A Fuzzy Logic Model for Power Transformer Faults’ Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation
Abstract
:1. Introduction
2. Power Transformer Faults’ Severity
2.1. Health Index Concept
2.2. Fault Severity Methods
2.2.1. Scoring and Weighting Methods
2.2.2. Total Dissolved Combustible Gas (TDCG)
2.2.3. Duval Pentagon Method (DPM)
- •
- PD: Corona partial discharges
- •
- D1: Low-energy discharges
- •
- D2: High-energy discharges
- •
- T3-H: Thermal faults in oil above 700 °C
- •
- C: Thermal faults above 300 °C and below 700 °C with carbonization of paper
- •
- O: Overheating below 250 °C
- •
- S: Stray gassing
3. Methodology
3.1. Typical Gas Concentration Value
3.2. Typical Rate of Gas Increase
3.3. SVM Model for Duval Pentagon 2
- • PD: (0, 24.5), (0, 33), (−1, 24.5), (−1, 33),
- • D1: (0, 40), (38, 12), (32, −6), (4, 16), (0, 1.5),
- • D2: (4, 16), (32, −6), (24, −30), (−1, −2),
- • T3: (24, −30), (−1, −2), (−6, −4), (1, −32),
- • T2: (1, −32), (−6, −4), (−22.5, −32),
- • T1: (−22.5, −32), (−6, −4), (−1, −2), (0, 1.5), (−35, 3),
- • S: (−35, 3), (0, 1.5), (0, 24.5), (0, 33), (−1, 24.5), (−1, 33), (0, 40),
- • T3−H: (−24, −30), (−3.5, −3), (2.5, −32),
- • C: (2.5, −32), (−3.5, −3), (−11, −8), (−21.5, −32),
- • O: (−21.5, −32), (−11, −8), (−3.5, −3), (−1, −2), (0, 1.5), (−35, 3).
3.4. Faults’ Severity Norm Development
4. Results
4.1. Fuzzy Logic Model
4.2. Faults’ Severity Results
5. Discussion
5.1. Faults’ Severity of 448 Power Transformers
5.2. Faults Severity of Power Transformers’ Historical Data
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- WG A2.49. Condition Assessment of Power Transformers. CIGRE Reference:761, March 2019. [Google Scholar]
- Bakar, N.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49. [Google Scholar] [CrossRef]
- Wani, S.A.; Gupta, D.; Farooque, M.U.; Khan, S.A. Multiple incipient fault classification approach for enhancing the accuracy of dissolved gas analysis (DGA). IET Sci. Meas. Technol. 2019, 13, 959–967. [Google Scholar] [CrossRef]
- Christodoulou, C.A.; Vita, V.; Mitropoulou, A.; Oikonomou, D.S.; Ekonomou, L. Interface construction for the computation of the optimum installation position of metal oxide surge arresters in medium voltage substations. In Proceedings of the Recent Advances in Energy & Environment, Changsha, China, 4–6 December 2010. [Google Scholar]
- Christodoulou, C.A.; Vita, V.; Maris, T.I. Lightning Protection of Distribution Substations by Using Metal Oxide Gapless Surge Arresters Connected in Parallel. Int. J. Power Energy Res. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Christodoulou, C.A.; Vita, V.; Ekonomou, L. Studies for the more effective protection of MV/LV substations against lightning overvoltages Department of Electrical and Electronic Engineering Educators. Int. J. Circuits Electron. 2017, 2, 6–10. [Google Scholar]
- Christodoulou, C.A.; Vita, V.; Voglitsis, D.; Milushev, G.; Ekonomou, L. A Heuristic method for the reduction of the outage rate of high-voltage substations due to atmospheric overvoltages. Appl. Sci. 2018, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- IEC 60599-2015. Mineral oil-filled electrical equipment in service—Guidance on the interpretation of dissolved and free gases analysis; Norwegian Electrotechnical Committee: Mountain View, CA, USA, 2005. [Google Scholar]
