Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System
Abstract
:1. Introduction
2. Background and Motivation
2.1. Scenarios and Scenario Development in Energy Research
2.2. Multi-Model Energy System Modelling and Model Comparison Approaches
2.3. Categories of Scenario Development and the Need for a New Approach
- Global, comprehensive expert scenarios that combine a multitude of scientific disciplines.These scenarios, such as those of the IPCC reports, are often well known since they address global issues. They focus on applying methods or even developing new methods to ensure that they meet certain quality standards and guidelines, which are frequently defined in the first stage of the study. Quality standards include consistency, reproducibility, relevance (as many stakeholders from a multitude of disciplines are involved) and legitimacy. These global, high-level expert scenarios are both quantitative and qualitative. Examples include [46,62,79]. The drawback of these scenarios is that their development is very time-consuming, resource-intensive and thus costly. Due to their broad scope, they often remain superficial in terms of reflecting detailed trends in specific sectors as well as analysing financial implications and regulations.
- Pure storytelling scenarios that focus on developing images of the future, e.g., for a certain sector.These scenarios focus on qualitative elements and narratives in order to define a possible span of pathways to the future and describe the different drivers and technologies behind the development of these pathways. Examples include [60,80]. While qualitative methods are pursued thoroughly, the use of complex quantitative models and proving that they are consistent is secondary.
- Detailed modelling research scenarios for more profound analyses.This kind of research, often organised in research projects, uses scenarios as the background to allow models to compute more detailed aspects and research questions, such as the security of supply or market options in very specific regions [63,78,81,82]. Researchers in this field often use established scenarios [62,79] as the basis for a more detailed scenario framework, because it is beyond their research focus or financial resources to apply the strict methods necessary to develop their own scenarios.
3. Methodology
3.1. Identifying Areas and Factors of Influence
3.2. Definition of Descriptors
3.3. Qualitative Storylines
3.4. Model-Oriented Quantitative Description and Parametrisation of the Scenarios
3.5. Output of the Scenario Development Method
4. Application of the Scenario Development Method to a Multi-Model Analysis of Cellular Energy Systems
- To what extent and under which conditions do cellular energy systems perform well in different scenarios of energy system development?
- Are cellular energy systems efficient in terms of system costs and ecological factors?
4.1. Identifying Areas and Factors of Influence
4.2. Definition of Descriptors
4.3. Qualitative Storylines
4.4. Model-Oriented Quantitative Description and Parametrisation of the Scenarios
5. Discussion and Limitations
6. Conclusions
- Step 1: Identifying areas and factors of influence: An analysis is conducted to identify the areas and factors that have a non-negligible influence on the energy system and other interrelated aspects.
- Step 2: Definition of descriptors: For the areas and factors of influence identified in step one, qualitative and the quantitative descriptors are selected, which capture their current state and future developments.
- Step 3: Formulation of qualitative storylines: A qualitative narrative is developed in order to facilitate understanding of the scenario pathways among stakeholders from different backgrounds.
- Step 4: Model-oriented specification: Model matrices with suitable parameters are elaborated. Overlapping descriptors and corresponding parameters are identified.
Author Contributions
Funding
Conflicts of Interest
References
- Goldfarb, D.L.; Huss, W.R. Building scenarios for an electric utility. Long Range Plan. 1988, 21, 78–85. [Google Scholar] [CrossRef]
- Capros, P.; Paroussos, L.; Fragkos, P.; Tsani, S.; Boitier, B.; Wagner, F.; Busch, S.; Resch, G.; Blesl, M.; Bollen, J. European decarbonisation pathways under alternative technological and policy choices: A multi-model analysis. Energy Strategy Rev. 2014, 2, 231–245. [Google Scholar] [CrossRef]
- Parag, Y.; Sovacool, B.K. Electricity market design for the prosumer era. Nat. Energy 2016, 1. [Google Scholar] [CrossRef]
- Pruditsch, N.; Zöphel, C. Szenarien für ein europäisches Energiesystem [Scenarios for a European energy system]. uwf 2017, 25, 81–90. [Google Scholar] [CrossRef]
- Grunwald, A. Energy futures: Diversity and the need for assessment. Futures 2011, 43, 820–830. [Google Scholar] [CrossRef]
- Amer, M.; Daim, T.U.; Jetter, A. A review of scenario planning. Futures 2013, 46, 23–40. [Google Scholar] [CrossRef]
- Rotmans, J.; van Asselt, M.; Anastasi, C.; Greeuw, S.; Mellors, J.; Peters, S.; Rothman, D.; Rijkens, N. Visions for a sustainable Europe. Futures 2000, 32, 809–831. [Google Scholar] [CrossRef]
- Greeuw, S.C.H. An Assessment of Recent European and Global Scenario Studies and Models. Cloudy Crystal Balls. Experts’ Corner Report. 2000. Available online: http://publications.europa.eu/en/publication-detail/-/publication/79246fde-65a8-4bcc-a58d-ebf050a649b6 (accessed on 9 June 2019).
