Elasticity Analysis of Fossil Energy Sources for Sustainable Economies: A Case of Gasoline Consumption in Turkey
Abstract
:1. Introduction
2. Background of Gasoline Consumption in Turkey
3. Literature Review on Gasoline Demand
4. Theoretical Framework
5. Econometric Methodology
5.1. Unit Root and Cointegration Tests
5.2. Long- and Short-Run Estimations
6. Data
7. Empirical Estimation Results
7.1. Unit-root Test Results
7.2. Cointegration Tests’ Results
7.3. Long and Short-Run Estimation Results
8. Discussion of the Empirical Outcomes
Discussion of Empirical Estimation Results
9. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehmann, P.; Gawel, E.; Strunz, S. EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable? In The European Dimension of Germany’s Energy Transition; Springer: Cham, Switzerland, 2019; pp. 11–26. [Google Scholar]
- Johansson, P.O.; Kriström, B. Welfare evaluation of subsidies to renewable energy in general equilibrium: Theory and application. Energy Econ. 2019, 83, 144–155. [Google Scholar] [CrossRef]
- Jin, J.; McKelvey, M. Building a sectoral innovation system for new energy vehicles in Hangzhou, China: Insights from evolutionary economics and strategic niche management. J. Clean. Prod. 2019, 224, 1–9. [Google Scholar] [CrossRef]
- Chen, C.; Polemis, M.; Stengos, T. Can exchange rate pass-through explain the asymmetric gasoline puzzle? Evidence from a pooled panel threshold analysis of the EU. Energy Econ. 2019, 81, 1–12. [Google Scholar] [CrossRef]
- Coglianese, J.; Davis, L.W.; Kilian, L.; Stock, J.H. Anticipation, tax avoidance, and the price elasticity of gasoline demand. J. Appl. Econom. 2017, 32, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kanjilal, K.; Ghosh, S. Revisiting income and price elasticity of gasoline demand in India: New evidence from cointegration tests. Empir. Econ. 2018, 55, 1869–1888. [Google Scholar] [CrossRef]
- Lim, K.M.; Yoo, S.H. Short-run and long-run elasticities of gasoline demand: The case of Korea. Energy Sour. Part B Econ. Plan. Policy 2016, 11, 391–395. [Google Scholar] [CrossRef]
- Lin, C.Y.C.; Prince, L. Gasoline price volatility and the elasticity of demand for gasoline. Energy Econ. 2013, 38, 111–117. [Google Scholar] [CrossRef]
- Saelim, S. Carbon Tax Incidence on Household Demand: Effects on Welfare, Income Inequality and Poverty Incidence in Thailand. J. Clean. Prod. 2019, 234, 521–533. [Google Scholar] [CrossRef]
- Chi, J. Imperfect reversibility of fuel demand for road transport: Asymmetric and hysteretic effects of income and price changes in Korea. Transp. Policy 2018, 71, 116–125. [Google Scholar] [CrossRef]
- Liu, W. Asymmetric price effects on gasoline consumption: Evidence and Implications. Appl. Econ. Lett. 2019, 1–4. [Google Scholar] [CrossRef]
- Wadud, Z. Diesel demand in the road freight sector in the UK: Estimates for different vehicle types. Appl. Energy 2016, 165, 849–857. [Google Scholar] [CrossRef]
- Alper, C.E.; Torul, O. Asymmetric adjustment of retail gasoline prices in turkey to world crude oil price changes: The role of taxes’. Econ. Bull. 2009, 29, 775–787. [Google Scholar]
- Bor, Ö.; İsmihan, M. Gasoline Pricing, Taxation and Asymmetry: The Case of Turkey, (No. 2013/7). Discussion Paper. 2013. Available online: http://www.tek.org.tr/dosyalar/BOR-ISMIHAN-oil.pdf (accessed on 6 February 2020).