- Jahromi, A.; Piercy, R.; Cress, S.; Service, J.; Fan, W. An approach to power transformer asset management using health index. IEEE Electr. Insul. Mag. 2009, 25, 20–34. [Google Scholar] [CrossRef]
- Naderian, A.; Cress, S.; Piercy, R.; Wang, F.; Service, J. An Approach to Determine the Health Index of Power Transformers. In Proceedings of the Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 9–12 June 2008; pp. 192–196. [Google Scholar]
- Hernanda, I.G.N.S.; Mulyana, A.C.; Asfani, D.A.; Negara, I.M.Y.; Fahmi, D. Application of health index method for transformer condition assessment. In Proceedings of the TENCON 2014—2014 IEEE Region 10 Conference, Kuala Lumpur, Malaysia, 14–16 April 2014; pp. 1–6. [Google Scholar]
- Abu-Siada, A.; Hmood, S.; Islam, S. A new fuzzy logic approach for consistent interpretation of dissolved gas-in-oil analysis. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2343–2349. [Google Scholar] [CrossRef] [Green Version]
- Bakar, N.A.; Abu-Siada, A.; Cui, H.; Li, S. Improvement of DGA interpretation using scoring index method. In Proceedings of the ICEMPE 2017 International Conference on Electric Power Equipment, Zhangzhou, China, 22–25 October 2017; pp. 502–506. [Google Scholar]
- Abu-Siada, A.; Arshad, M.; Islam, S. Fuzzy logic approach to identify transformer criticality using dissolved gas analysis. In Proceedings of the IEEE PES General Meeting, PES 2010, Providence, RI, USA, 25–29 July 2010; pp. 1–5. [Google Scholar]
- Gumilang, H.; Ansori, E.; Siregar, R.; Subrata, I.; Ika S, H.; Aenul, R.; Yuliastuti, E.; Setiawan, A. Condition assessment method for power transformer as a part of condition based maintenance program in PLN P3B Jawa Bali. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012; pp. 269–272. [Google Scholar]
- Abu-Siada, A.; Islam, S. A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1007–1012. [Google Scholar] [CrossRef]
- Ashkezari, A.D.; Ma, H.; Saha, T.; Ekanayake, C. Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, N.; Samimi, M.H.; Mohseni, H. Experiences with transformer diagnosis by DGA: Case studies. IET Gener. Transm. Distrib. 2019, 13, 5431–5439. [Google Scholar] [CrossRef]
- Mharakurwa, E.T.; Nyakoe, G.N.; Akumu, A.O. Power Transformer Fault Severity Estimation Based on Dissolved Gas Analysis and Energy of Fault Formation Technique. J. Electr. Comput. Eng. 2019, 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.; Islam, S.; Khaliq, A. Fuzzy logic approach in power transformers management and decision making. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2343–2354. [Google Scholar] [CrossRef]
- Hmood, S.; Masoum, M.A.S.; Islam, S.M.; Abu-Siada, A. Method Standardization of DGA Interpretation Techniques using Fuzzy Logic Approach. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012; pp. 929–932. [Google Scholar]
- Hooshmand, R.A.; Parastegari, M.; Forghani, Z. Adaptive neuro-fuzzy inference system approach for simultaneous diagnosis of the type and location of faults in power transformers. IEEE Electr. Insul. Mag. 2012, 28, 32–42. [Google Scholar] [CrossRef]
- Islam, S.M.; Wu, T.; Ledwich, G. A novel fuzzy logic approach to transformer fault diagnosis. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 177–186. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Sun, H.-C. Dissolved gas analysis of mineral oil for power transformer fault diagnosis using fuzzy logic. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 974–981. [Google Scholar] [CrossRef]
