An Experimental Investigation of the Impact of Washcoat Composition on Gasoline Particulate Filter (GPF) Performance
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Washcoat Powder Material Bulk Density
3.2. Catalysts Coating
4. Conclusions
- The bulk density of powder materials employed in GPF washcoat had a great influence on the backpressure. High bulk density materials resulted in a low washcoat volume and hence the decrease of flow resistance and backpressure. The PN filtration can also be improved using high bulk density powder materials due to the more dispersed distribution of the inner coating.
- The kind of different coatings, which included coating directions, coating length, and coating amount, had notable influence on the backpressure and PN filtration efficiency. T-50% has been experimentally confirmed as the optimum catalyst coating, which meets both the lower backpressure and PN filtration ratio that fulfilled the development requirements.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PN | Particulate Number |
PM | Particulate Matter |
GDI | Gasoline Direct Injection |
RDE | Real Driving Emissions |
GPF | Gasoline Particulate Filter |
PFI | Port Fuel Injection |
NEDC | New European Driving Cycle |
DPF | Diesel Particulate Filter |
MPS | Mean Pore Size |
AFR | Air Fuel Ratios |
PGM | Platinum Group Metals |
TWC | Three-Way-Catalyst |
WLTC | Worldwide harmonized Light vehicles Test Cycle |
SEM | Scanning Electron Microscope |
References
- Caggiano, M. Technology road map in the next decade for gasoline engine. In Proceedings of the 8th International Conference Powertrain Technologies for CO2, ATA 2010, Turin, Italy, 17–18 November 2010. [Google Scholar]
- Berkemeier, O.; Grieser, K.; Hohenboeken, K.; Karvounis, E.; Springer, K.M. Strategies to Control Particulate Emissions of Gasoline Direct Injection Engines. In Proceedings of the FISITA 2012 World Automotive Congress, Beijing, China, 27–30 November 2012. [Google Scholar]
- Chan, T.W.; Meloche, E.; Rosenblatt, D.; Kubsh, J.; Brezny, R.; Rideout, G. Reducing Particulate Emissions for Future Gasoline Direct Injection Vehicles with a Gasoline Particulate Filter. In Proceedings of the ETH Conference on Combustion Generated Nanoparticles, Zürich, Switzerland, 24–27 June 2012. [Google Scholar]
- Friedrich, A. Particles from Gasoline Direct Injection Engines: Abatement Options. In Proceedings of the ETH Conference on Combustion Generated Nanoparticles, Zürich, Switzerland, 23–26 June 2013. [Google Scholar]
- Limits and Measurement Methods for Emissions from Light-Duty Vehicles (CHINA 6). 23 December 2016. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqydywrwpfbz/201612/W020171207355626647621.pdf (accessed on 31 January 2020).
- Piock, W.; Hoffmann, G.; Berndorfer, A.; Salemi, P.; Fusshoeller, B. Strategies Towards Meeting Future Particulate Matter Emission Requirements in Homogeneous Gasoline Direct Injection Engines. SAE Int. J. Engines 2011, 4, 1455–1468. [Google Scholar] [CrossRef]
- Heiduk, T.; Stichlmeir, M.; Unselt, F.; Kuhn, M. The New 1.8L TFSI Engine from Audi-Part 2: Mixture Formation, Combustion Method and Turbocharging. MTZ Worldw. eMag. 2011, 72, 58–64. [Google Scholar] [CrossRef]
- Klauer, N.; Kluting, M.; Schunemann, E.; Schwarz, C.; Steinparzer, F. BMW Twin Power Turbo Gasoline Engine Technology-Enabling Compliance with worldwide Exhaust Gas Emission Requirements. In Proceedings of the 34th International Vienna Motor Symposium, Vienna, Austria, 25–26 April 2013. [Google Scholar]
- Merdes, N.; Enderle, C.; Vent, G.; Weller, R. The New Turbocharged Four-cylinder Gasoline Engine by Mer-cedes-Benz. MTZ Worldw. eMag. 2011, 72, 16–23. [Google Scholar] [CrossRef]