- Chou, K.W.; Tseng, Y.H. Oil prices, exchange rate, and the price asymmetry in the Taiwanese retail gasoline market. Econ. Modell. 2016, 52, 733–741. [Google Scholar] [CrossRef]
- TR Report. Why Invest in Turkish Automotive Industry? Report by Presidency of the Republic of Turkey Investment Office. 2018. Available online: http://www.invest.gov.tr/tr-TR/infocenter/publications/Documents/OTOMOTIV.SEKTORU.pdf (accessed on 3 October 2019).
- Turkish Statistical Institute. The Data of Motor Vehicles Registered. 2019. Available online: https://www.ceicdata.com/en/turkey/motor-vehicles-statistics/motor-vehicles-registered (accessed on 3 October 2019).
- Energy Market Regulating Authority of Turkey (EMRA). 2019. Available online: https://www.epdk.org.tr/Detay/Icerik/3-0-143/fiyatlandirma-raporu (accessed on 3 October 2019).
- Hasanov, M. The demand for transport fuels in Turkey. Energy Econ. 2015, 51, 125–134. [Google Scholar] [CrossRef]
- PETDER. Sector Report. 2019. Available online: http://www.petder.org.tr/en-US/petder-sector-report/1260636 (accessed on 9 January 2020).
- World Bank (WB). World Development İndicators. 2019. Available online: https://data.worldbank.org/indicator/ (accessed on 9 January 2019).
- Park, S.Y.; Zhao, G. An estimation of US gasoline demand: A smooth time-varying cointegration approach. Energy Econ. 2010, 32, 110–120. [Google Scholar] [CrossRef]
- Baranzini, A.; Weber, S. Elasticities of gasoline demand in Switzerland. Energy Policy 2013, 63, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Brons, M.; Nijkamp, P.; Pels, E.; Rietveld, P. A meta-analysis of the price elasticity of gasoline demand. A SUR approach. Energy Econ. 2008, 30, 2105–2122. [Google Scholar] [CrossRef]
- Zhu, X.; Li, L.; Zhou, K.; Zhang, X.; Yang, S. A meta-analysis on the price elasticity and income elasticity of residential electricity demand. J. Clean. Prod. 2018, 201, 169–177. [Google Scholar] [CrossRef]
- Algunaibet, I.M.; Matar, W. The responsiveness of fuel demand to gasoline price change in passenger transport: A case study of Saudi Arabia. Energy Effic. 2018, 11, 1341–1358. [Google Scholar] [CrossRef]
- Cheung, K.Y.; Thomson, E. The demand for gasoline in China: A cointegration analysis. J. Appl. Stat. 2004, 31, 533–544. [Google Scholar] [CrossRef]
- Eltony, M.N.; Al-Mutairi, N.H. Demand for gasoline in Kuwait: An empirical analysis using cointegration techniques. Energy Econ. 1995, 17, 249–253. [Google Scholar] [CrossRef]
- Hughes, J.E.; Knittel, C.R.; Sperling, D. Evidence of a shift in the short-run price elasticity of gasoline demand (No. w12530). Natl. Bur. Econ. Res. 2008, 29, 113–134. [Google Scholar]
- Arzaghi, M.; Squalli, J. How price inelastic is demand for gasoline in fuel-subsidizing economies? Energy Econ. 2015, 50, 117–124. [Google Scholar] [CrossRef]
- Atalla, T.; Gasim, A.; Hunt, L. Gasoline Demand, Pricing Policy and Social Welfare in Saudi Arabia (No. ks-2017--dp04). Energy Policy 2018, 114, 123–133. [Google Scholar] [CrossRef]
- Ewing, B.T.; Thompson, M.A. Modeling the Response of Gasoline-Crude Oil Price Crack Spread Macroeconomic Shocks. Atl. Econ. J. 2018, 46, 203–213. [Google Scholar] [CrossRef]
- Dash, D.P.; Sethi, N.; Bal, D.P. Is the demand for crude oil inelastic for India? Evidence from structural VAR analysis. Energy Policy 2018, 118, 552–558. [Google Scholar] [CrossRef]
- Wadud, Z.; Noland, R.B.; Graham, D.J. A semiparametric model of household gasoline demand. Energy Econ. 2010, 32, 93–101. [Google Scholar] [CrossRef]