- Wani, S.A.; Farooque, M.U.; Khan, S.A.; Gupta, D.; Khan, M.A. Fault severity determination in transformers using dissolved gas analysis (DGA). In Proceedings of the 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, New Delhi, India, 17–20 December 2015; pp. 1–6. [Google Scholar]
- IEEE Std C57.104-2008. (Revision of IEEE Std C57.104-1991); IEEE: Piscataway Township, NJ, USA, 2008. [Google Scholar]
- Lee, S.-J.; Kim, Y.-M.; Seo, H.-D.; Jung, J.-R.; Yang, H.-J.; Duval, M. New methods of DGA diagnosis using IEC TC 10 and related databases Part 2: Application of relative content of fault gases. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 691–696. [Google Scholar]
- Duval, M.; DePablo, A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases. IEEE Electr. Insul. Mag. 2001, 17, 31–41. [Google Scholar] [CrossRef]
- Duval, M.; Lamarre, L. The duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers. IEEE Electr. Insul. Mag. 2014, 30, 9–12. [Google Scholar]
- Gumilang, H. Typical Concentration Value and Typical Fault Type Based on DGA Test of Power Transformers in PLN TJBT. In Proceedings of the IEEE Conference on Power Engineering and Renewable Energy, Solo, Indonesia, 29–31 October 2018; pp. 1–4. [Google Scholar]
- Pattanadech, N.; Sasomponsawatline, K.; Siriworachanyadee, J.; Angsusatra, W. The conformity of DGA interpretation techniques: Experience from transformer 132 units. In Proceedings of the 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019; pp. 1–4. [Google Scholar]
- Benmahamed, Y.; Teguar, M.; Boubakeur, A. Application of SVM and KNN to Duval Pentagon 1 for transformer oil diagnosis. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3443–3451. [Google Scholar] [CrossRef]
- Farooque, M.U.; Wani, S.A.; Khan, S.A. Artificial neural network (ANN) based implementation of Duval pentagon. In Proceedings of the 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Bangalore, India, 10–12 December 2015; pp. 46–50. [Google Scholar]
- Faiz, J.; Soleimani, M. Dissolved gas analysis evaluation in electric power transformers using conventional methods a review. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1239–1248. [Google Scholar] [CrossRef]
- IEEE Std C57.104-2019. IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers; IEEE: Piscataway Township, NJ, USA, 2019. [Google Scholar]
- Gumilang, H. Typical Gas Concentration Values and Typical Rate of Gas Increase on DGA Test in PLN UIT-JBT. In Proceedings of the International Conference on High Voltage Engineering and Power Systems, Denpasar, Indonesia, 1–4 October 2019. [Google Scholar]
- Prasojo, R.A.; Suwarno. Power transformer paper insulation assessment based on oil measurement data using SVM-classifier. Int. J. Electr. Eng. Inf. 2018, 10, 661–673. [Google Scholar] [CrossRef]
- Ibrahim, K.; Sharkawy, R.M.; Temraz, H.K.; Salama, M.M.A. Selection criteria for oil transformer measurements to calculate the Health Index. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3397–3404. [Google Scholar] [CrossRef]