- Dieckhoff, C. Modellierte Zukunft. In Energieszenarien in Der Wissenschaftlichen Politikberatung [Modelled Future. Energy Scenarios in Scientific Policy Consulting]; Karlsruhe Institute for Technology (KIT): Karlsruhe, Germany, 2015; ISBN 9783837630978. [Google Scholar]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Reibnitz, U. Szenario-Technik. Instrumente für die unternehmerische und persönliche Erfolgsplanung [Scenario technique]. In Instruments for Corporate and Personal Success Planning, 2. Auflage; Gabler Verlag: Wiesbaden, Germany, 1992; ISBN 9783409234313. [Google Scholar]
- Steinmüller, K. Workshop Zukunftsforschung. Teil 2 Szenarien: Grundlagen und Anwendungen. In Futurology Workshop. Part 2 Scenarios: Basics and Applications; Z_Punkt GmbH: Essen, Germany, 2002. [Google Scholar]
- Mehigan, L.; Deane, J.P.; Gallachóir, B.P.Ó.; Bertsch, V. A review of the role of distributed generation (DG) in future electricity systems. Energy 2018, 163, 822–836. [Google Scholar] [CrossRef]
- Iyer, G.C.; Brown, M.; Cohen, S.M.; Macknick, J.; Patel, P.; Wise, M.; Binsted, M.; Voisin, N. Improving consistency among models of overlapping scope in multi-sector studies: The case of electricity capacity expansion scenarios. Renew. Sustain. Energy Rev. 2019, 116, 109416. [Google Scholar] [CrossRef]
- Lehmann, N.; Huber, J.; Kießling, A. Flexibility in the context of a cellular system model. In Proceedings of the 2019 16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 18–20 September 2019; pp. 1–6, ISBN 2165-4077. [Google Scholar]
- Funcke, S.; Bauknecht, D. Typology of centralised and decentralised visions for electricity infrastructure. Util. Policy 2016, 40, 67–74. [Google Scholar] [CrossRef]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Bouffard, F.; Kirschen, D.S. Centralised and distributed electricity systems. Energy Policy 2008, 36, 4504–4508. [Google Scholar] [CrossRef]
- Dondi, P.; Bayoumi, D.; Haederli, C.; Julian, D.; Suter, M. Network integration of distributed power generation. J. Power Sources 2002, 106, 1–9. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Favuzza, S.; Riva Sanseverino, E.; Zizzo, G. How Decarbonization, Digitalization and Decentralization are changing key power infrastructures. Renew. Sustain. Energy Rev. 2018, 93, 483–498. [Google Scholar] [CrossRef]
- Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D’haeseleer, W. Distributed generation: Definition, benefits and issues. Energy Policy 2005, 33, 787–798. [Google Scholar] [CrossRef]
- Allan, G.; Eromenko, I.; Gilmartin, M.; Kockar, I.; McGregor, P. The economics of distributed energy generation: A literature review. Renew. Sustain. Energy Rev. 2015, 42, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Walker, G. What are the barriers and incentives for community-owned means of energy production and use? Energy Policy 2008, 36, 4401–4405. [Google Scholar] [CrossRef]
- Rae, C.; Bradley, F. Energy autonomy in sustainable communities—A review of key issues. Renew. Sustain. Energy Rev. 2012, 16, 6497–6506. [Google Scholar] [CrossRef]
- Abegg, B. Energy Self-sufficient Regions in the European Alps. Mt. Res. Dev. 2011, 31, 367–371. [Google Scholar] [CrossRef]
- Schlachtberger, D.P.; Brown, T.; Schramm, S.; Greiner, M. The benefits of cooperation in a highly renewable European electricity network. Energy 2017, 134, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Tröndle, T.; Pfenninger, S.; Lilliestam, J. Home-made or imported: On the possibility for renewable electricity autarky on all scales in Europe. Energy Strategy Rev. 2019, 26, 100388. [Google Scholar] [CrossRef]
- VDE; ETG. The Cellular Approach—The Basis of Successful, Cross-Regional Energy Transition; VDE: Frankfurt, Germany, 2015. [Google Scholar]