- Mensah, J.T.; Marbuah, G.; Amoah, A. Energy demand in Ghana: A disaggregated analysis. Renew. Sustain. Energy Rev. 2016, 53, 924–935. [Google Scholar] [CrossRef]
- Havranek, T.; Kokes, O. Income elasticity of gasoline demand: A meta-analysis. Energy Econ. 2015, 47, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Akinboade, O.A.; Ziramba, E.; Kumo, W.L. The demand for gasoline in South Africa: An empirical analysis using co-integration techniques. Energy Econ. 2008, 30, 3222–3229. [Google Scholar] [CrossRef]
- Ma, C.; Liao, H. Income elasticity of cooking fuel substitution in rural China: Evidence from population census data. J. Clean. Prod. 2018, 199, 1083–1091. [Google Scholar] [CrossRef]
- Borchert, I.; Yotov, Y.V. Distance, globalization, and international trade. Econ. Lett. 2017, 153, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Rodrik, D. Populism and the Economics of Globalization. J. Int. Bus. Policy 2018, 1, 12–33. [Google Scholar] [CrossRef] [Green Version]
- Bluszcz, A. European economies in terms of energy dependence. Qual. Quant. 2017, 51, 1531–1548. [Google Scholar] [CrossRef] [Green Version]
- Eftimova, D. Bulgaria’s energy security in the context of energy dependence on the import of oil products. CES Work. Pap. 2018, 10, 98–110. [Google Scholar]
- Maltby, T. Between amity, enmity and europeanisation: EU energy security policy and the example of Bulgaria’s Russian energy dependence. Europe Asia Stud. 2015, 67, 809–830. [Google Scholar] [CrossRef] [Green Version]
- Trotta, G. Assessing energy efficiency improvements, energy dependence, and CO2 emissions in the European Union using a decomposition method. Energy Effic. 2018, 1–18. [Google Scholar] [CrossRef]
- Ghoddusi, H.; Morovati, M.; Rafizadeh, N. Foreign Exchange Shocks and Gasoline Consumption. Energy Econ. 2019, 84. [Google Scholar] [CrossRef]
- Kayser, H.A. Gasoline demand and car choice: Estimating gasoline demand using household information. Energy Econ. 2000, 22, 331–348. [Google Scholar] [CrossRef]
- Tiezzi, S.; Verde, S.F. Differential demand response to gasoline taxes and gasoline prices in the US. Resour. Energy Econ. 2016, 44, 71–91. [Google Scholar] [CrossRef]
- Rivers, N.; Schaufele, B. Salience of carbon taxes in the gasoline market. J. Environ. Econ. Manag. 2015, 74, 23–36. [Google Scholar] [CrossRef]
- Filippini, M.; Heimsch, F. The regional impact of a CO2 tax on gasoline demand: A spatial econometric approach. Resour. Energy Econ. 2016, 46, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Sun, R.; Dong, K.; Chung, K.H. Increasing stringent regional environmental regulations impact gasoline demand in China. Energy Procedia 2019, 158, 3572–3575. [Google Scholar] [CrossRef]
- Ramanathan, R.; Subramanian, G. Elasticities of gasoline demand in the Sultanate of Oman. Pacific and Asian. J. Energy 2003, 13, 105. [Google Scholar]
- Ramanathan, R. Short-and long-run elasticities of gasoline demand in India: An empirical analysis using cointegration techniques. Energy Econ. 1999, 21, 321–330. [Google Scholar] [CrossRef]
- Liddle, B.; Lung, S. Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels. Appl. Energy 2015, 142, 44–55. [Google Scholar] [CrossRef]
- Mesutoğlu, B. Türkiye’de Benzin Fiyatlarındaki Gelişmeler ve Benzin Talebinin Fiyat Esnekliği üzerine bir Inceleme: (1990–1999). In Devlet Planlama Teşkilatı; 2001. Available online: http://ekutup.dpt.gov.tr/ (accessed on 6 February 2020).