- Wei Fei, S.; Liang Liu, C.; Bin Miao, Y. Support vector machine with genetic algorithm for forecasting of key-gas ratios in oil-immersed transformer. Expert Syst. Appl. 2009, 36, 6326–6331. [Google Scholar] [CrossRef]
- Basuki, A.; Suwarno. Online dissolved gas analysis of power transformers based on decision tree model. In Proceedings of the 4th IEEE Conference on Power Engineering and Renewable Energy, ICPERE 2018—Proceedings, Solo, Indonesia, 29–31 October 2018. [Google Scholar]
- Kartojo, I.H.; Wang, Y.-B.; Zhang, G.-J.; Suwarno. Partial Discharge Defect Recognition in Power Transformer using Random Forest. In Proceedings of the 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019; pp. 1–4. [Google Scholar]
- Li, J.; Zhang, Q.; Wang, K.; Wang, J.; Zhou, T.; Zhang, Y. Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1198–1206. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Tang, C.; Yao, C.; Li, C.; Islam, S. Classifying Transformer Winding Deformation Fault Types and Degrees Using FRA Based on Support Vector Machine. IEEE Access 2019, 7, 112494–112504. [Google Scholar] [CrossRef]
- Zeng, B.; Guo, J.; Zhu, W.; Xiao, Z.; Yuan, F.; Huang, S. A transformer fault diagnosis model based on hybrid grey wolf optimizer and LS-SVM. Energies 2019, 12, 4170. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.; Xu, J.; Zheng, Z.; Qi, B.; Zhang, L. A novel fault diagnosis method for power transformer based on dissolved gas analysis using hypersphere multiclass support vector machine and improved D–S evidence theory. Energies 2019, 12, 4017. [Google Scholar] [CrossRef] [Green Version]
Gas | Score | Weight | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
H2 | ≤100 | 100–200 | 200–300 | 300–500 | 500–700 | >700 | 2 |
CH4 | ≤75 | 75–125 | 125–200 | 200–448 | 448–600 | >600 | 3 |
C2H6 | ≤65 | 65–80 | 80–100 | 100–120 | 120–150 | >150 | 3 |
C2H4 | ≤50 | 50–80 | 80–100 | 100–150 | 150–200 | >120 | 3 |
C2H2 | ≤3 | 3–7 | 7–35 | 35–50 | 50–80 | >80 | 5 |
CO | ≤350 | 350–700 | 700–900 | 900–1100 | 1100–1448 | >1448 | 1 |
CO2 | ≤2500 | 2500–3000 | 3000–4480 | 4480–5000 | 5000–7000 | >7000 | 1 |
Rating Code | Fault Type | DGAF |
---|---|---|
A | Good | <1.2 |
B | Acceptable | 1.2–1.5 |
C | Need Caution | 1.5–2 |
D | Poor | 2–3 |
E | Very Poor | >3 |
TDCG Levels (ppm) | TDCG Rate (ppm/day) | Sampling Interval | Operating Procedures | |
---|---|---|---|---|
Condition 4 | >4630 | >30 | Daily | Consider removal from service. Advise manufacturer. |
10 to 30 | Daily | |||
<10 | Weekly | Exercise extreme caution. Analyze for individual gases. Plan outage. Advise manufacturer. | ||
Condition 3 | 1921 to 4630 | >30 | Weekly | Exercise extreme caution. Analyze for individual gases. Plan outage. Advise manufacturer. |
10 to 30 | Weekly | |||
<10 | Monthly | |||
Condition 2 | 721 to 1920 | >30 | Monthly | Exercise caution. Analyze for individual gases. Determine load dependence. |
10 to 30 | Monthly | |||
<10 | Quarterly | |||
Condition 1 | ≤720 | >30 | Monthly | Continue normal operation. |
10 to 30 | Quarterly | |||
<10 | Annual |
H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | |
---|---|---|---|---|---|---|---|
IEEE C57.104-2019 | 80 | 90 | 1 | 50 | 90 | 900 | 9000 |
IEC 60599-2015 | 50–150 | 30–130 | 60–280 | 20–90 | 400–600 | 3800–14,000 | |
PLN-UITJBT [30] | 85 | 180 | 3 | 45 | 300 | 900 | 6500 |
H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | |
---|---|---|---|---|---|---|---|
L1 | <85 | <180 | <3 | <45 | <300 | <900 | <6500 |
L2 | 85–130 | 180–240 | 3–8 | 45–85 | 300–425 | 900–1090 | 6500–8000 |
L3 | 130–225 | 240–350 | 8–20 | 85–390 | 425–580 | 1090–1280 | 8000–9750 |
L4 | >225 | >350 | >20 | >390 | >580 | >1280 | >9750 |
H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | |
---|---|---|---|---|---|---|---|
IEC 60599–2015 | 35–132 | 10–120 | 0 | 32–146 | 5–90 | 260–1060 | 1700–10,000 |
IEEE C57.104–2019 | 20 | 10 | 0 | 7 | 9 | 100 | 1000 |
PLN TJBT [36] | 20 | 20 | 0 | 7 | 29 | 88 | 766 |
H2 | CH4 | C2H2 | C2H4 | C2H6 | CO | CO2 | |
---|---|---|---|---|---|---|---|
R1 | <20 | <20 | <0 | <7 | <29 | <88 | <766 |
R2 | 20–31 | 20–37 | 0–1 | 7–16 | 29–58 | 88–200 | 766–1526 |
R3 | 31–59 | 37–72 | 1–7 | 16–48 | 58–145 | 200–305 | 1526–2462 |
R4 | >59 | >72 | >7 | >48 | >145 | >305 | >2462 |
Model No. | Classifier | Accuracy |
---|---|---|
1 | Decision Tree | 71.8% |
2 | Support Vector Machine | 97.5% |
3 | k-Nearest Neighbor | 84.5% |
4 | Random Forest | 95.6% |
No | DGA Concentrations (ppm) | SVM-Input | SVM-Based DPM | |||||
---|---|---|---|---|---|---|---|---|
H2 | CH4 | C2H2 | C2H4 | C2H6 | Cx | Cy | ||
1 | 85 | 22 | 0 | 10 | 10 | −2.96 | 13.41 | S |
2 | 36 | 5 | 7 | 9 | 10 | −3.06 | 12.67 | S |
3 | 185 | 93 | 0 | 112 | 44 | −2.10 | −1.24 | O |
4 | 39 | 299 | 0 | 173 | 762 | −19.49 | −1.10 | O |
5 | 358 | 14 | 0 | 1 | 5 | −0.45 | 30.24 | PD |
6 | 106 | 4 | 0 | 2 | 4 | −1.10 | 29.12 | PD |
7 | 3282 | 154 | 0 | 231 | 7 | 0.21 | 9.77 | D1 |
8 | 9 | 9 | 142 | 42 | 8 | 23.44 | 1.10 | D1 |
9 | 58 | 568 | 0 | 1440 | 471 | 2.32 | −16.63 | T3−H |
10 | 274 | 141 | 0 | 240 | 72 | 4.36 | −23.08 | T3−H |
11 | 27 | 0 | 95 | 57 | 25 | 17.54 | −1.80 | D2 |
12 | 14 | 0 | 74 | 37 | 16 | 19.83 | −1.20 | D2 |
Condition | Interpretation | Recommended Action |
---|---|---|
A | Normal |
|
B | Acceptable |
|
C | Need Caution |
|
D | Poor |
|
E | Very Poor |
|
Gas Level (Max) | Gas Rate (Max) | Assigned Condition |
---|---|---|
1 | any | Cond.1 |
2 | 1 | Cond.1 |
2 | 2–3 | Cond.2 |
2 | 4 | Cond.3 |
3 | 1 | Cond.2 |
3 | 2–3 | Cond.3 |
3 | 4 | Cond.4 |
4 | 1 | Cond.3 |
4 | 3–4 | Cond.4 |
Gas Level and Gas Rate | ||||||
---|---|---|---|---|---|---|
C.1 | C.2 | C.3 | C.4 | |||
DPM | C.1 | A | ND | ND | ND | |
C.2 | ND* | B | B | C | ||
C.3 | ND | C | C | D | ||
C.4 | ND | D | D | E |
No | H2 (ppm) | CH4 (ppm) | C2H2 (ppm) | C2H4 (ppm) | C2H6 (ppm) | Rate H2 (ppm/year) | Rate CH4 (ppm/year) | Rate C2H2 (ppm/year) | Rate C2H4 (ppm/year) | Rate C2H6 (ppm/year) | Level Max | Rate Max | DPM Interpretation | HI DGA* [2] | TDCG [17] | Faults Severity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 47 | 8 | 0 | 0 | 11 | Neg | Neg | 0 | Neg** | Neg | 1 | 1 | S | A | A | A |
2 | 0 | 32 | 2 | 0 | 105 | 0 | 3 | 3 | 0 | 17 | 1 | 3 | O | A | A | A |
3 | 68 | 0 | 0 | 1 | 3 | Neg | 0 | 0 | 1 | 4 | 1 | 1 | PD | A | A | A |
4 | 68 | 0 | 0 | 6 | 2 | Neg | Neg | 0 | 9 | 3 | 1 | 2 | PD | A | A | A |
5 | 0 | 71 | 0 | 2 | 145 | 0 | 19 | Neg | 3 | 35 | 1 | 2 | O | A | A | A |
6 | 26 | 26 | 0 | 0 | 56 | Neg | 13 | Neg | 0 | 16 | 1 | 1 | S | A | A | A |
7 | 40 | 73 | 0 | 21 | 83 | Neg | Neg | 0 | Neg | Neg | 1 | 1 | O | A | A | A |
8 | 23 | 9 | 0 | 0 | 0 | 28 | Neg | 0 | 0 | Neg | 1 | 2 | S | A | B | A |
9 | 0 | 2 | 5 | 0 | 0 | 0 | Neg | 0 | 0 | 0 | 2 | 1 | D2 | A | A | A |