- Ohara, E.; Mizuno, Y.; Miyairi, Y.; Mizutani, T.; Yuuki, K.; Noguchi, Y.; Hiramatsu, T.; Makino, M.; Takahashi, A.; Sakai, H.; et al. Filtration Behavior of Diesel Particulate Filters (1). SAE Tech. Pap. 2007. [Google Scholar] [CrossRef]
- Richter, J.; Klingmann, R.; Spiess, S.; Wong, K. Application of Catalyzed Gasoline Particulate Filters to GDI Vehicles. SAE Int. J. Engines 2012, 5, 1361–1370. [Google Scholar] [CrossRef]
- Saito, C.; Nakatani, T.; Miyairi, Y.; Yuuki, K.; Makino, M.; Kurachi, H.; Heuss, W.; Kuki, T.; Furuta, Y.; Kattouah, P.; et al. New Particulate Filter Concept to Reduce Particle Number Emissions. SAE Tech. Pap. 2011. [Google Scholar] [CrossRef]
- Shimoda, T.; Ito, Y.; Saito, C.; Nakatani, T.; Shibagaki, Y.; Yuuki, K.; Sakamoto, H.; Vogt, C.; Matsumoto, T.; Furuta, Y.; et al. Potential of a Low Pressure Drop Filter Concept for Direct Injection Gasoline Engines to Reduce Particulate Number Emission. SAE Tech. Pap. 2012. [Google Scholar] [CrossRef]
- Inoda, S.; Nomura, Y.; Ori, H.; Yabuzaki, Y. Development of New Coating Technology Optimized for Each Function of Coated GPF. SAE Tech. Pap. 2017. [Google Scholar] [CrossRef]
- Ogyu, K.; Ogasawara, T.; Nagatsu, Y.; Yamamoto, Y.; Higuchi, T.; Ohno, K. Feasibility Study on the Filter Design of Re-Crystallized SiC-GPF for TWC Coating Application. SAE Tech. Pap. 2015. [Google Scholar] [CrossRef]
- Ito, Y.; Shimoda, T.; Aoki, T.; Yuuki, K.; Sakamoto, H.; Kato, K.; Thier, D.; Kattouah, P.; Ohara, E.; Vogt, C. Next Generation of Ceramic Wall Flow Gasoline Particulate Filter with Integrated Three Way Catalyst. SAE Tech. Pap. 2015. [Google Scholar] [CrossRef]
Measurement Equipment | SF-1020 Probench |
Flow Measurement Accuracy | ±0.5% of reading in normal operating ranges |
Repeatability | ±0.25% of reading |
Range | 0–1000 cfm |
Temp. Measurement Accuracy | ±0.3% °C |
Measurement Equipment | SF-1020 Probench |
Temperature | 25 °C |
Atmosphere Pressure | 1 atm |
Air flow rate | 200 kg/h, 300 kg/h, 400 kg/h, 500 kg/h, 600 kg/h |
GPF size | Φ132.1 mm × 127mm 1.74 L |
Cell structure | 300 cpsi/8 mil |
Porosity | Approx. 65% |
Mean Pore Size | Approx. 20 um |
Catalyst amount | 100 g/L |
Vehicle reference mass | 1460 kg |
Engine | 1.4 L TGDI |
Test driving cycle | WLTC |
Closed-coupled TWC | Φ118.4 mm × L60 mm, 200 g/L 0/47/3 Fresh |
Under-floor catalyzed GPF | Φ118.4 mm × L127 mm, 100 g/L 0/7/3 Fresh |
Aluminum Oxide | Cerium Zirconium Composite Oxides | |
---|---|---|
GPF-A | 0.37 | 0.27 |
GPF-B | 0.76 | 0.55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yan, F.; Fang, N.; Yan, D.; Zhang, G.; Wang, Y.; Yang, W. An Experimental Investigation of the Impact of Washcoat Composition on Gasoline Particulate Filter (GPF) Performance. Energies 2020, 13, 693. https://doi.org/10.3390/en13030693
Wang J, Yan F, Fang N, Yan D, Zhang G, Wang Y, Yang W. An Experimental Investigation of the Impact of Washcoat Composition on Gasoline Particulate Filter (GPF) Performance. Energies. 2020; 13(3):693. https://doi.org/10.3390/en13030693
Chicago/Turabian StyleWang, Junjun, Fuwu Yan, Na Fang, Dong Yan, Guoqing Zhang, Yu Wang, and Wulin Yang. 2020. "An Experimental Investigation of the Impact of Washcoat Composition on Gasoline Particulate Filter (GPF) Performance" Energies 13, no. 3: 693. https://doi.org/10.3390/en13030693
APA StyleWang, J., Yan, F., Fang, N., Yan, D., Zhang, G., Wang, Y., & Yang, W. (2020). An Experimental Investigation of the Impact of Washcoat Composition on Gasoline Particulate Filter (GPF) Performance. Energies, 13(3), 693. https://doi.org/10.3390/en13030693