- Dahl, C.A. Measuring global gasoline and diesel price and income elasticities. Energy Policy 2012, 41, 2–13. [Google Scholar] [CrossRef]
- Melikoglu, M. Demand forecast for road transportation fuels including gasoline, diesel, LPG, bioethanol and biodiesel for Turkey between 2013 and 2023. Renew. Energy 2014, 64, 164–171. [Google Scholar] [CrossRef]
- Erdogdu, E. Motor fuel prices in Turkey. Energy Policy 2014, 69, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Yalta, A.T.; Yalta, A.Y. The dynamics of fuel demand and illegal fuel activity in Turkey. Energy Econ. 2016, 54, 144–158. [Google Scholar] [CrossRef]
- Keskin, R. Yapısal Kırılmalar Altında Türkiye’de Ekonomik Büyüme ve Petrol Tüketimi Arasındaki İlişki. Yönetim ve Ekonomi Celal Bayar Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 2017, 24, 877–892. [Google Scholar]
- Beenstock, M.; Willcocks, P. Energy consumption and economic activity in industrialized countries: The dynamic aggregate time series relationship. Energy Econ. 1981, 3, 225–232. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Griffin, J.M. Gasoline demand in the OECD: An application of pooling and testing procedures. Eur. Econ. Rev. 1983, 22, 117–137. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit. Econometrica 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.J. Co-integration and Error Correction: Representation, Estimation and Testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Ouliaris, S. Asymptotic Properties of Residual Based Tests for Cointegration. Econometrica 1990, 58, 165–193. [Google Scholar] [CrossRef] [Green Version]
- Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Johansen, S.; Juselius, K. Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxf. Bull. Econ. Stat. 1990, 52, 169–210. [Google Scholar] [CrossRef]
- Saikkonen, P. Asymptotically efficient estimation of cointegrated regressions. Econ. Theory 1991, 7, 1–21. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Phillips, P.B.; Hansen, B.E. Statistical Inference in Instrumental Variables Regression with I(1) Processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Park, J.Y. Canonical Cointegrating Regressions. Econometrica 1992, 60, 119–143. [Google Scholar] [CrossRef]
- Hendry, D.F.; Pagan, A.R.; Sargan, J.D. Dynamic Specification. In Handbook of Econometrics; Griliches, Z., Michael, M.D., Eds.; Intriligator: Amsterdam, The Netherlands, 1984; Volume 2, pp. 1023–1100. [Google Scholar]
- Ericsson, N.R.; Campos, J.; Tran, H.T. PC-GIVE and David Hendry’s Econometric Methodology. Rev. Econom. 1990, 10, 7–117. [Google Scholar] [CrossRef] [Green Version]
- Mackinnon, J.G. Numerical distribution functions for unit root and cointegration test. J. Appl. Econ. 1996, 11, 601–618. [Google Scholar] [CrossRef] [Green Version]
- Doornik, J.A. The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry. In Autometrics; Castle, J.L., Shephard, N., Eds.; Oxford University Press: Oxford, UK, 2009; Chapter 4; pp. 88–121. [Google Scholar]
- Castle, J.L.; Hendry, D.F. Model selection in under-specified equations with breaks. J. Econ. 2014, 178, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Castle, J.L.; Doornik, J.A.; Hendry, D.F.; Pretis, F. Detecting location shifts during model selection by step-indicator saturation. Econometrics 2015, 3, 240–264. [Google Scholar] [CrossRef] [Green Version]
- Birol, F.; Guerer, N. Modelling the transport sector fuel demand for developing economies. Energy Policy 1993, 1163–1172. [Google Scholar] [CrossRef]
- Franzén, M. Gasoline Demand: A Comparison of Models. Ph.D. Thesis, Department of Economics, University of Gothenburg, Gothenburg, Sweden, 1994. [Google Scholar]
- WB. World Bank Data: Motor Vehicles (per 1000 People). The World Bank. Archived from the Original on 9 February 2014. 2014. Available online: https://web.archive.org/web/20140209114811/http://data.worldbank.org/indicator/IS.VEH.NVEH.P3 (accessed on 6 February 2020).