10 | 16 | 46 | 0 | 0 | 98 | 20 | Neg | 0 | 0 | Neg | 1 | 1 | O | A | A | A |
11 | 25 | 8 | 0 | 0 | 13 | 31 | 7 | 0 | 0 | 16 | 1 | 2 | S | A | A | A |
12 | 0 | 0 | 0 | 35 | 0 | 0 | Neg | Neg | Neg | 0 | 1 | 1 | T3-H | A | A | A |
13 | 9 | 28 | 0 | 0 | 34 | Neg | 1 | 0 | 0 | 11 | 1 | 1 | O | A | B | A |
14 | 0 | 273 | 0 | 338 | 193 | Neg | Neg | 0 | Neg | 6 | 3 | 1 | C | C | B | B |
15 | 34 | 151 | 0 | 6 | 323 | Neg | Neg | 0 | Neg | 30 | 2 | 2 | O | B | B | B |
16 | 36 | 168 | 0 | 7 | 354 | Neg | 17 | 0 | 10 | 69 | 2 | 3 | O | B | B | B |
17 | 50 | 180 | 0 | 6 | 368 | 6 | 36 | Neg | 9 | Neg | 2 | 2 | O | C | B | B |
18 | 100 | 121 | 0 | 7 | 170 | 5 | Neg | 0 | 2 | 50 | 2 | 2 | S | A | B | B |
19 | 46 | 257 | 0 | 10 | 378 | 4 | 19 | 0 | 1 | 47 | 3 | 2 | O | C | B | C |
20 | 46 | 229 | 0 | 37 | 690 | Neg | Neg | Neg | Neg | Neg | 4 | 1 | O | D | B | C |
21 | 109 | 108 | 10 | 29 | 166 | Neg | Neg | 7 | 2 | Neg | 3 | 4 | S | C | B | D |
22 | 22 | 247 | 2 | 4 | 881 | Neg | Neg | 3 | Neg | Neg | 4 | 3 | O | D | B | D |
23 | 24 | 302 | 3 | 0 | 917 | Neg | Neg | 4 | Neg | Neg | 4 | 3 | O | D | B | D |
24 | 21 | 237 | 0 | 4 | 926 | Neg | Neg | 0 | Neg | 58 | 4 | 2 | S | D | B | D |
25 | 7 | 551 | 0 | 1083 | 128 | Neg | Neg | 0 | Neg | Neg | 4 | 1 | T3-H | D | C | D |
26 | 36 | 8 | 60 | 51 | 3 | 26 | 3 | 77 | 9 | 4 | 4 | 4 | D2 | C | B | E |
Transformer No. | Years | H2 | CH4 | C2H2 | C2H4 | C2H6 | Level Max | Rate Max | DPM | FS |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 35 | 0 | 28 | 23 | 1 | 1 | C | A |
2 | 0 | 27 | 0 | 13 | 0 | 1 | 1 | C | A | |
3 | 0 | 27 | 0 | 0 | 0 | 1 | 1 | O | A | |
4 | 28 | 28 | 0 | 0 | 18 | 1 | 2 | S | A | |
2 | 1 | 0 | 95 | 0 | 23 | 147 | 1 | 1 | O | A |
2 | 0 | 43 | 0 | 0 | 19 | 1 | 1 | O | A | |
3 | 56 | 126 | 0 | 19 | 66 | 1 | 3 | O | A | |
4 | 70 | 158 | 0 | 24 | 86 | 1 | 3 | O | A | |
3 | 1 | 0 | 19 | 0 | 0 | 19 | 1 | 1 | O | A |
2 | 0 | 0 | 0 | 0 | 21 | 1 | 1 | S | A | |
3 | 0 | 230 | 0 | 49 | 0 | 2 | 4 | C | C | |
4 | 0 | 159 | 0 | 67 | 154 | 2 | 4 | O | C | |
4 | 1 | 0 | 343 | 0 | 457 | 239 | 4 | 1 | C | C |
2 | 0 | 414 | 0 | 508 | 276 | 4 | 3 | C | D | |
3 | 336 | 1568 | 2 | 1728 | 579 | 4 | 4 | C | D | |
4 | 582 | 2398 | 4 | 2960 | 753 | 4 | 4 | C | D |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasojo, R.A.; Gumilang, H.; Suwarno; Maulidevi, N.U.; Soedjarno, B.A. A Fuzzy Logic Model for Power Transformer Faults’ Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation. Energies 2020, 13, 1009. https://doi.org/10.3390/en13041009
Prasojo RA, Gumilang H, Suwarno, Maulidevi NU, Soedjarno BA. A Fuzzy Logic Model for Power Transformer Faults’ Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation. Energies. 2020; 13(4):1009. https://doi.org/10.3390/en13041009
Chicago/Turabian StylePrasojo, Rahman Azis, Harry Gumilang, Suwarno, Nur Ulfa Maulidevi, and Bambang Anggoro Soedjarno. 2020. "A Fuzzy Logic Model for Power Transformer Faults’ Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation" Energies 13, no. 4: 1009. https://doi.org/10.3390/en13041009
APA StylePrasojo, R. A., Gumilang, H., Suwarno, Maulidevi, N. U., & Soedjarno, B. A. (2020). A Fuzzy Logic Model for Power Transformer Faults’ Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation. Energies, 13(4), 1009. https://doi.org/10.3390/en13041009