- ETG; Congress Energietechnische Gesellschaft. International ETG Congress. In Proceedings of the International ETG Congress 2017. Die Energiewende: Blueprints for the New Energy Age, Bonn, Germany, 28–29 November 2017; VDE Verlag: Berlin, Germany; VDE Verlag: Offenbach, Germany, 2017; ISBN 9783800745050. [Google Scholar]
- van Notten, P.W.F.; Rotmans, J.; van Asselt, M.B.A.; Rothman, D.S. An updated scenario typology. Futures 2003, 35, 423–443. [Google Scholar] [CrossRef]
- Kahn, H.; Wiener, A. The Year 2000; Macmillan: New York, NY, USA, 1967. [Google Scholar]
- Dönitz, E.J. Effizientere Szenariotechnik durch teilautomatische Generierung von Konsistenzmatrizen. In More Efficient Scenario Technique through Semi-Automatic Generation of Consistency Matrices; Gabler: Wiesb, Germany, 2009; ISBN 978-3-8349-1668-6. [Google Scholar]
- Ratcliffe, J. Scenario planning: An evaluation of practice. Futures Res. Quart. 2003, 19, 5–26. [Google Scholar]
- Mietzner, D.; Reger, G. Advantages and disadvantages of scenario approaches for strategic foresight. Int. J. Technol. Intell. Plan. 2005, 1, 220. [Google Scholar] [CrossRef] [Green Version]
- Bishop, P.; Hines, A.; Collins, T. The current state of scenario development: An overview of techniques. Foresight 2007, 9, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Bradfield, R.; Wright, G.; Burt, G.; Cairns, G.; van der Heijden, K. The origins and evolution of scenario techniques in long range business planning. Futures 2005, 37, 795–812. [Google Scholar] [CrossRef]
- Chermack, T.J.; Lynham, S.A.; Ruona, W.E.A. A review of scenario planning literature. Futures Res. Quart. 2001, 17, 57–70. [Google Scholar]
- Börjeson, L.; Höjer, M.; Dreborg, K.-H.; Ekvall, T.; Finnveden, G. Scenario types and techniques: Towards a user’s guide. Futures 2006, 38, 723–739. [Google Scholar] [CrossRef]
- Godet, M.; Roubelat, F. Creating the future: The use and misuse of scenarios. Long Range Plan. 1996, 29, 164–171. [Google Scholar] [CrossRef]
- Meadows, D.H.; Meadows, D.L.; Randers, J. The Limits to Growth. In A Report for The Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, NY, USA, 1973; ISBN 0876631650. [Google Scholar]
- Mesarovic, M.; Pestel, E. Mankind at the Turning Point. In The Second Report to the Club of Rome; Hutchinson: London, UK, 1975; ISBN 9780091234713. [Google Scholar]
- Leontief, W.; Carter, A.P.; Nations, U.; Petri, P.A. The future of the world economy. In A United Nations Study; Oxford University Press: Oxford, UK, 1977. [Google Scholar]
- Häfele, W.; Anderer, J.; MacDonald, A.; Nakicenovic, N. Energy in a Finite World; Ballinger: Cambridge, MA, USA, 1981; ISBN 9780884106418. [Google Scholar]
- Response Strategies Working Group. Climate change: The Intergovernmental Panel on Climate Change (IPCC) scientific assessment. In The IPCC Scientific Assessment; Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 329–341. [Google Scholar]
- Pepper, W.; Leggett, J.; Swart, R.; Wasson, J.; Edmonds, J.; Mintzer, I. Emission scenarios for the IPCC. An update: Assumptions, methodology and results. In Climate Change 1992: Supplementary Report to the IPCC Scientific Assessment; Houghton, J.T., Callander, B.A., Varney, S.K., Eds.; Cambridge University Press: Cambridge, UK, 1992; pp. 69–95. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenham, J.; Gaffin, S.; Gregory, K.; Grübler, A.; Jung, T.-Y.; Kram, T.; et al. Special report on emissions scenarios. In A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000; ISBN 9780521804936. [Google Scholar]