Mean | Correlation Matrix | |||||||
lgd | ly | lp | lcars | lgd | ly | lp | lcars | |
−2.022 | 8.451 | 1.358 | −2.514 | lgd | 1.000 | 0.181 | 0.697 | 0.780 |
ly | 0.247 | 1.000 | 0.387 | −0.099 | ||||
Standard Deviation | lp | 0.697 | 0.387 | 1.00 | 0.499 | |||
0.174 | 0.190 | 0.247 | 0.046 | lcars | 0.780 | −0.099 | 0.499 | 1.000 |
Variables | lgd | ly | lp | lcars |
---|---|---|---|---|
level | −1.434 | −2.068 | −2.397 | −1.323 |
(0.562) | (0.554) | (0.378) | (0.615) | |
First difference | −9.737 | −3.663 | −8.752 | −2.673 |
(0.000) | (0.007) | (0.000) | (0.084) |
Panel A: DOLS Based Test Results | Panel B: VECM Based | ||||||
---|---|---|---|---|---|---|---|
Engle–Granger Tests | Phillips–Ouliaris Tests | Max-Eigenvalue Statistics | Trace Statistics | ||||
Test Value | p-Value | Test Value | p-Value | 53.04 *** | 82.758 *** | ||
Tau-stat | −5.668 | 0.001 | −5.647 | 0.001 | 15.880 | 29.710 | |
Z-stat | −45.048 | 0.001 | −43.303 | 0.001 | 11.797 | 15.495 |
Specifications | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
DOLS | FMOLS | CCR | DOLS | FMOLS | CCR | |
ly | 0.251 *** | 0.285 *** | 0.274 *** | 0.383 *** | 0.284 *** | 0.272 *** |
lp | −0.266 * | −0.337 *** | −0.316 *** | −0.394 ** | −0.342 ** | −0.325 *** |
lcars | −0.801 *** | −0.999 *** | −0.926 *** | − | − | − |
lpr | − | −0.863 *** | −0.584 * | −0.542 * | ||
lcps | −0.919 *** | −0.621 *** | −0.593 * |
Panel A: Short-run Estimation Results | Panel B: Diagnostic Tests’ Results | |||
---|---|---|---|---|
SoA | Test Statistic | p-Value | ||
coefficient | −0.370 | AR 1–5 | 1.600 | 0.192 |
p-value | 0.000 | ARCH 1–4 | 0.510 | 0.729 |
Normality | 1.925 | 0.382 | ||
Hetero | 0.627 | 0.431 | ||
Reset | 0.526 | 0.596 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikayilov, J.I.; Mukhtarov, S.; Dinçer, H.; Yüksel, S.; Aydın, R. Elasticity Analysis of Fossil Energy Sources for Sustainable Economies: A Case of Gasoline Consumption in Turkey. Energies 2020, 13, 731. https://doi.org/10.3390/en13030731
Mikayilov JI, Mukhtarov S, Dinçer H, Yüksel S, Aydın R. Elasticity Analysis of Fossil Energy Sources for Sustainable Economies: A Case of Gasoline Consumption in Turkey. Energies. 2020; 13(3):731. https://doi.org/10.3390/en13030731
Chicago/Turabian StyleMikayilov, Jeyhun I., Shahriyar Mukhtarov, Hasan Dinçer, Serhat Yüksel, and Rıdvan Aydın. 2020. "Elasticity Analysis of Fossil Energy Sources for Sustainable Economies: A Case of Gasoline Consumption in Turkey" Energies 13, no. 3: 731. https://doi.org/10.3390/en13030731
APA StyleMikayilov, J. I., Mukhtarov, S., Dinçer, H., Yüksel, S., & Aydın, R. (2020). Elasticity Analysis of Fossil Energy Sources for Sustainable Economies: A Case of Gasoline Consumption in Turkey. Energies, 13(3), 731. https://doi.org/10.3390/en13030731