(24), 6712. https://doi.org/10.3390/en13246712