- Nakicenovic, N.; Kolp, P.; Riahi, K.; Kainuma, M.; Hanaoka, T. Assessment of emissions scenarios revisited. Environ. Econ. Policy Stud. 2006, 7, 137–173. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Lempert, R.J.; Janetos, A.C. A Framework for the Development of New Socio-economic Scenarios for Climate Change Research: Introductory Essay. Clim. Chang. 2014, 122, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463. [Google Scholar] [CrossRef] [PubMed]
- van Vuuren, D.P.; Edmonds, J.A.; Kainuma, M.; Riahi, K.; Weyant, J. A special issue on the RCPs. Clim. Chang. 2011, 109, 1. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Kriegler, E.; Edmonds, J.; Hallegatte, S.; Ebi, K.L.; Kram, T.; Riahi, K.; Winkler, H.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared climate policy assumptions. Clim. Chang. 2014, 122, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J.; Bouwman, A.; Edmonds, J.; Grübler, A.; Morita, T.; Sugandhy, A. An evaluation of the IPCC IS92 emission scenarios. In Climate Change, 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios; Houghton, J.T., Ed.; Cambridge University Press: Cambridge, UK, 1995; ISBN 9780521559621. [Google Scholar]
- Morita, T.; Robinson, J.; Adegbulugbe, A.; Alcamo, J.; Herbert, D.; La Rovere, E.L.; Nakicenovic, N.; Pitcher, H.; Raskin, P.; Riahi, K.; et al. Greenhouse gas emission mitigation scenarios and implications. In Climate Change 2001: Mitigation, Contribution of Working Group III to the Third Assessment; Cambridge University Press: Cambridge, UK, 2001; pp. 115–166. [Google Scholar]
- International Energy Agency (IEA). World Energy Model Documentation. Available online: https://www.iea.org/media/weowebsite/energymodel/WEM2018.pdf (accessed on 24 April 2019).
- International Energy Agency (IEA). Energy Technology Perspectives 2017; International Energy Agency: Paris, France, 2017. [Google Scholar]
- World Energy Council. World Energy Scenarios. In Composing Energy Futures to 2050; World Energy Council: London, UK, 2013. [Google Scholar]
- Shell International B.V. Shell World Energy Model. Available online: https://www.shell.com/promos/meeting-the-goals-of-the-paris-agreement/_jcr_content.stream/1530643931055/eca19f7fc0d20adbe830d3b0b27bcc9ef72198f5/shell-scenario-sky.pdf (accessed on 25 April 2019).
- Shell International B.V. Shell Scenarios Sky. 2018. Available online: https://www.shell.com/promos/meeting-the-goals-of-the-paris-agreement/_jcr_content.stream/1530643931055/eca19f7fc0d20adbe830d3b0b27bcc9ef72198f5/shell-scenario-sky.pdf (accessed on 25 April 2019).
- Shell International B.V. New Lens Scenarios. 2013. Available online: https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/new-lenses-on-the-future.html (accessed on 25 April 2019).
- Capros, P.; de Vita, A.; Tasios, N.; Siskos, P.; Kannavou, M.; Petropoulos, A.; Evangelopoulou, S.; Zampara, M.; Papadopoulos, D.; Nakos, C.; et al. EU Reference Scenario 2016-Energy, Transport and GHG Emissions Trends to 2030; Publications Office of the European Union: Luxembourg, 2016; ISBN 978-92-79-52374-8. [Google Scholar]
- REflex. REflex—Analysis of the European Energy System. Available online: http://reflex-project.eu/ (accessed on 5 May 2019).
- Miller, C.A.; O’Leary, J.; Graffy, E.; Stechel, E.B.; Dirks, G. Narrative futures and the governance of energy transitions. Futures 2015, 70, 65–74. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Metzger, M.J. Developing qualitative scenario storylines for environmental change assessment. WIREs Clim. Chang. 2010, 1, 606–619. [Google Scholar] [CrossRef]
- O’Mahoney, T. Integrated Scenarios for Energy: A Methodology for the Short Term. Working Paper, DIT. Available online: https://arrow.tudublin.ie/futuresacart/23/ (accessed on 11 February 2020).
- Trutnevyte, E.; Barton, J.; O’Grady, Á.; Ogunkunle, D.; Pudjianto, D.; Robertson, E. Linking a storyline with multiple models: A cross-scale study of the UK power system transition. Technol. Forecast. Soc. Chang. 2014, 89. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J. Environmental futures. In The Practice of Environmental Scenario Analysis; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 0080932983. [Google Scholar]
- Energiesystemanalyse. Energy System Analysis. In Tagungsband des Workshops “Energiesystemanalyse”; Möst, D., Fichtner, W., Grunwald, A., Eds.; Univ.-verl.: Karlsruhe, Germany, 2008; Volume 27, ISBN 9783866443891. [Google Scholar]
- Fishbone, L.G.; Abilock, H. Markal, a linear-programming model for energy systems analysis: Technical description of the bnl version. Int. J. Energy Res. 1981, 5, 353–375. [Google Scholar] [CrossRef]
- Loulou, R.; Goldstein, G.; Kanudia, A.; Lettila, A.; Remme, U. Documentation for the TIMES Model PART I. Available online: https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf (accessed on 5 January 2019).
- Ma, T.; Nakamori, Y. Modeling technological change in energy systems—From optimization to agent-based modeling. Energy 2009, 34, 873–879. [Google Scholar] [CrossRef]
- Weidlich, A. Engineering Interrelated Electricity Markets. In An Agent-Based Computational Approach; Physica-Verlag HD: Heidelberg, Germany, 2008; ISBN 3790820687. [Google Scholar]
- Sensfuß, F.; Ragwitz, M.; Genoese, M. The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy 2008, 36, 3086–3094. [Google Scholar] [CrossRef] [Green Version]
- Savvidis, G.; Siala, K.; Weissbart, C.; Schmidt, L.; Borggrefe, F.; Kumar, S.; Pittel, K.; Madlener, R.; Hufendiek, K. The gap between energy policy challenges and model capabilities. Energy Policy 2019, 125, 503–520. [Google Scholar] [CrossRef]
- Hladik, D.; Fraunholz, C.; Manz, P.; Kühnbach, M.; Kunze, R. A Multi-Model Approach to Investigate Security of Supply in the German Electricity Market. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Piscataway, NJ, USA, 27–29 June 2018; pp. 1–5, ISBN 978-1-5386-1488-4. [Google Scholar]
- Ellersdorfer, I.; Blesl, M.; Fahl, U.; Remme, U.; Zürn, M. Energiemodelle zu Innovation und moderner Energietechnik. Analyse exogenen und endogenen technischen Fortschritts in der Energiewirtschaft. In Energy Models for Innovation and Modern Energy Technology. Analysis of Exogenous and Endogenous Technical Progress in the Energy Industry; LIT: Münster, Germany, 2007; ISBN 9783825800260. [Google Scholar]
- Lechtenböhmer, S.; Palzer, A.; Pregger, T.; Gils, H.C.; Sterchele, P.; Kost, C.; Brucker, L.; Janßen, T.; Krüger, C.; Schüwer, D.; et al. RegMex—Modellexperimente und-Vergleiche zur Simulation von Wegen zu Einer Vollständig Regenerativen Energieversorgung [RegMex-Model Experiments and Comparisons for the Simulation of Paths to a Completely Renewable Energy Supply]. 2018. Available online: https://epub.wupperinst.org/frontdoor/index/index/docId/7096 (accessed on 15 September 2018).
- International Energy Agency (IEA). World Energy Outlook 2018; IEA: Paris, France, 2018; Available online: https://doi.org/10.1787/weo-2018-en (accessed on 11 February 2020).
- Dönitz, E.; Shala, E.; Leimbach, T. Future Threat Scenarios for Identifying Societal Security Needs—The Methodological Approach Based on European Project Ettis. In Proceedings of the 9th Future Security—Security Research Conference, Berlin, Germany, 16–18 September 2014; Thoma, K., Häring, I., Leismann, T., Eds.; Fraunhofer Verl.: Stuttgart, Germany, 2014; pp. 516–526, ISBN 9783839607787. [Google Scholar]
- Karlsruhe Institute of Technology; TU Dresden; Fraunhofer ISI. AVerS—Analyse der Versorgungssicherheit in Süddeutschland unter Berücksichtigung der europaweiten Kopplung der Strommärkte [Analysis of the Security of Supply in Southern Germany under Consideration of the Europe-Wide Interconnection of Electricity Markets]. Available online: http://www.isi.fraunhofer.de/isi-de/e/projekte/318191_AVerS_Mij_2019.php (accessed on 7 December 2017).
- SET-Nav. Strategic Energy Roadmap—The SET-Nav Project. Available online: http://www.set-nav.eu/ (accessed on 5 May 2019).
- Rasmussen, L.B. The narrative aspect of scenario building—How story telling may give people a memory of the future. AI Soc. 2005, 19, 229–249. [Google Scholar] [CrossRef]
- Miller, M.; Alberini, A. Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity—Evidence from U.S. Data. Energy Policy 2016, 97, 235–249. [Google Scholar] [CrossRef] [Green Version]
- ENTSO-E. Ten Year Net Development Plan 2018. Available online: https://tyndp.entsoe.eu/#cost-benefit-analysis-methodology-cba-20-for-tyndp-project-assessment (accessed on 11 November 2019).
- C/sells. C/sells-Facts. Available online: https://www.csells.net/en/about-c-sells/fakten.html (accessed on 10 December 2018).
- C/sells. C/sells Guiding Principle. Available online: https://www.csells.net/en/about-c-sells/guiding-principle.html (accessed on 11 November 2019).
- Ducot, G.; Lubben, G.J. A typology for scenarios. Futures 1980, 12, 51–57. [Google Scholar] [CrossRef]
- Kronenberg, T.; Martinsen, D.; Pesch, T.; Sander, M.; Fischer, W.; Hake, J.-F.; Markewitz, P.; Kuckshinrichs, W. Energieszenarien für Deutschland: Stand der Literatur und methodische Auswertung [Energy Scenarios for Germany: State of the Literature and Methodological Evaluation]. 2011. Available online: www.fz-juelich.de/SharedDocs/Downloads/IEK/IEK-STE/EN/publications/research_reports/2011/report_13_2011.pdf?__blob=publicationFile (accessed on 19 November 2018).
- Federal Ministry for the Environment; Nature Conservation; Building and Nuclear Safety (BMUB). Climate Action Plan 2050—Principles and Goals of the German government’s Climate Policy. 2016. Available online: https://www.bmu.de/en/publication/climate-action-plan-2050-principles-and-goals-of-the-german-governments-climate-policy/ (accessed on 19 November 2018).
- Weimer-Jehle, W. Cross-impact balances: A system-theoretical approach to cross-impact analysis. Technol. Forecast. Soc. Chang. 2006, 73, 334–361. [Google Scholar] [CrossRef]
Year | Name of Scenario | Content | Reference |
---|---|---|---|
1972 and 1974 | 1st and 2nd Report to the club of Rome | Futures studies, which explored the long-term sustainability of natural resources | [40,41] |
1976 | The future of the world economy | Global projection of the economy using a mathematical model | [42] |
1981 | Energy in a finite world | Sustainability of natural resources in the long term | [43] |
1990 | IPCC SA90 | Common population projection and two alternative economic development paths | [44] |
1992 | IPCC IS92 | 6 scenarios quantifying different paths concerning population, economic growth and technology development | [45] |
1995 | IPCC Special Report | Evaluation of different emissions scenarios | [54] |
1996 | IPCC Special Report on Emissions Scenarios (SRES) | 40 scenarios based on four qualitative storylines | [46] |
2001 | IPCC Third Assessment Report (TAR) | 80 GHG stabilisation scenarios based on SRES cases | [55] |
Since 1977 | IEA World Energy Outlook | Quantitative scenarios focusing on the worldwide energy system | [56,57] |
Since 1938 | World Energy Council | Quantitative scenarios focusing on the worldwide energy system using storytelling | [58] |
Since 1972 | Shell Scenarios | Worldwide scenarios covering the whole economy. Focus on storytelling | [59,60,61] |
2016 | EU Reference scenario 2016 | EU energy system, transport and GHG emission trends to 2030 | [62] |
2019 | REFLEX | Analysis of the European energy system, particularly considering flexibility and technological progress | [63] |
Areas of Influence | Influencing Factors |
---|---|
Energy Conversion Technology Development | Technological innovations and breakthroughs |
Infrastructure | Electricity grid; gas network; degree of digitalisation |
Demand | Demand in sectors; flexibility options |
Socioeconomic Aspects | Participation; acceptance; consumer behaviour |
Energy System Organisation | Size of market areas; control hierarchy; types of energy-related products |
Areas of Influence | Influencing Factors | Qualitative Descriptors | Quantitative Descriptors |
---|---|---|---|
Energy Conversion Technology Development | Generation technology | Types of generating capacities; drivers of RES-expansion; assumptions about international projects | Installed capacities [MW/a]; RES-feed-in [MWh/a] technology costs [€/MW]; distance of wind turbines to closest settlement [m] |
Technological innovations and breakthroughs | Technological maturity (e.g., of hydrogen-based industrial processes) | Installed capacity [MW] | |
Demand | Demand in sectors | Considered sectors (transport, industry, households) | Annual demand for energy in the sectors [GWh]; demand profiles |
Flexibility options | Diffusion of different flexibility options and availability for flexible use | Installed capacity per flexibility type [MW] | |
Infrastructure | Energy grid infrastructure | Political decisions regarding relevant technologies | Transmission system capacity; interconnector capacity [MW] |
ICT infrastructure | Technologies being digitalised; use cases resulting from digitalisation of technologies | Degree of digitalisation | |
Socioeconomic Aspects | Acceptance | Barriers to RES expansion | Share of BEV (Battery electric vehicle) car owners accepting flexible load control [%] |
Participation | Degree of prosumer participation in local electricity supply concepts [%] | ||
Energy System Organisation | Control hierarchy; number of cells | Level of decision making; interactions between market participants and infrastructure operators; cell definition and boundaries | Spatial dimension and location of energy cell size [number of participants (supply/demand)] |
Markets | Type of markets; market participants; products (e.g., energy, flexibility) | Flexibility offers in a certain market [GW]; market prices [Euro/MW] |
Generic | Model-Specific | |||
---|---|---|---|---|
Areas of influence | Descriptor | Parameter | Model Input | Model Output |
Energy Conversion Technology Development | Installed capacities [MW] | Installed generation capacity in the base year [MW] | Installed generation capacity in the base year [MW] | New generating capacities build [MW] |
Technology costs | Cost [€/kW; €/kWh] for all technologies considered | Investment and variable costs per technology and year [Euro/MW; Euro] | ||
Efficiency | Efficiency [%] for all technologies considered | Efficiencies per technology and year [%/a] | ||
Demand | Annual demand for energy in the sectors [GWh] | Electricity demand [TWh/a]; total load [GW/h] | Electricity demand induced by sector [GWh] | Resulting total load [GW/h] |
Demand profiles | Relative load profile [-] | Electricity demand profiles of industry, household and tertiary sector | Load profile after flexibility optimisation [GW/h] | |
Installed capacity per flexibility type [MW] | Installed capacity [MW] | Storage capacities [MW]; DR-technologies [MW; MWh]; curtailment restrictions | Investment of flexibility options [Euro/MW]; dispatch of flexibility options | |
Cost of flexibility | Costs [€/kW; €/kWh] | Costs [€/kW; €/kWh] per flexibility type | ||
Energy System Organisation | Market prices | Fuel prices [€/kWhthermal] | Fuel prices per fuel and year | Fuel use per fuel and year |
Cell definition and boundaries | Capacity available for regional balancing | Flexible demand on a regional market [MW; MWh/h], available regional generation [MW; MWh/h] | Share of electricity balanced regionally [%] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kühnbach, M.; Guthoff, F.; Bekk, A.; Eltrop, L. Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System. Energies 2020, 13, 773. https://doi.org/10.3390/en13040773
Kühnbach M, Guthoff F, Bekk A, Eltrop L. Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System. Energies. 2020; 13(4):773. https://doi.org/10.3390/en13040773
Chicago/Turabian StyleKühnbach, Matthias, Felix Guthoff, Anke Bekk, and Ludger Eltrop. 2020. "Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System" Energies 13, no. 4: 773. https://doi.org/10.3390/en13040773
APA StyleKühnbach, M., Guthoff, F., Bekk, A., & Eltrop, L. (2020). Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System. Energies, 13(4), 773. https://doi.org/10.3390/en13040773