One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatments
2.3. Enzymatic Hydrolysis of Untreated and Treated Samples
2.4. Scanning Electron Microscopy (SEM) Analysis
2.5. Analytical Methods
3. Results and Discussion
3.1. One-Step Pretreatment
3.1.1. Solid Yields and Compositional Changes
3.1.2. Sugar Recovery from Pretreatment Stage
3.1.3. SEM Observation
3.1.4. Enzymatic Hydrolysis of Stalk Samples
3.2. Two-Step Pretreatment
3.3. Mass Balance for One-Step/Two-Step Processes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dziekonska-Kubczak, U.; Berłowska, J.; Dziugan, P.; Patelski, P.; Pielech-Przybylska, K.; Balcerek, M. Nitric Acid pretreatment of Jerusalem artichoke stalks for enzymatic saccharification and bioethanol production. Energies 2018, 11, 2153. [Google Scholar] [CrossRef] [Green Version]
- Caruso, M.C.; Braghieri, A.; Capece, A.; Napolitano, F.; Romano, P.; Galgano, F.; Altieri, G.; Genovese, F. Recent updates on the use of agro-food waste for biogas production. Appl. Sci. 2019, 9, 1217. [Google Scholar] [CrossRef] [Green Version]
- Duque, A.; Manzanares, P.; González, A.; Ballesteros, M. Study of the application of alkaline extrusion to the pretreatment of eucalyptus biomass as first step in a bioethanol production process. Energies 2018, 11, 2961. [Google Scholar] [CrossRef] [Green Version]
- You, Z.; Zhang, S.; Kim, H.; Chiang, P.C.; Sun, Y.; Guo, Z.; Xu, H. Effects of corn stover pretreated with NaOH and CaO on anaerobic co-digestion of swine manure and corn stover. Appl. Sci. 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Zhao, S.S.; Rogers, K.M.; Xia, Y.A.; Zhang, B.; Suo, R.; Zhao, Y. A case of milk traceability in small-scale districts-Inner Mongolia of China by nutritional and geographical parameters. Food Chem. 2020, 316, 126332. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Liu, C.Z. Enhanced coproduction of hydrogen and methane from cornstalks by a three-stage anaerobic fermentation process integrated with alkaline hydrolysis. Bioresour. Technol. 2012, 104, 373–379. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, B.; Chen, G.; Chen, A.L.; Yang, S.M.; Ye, Z.H. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability. Food Chem. 2014, 145, 300–305. [Google Scholar] [CrossRef]
- Camesasca, L.; Ramı’rez, M.B.; Guigou, M.; Ferrari, M.D.; Lareo, C. Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass Bioenergy 2015, 74, 193–201. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Copani, V.; D’Agosta, G.M.; Sanzone, E.; Mantineo, M. First results on evaluation of Arundo donax L. clones collected in Southern Italy. Ind. Crop Prod. 2006, 23, 212–222. [Google Scholar] [CrossRef]
- Tsai, M.H.; Lee, W.C.; Kuan, W.C.; Sirisansaneeyakul, S.; Savarajara, A. Evaluation of different pretreatments of Napier grass for enzymatic saccharification and ethanol production. Energy Sci. Eng. 2018, 6, 683–692. [Google Scholar] [CrossRef]
- Scordia, D.; Cosentino, S.L.; Jeffries, T.W. Effectiveness of dilute oxalic acid pretreatment of Miscanthus×giganteus biomass for ethanol production. Biomass Bioenergy 2013, 59, 540–548. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; Holowacz, I.; Lukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabanci, K.; Buyukkileci, A.Q. Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues. Bioresour. Technol. 2018, 261, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.; Ummalyma, S.B.; Okram, A.K.; Pandey, A.; Sankar, M.; Sukumaran, R.K. Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour. Technol. 2018, 253, 252–255. [Google Scholar] [CrossRef]
- Pandey, A.K.; Negi, S. Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresour. Technol. 2015, 192, 115–125. [Google Scholar] [CrossRef]
- Li, K.N.; Wan, J.M.; Wang, X.; Wang, J.F.; Zhang, J.H. Comparison of dilute acid and alkali pretreatments in production of fermentable sugars from bamboo: Effect of Tween 80. Ind. Crops Products 2016, 83, 414–422. [Google Scholar] [CrossRef]
- Liu, C.Z.; Cheng, X.Y. Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int. J. Hydrog. Energy 2010, 35, 8945–8952. [Google Scholar] [CrossRef]
- Menegol, D.; Schol, A.L.; Dillon, A.J.; Camassola, M. Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation. Bioprocess Biosyst. Eng. 2016, 39, 1455–1464. [Google Scholar] [CrossRef]
- Kang, K.E.; Park, D.H.; Jeong, G.T. Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresour. Technol. 2013, 132, 160–165. [Google Scholar] [CrossRef]
- Zhang, H.D.; Lyu, G.J.; Zhang, A.P.; Li, X.; Xie, J. Effects of ferric chloride pretreatment and surfactants on the sugar production from sugarcane bagasse. Bioresour. Technol. 2018, 265, 93–101. [Google Scholar] [CrossRef]
- Dziekonska-Kubczak, U.; Berłowska, J.; Dziugan, P.; Patelski, P.; Balcerek, M.; Pielech-Przybylska, K.; Robak, K. Two-stage pretreatment to improve saccharification of oat straw and Jerusalem artichoke biomass. Energies 2019, 12, 1715. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Zhang, Y.H.; Yu, G.; Lee, W.H.; Jin, Y.S.; Morgenroth, E. Two-stage acidic–alkaline hydrothermal pretreatment of lignocellulose for the high recovery of cellulose and hemicellulose sugars. Appl. Biochem. Biotechnol. 2013, 169, 1069–1087. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Cai, D.; Zhang, C.; Li, S.; Qin, P.; Chen, C.; Wang, Y.; Wang, Z. Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. Bioresour. Technol. 2016, 221, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, J.M.; Seo, J.W.; Kim, C.H. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour. Technol. 2012, 109, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, A.A.; Dantas, P.V.F.; Santos, E.S.; Fernandes, F.A.N.; Macedo, G.R. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz. J. Chem. Eng. 2015, 32, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- SEPAC. The Methods for Water and Wastewater Monitoring and Analysis, 4th ed.; State Environmental Protection Administration of China & China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Goering, H.K.; Van-Soest, P.J. Agricultural Handbook No. 379. Forage Fiber Analyses, Apparatus, Reagents, Procedures and Some Applications; U.S. Department of Agriculture: Washington, DC, USA, 1970.
- Overend, R.P.; Chornet, E.; Gascoigne, J.A. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. A 1987, 321, 523–536. [Google Scholar] [CrossRef]
- Pedersen, M.; Meyer, A.S. Lignocellulose pretreatment severity-relating pH to biomatrix opening. New Biotechnol. 2010, 27, 739–750. [Google Scholar] [CrossRef]
- Michelin, M.; Ximenes, E.; de Lourdes Teixeira de Moraes Polizeli, M.; Ladisch, M.R. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour. Technol. 2016, 199, 275–278. [Google Scholar] [CrossRef]
- Meng, X.Z.; Wells, T., Jr.; Sun, Q.N.; Huang, F.; Ragauska, A. Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chem. 2015, 17, 4239–4246. [Google Scholar] [CrossRef]
- Xin, D.; Yang, Z.; Liu, F.; Xu, X.; Zhang, J. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis. Bioresour. Technol. 2015, 175, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Si, S.L.; Chen, Y.; Fan, C.F.; Hu, H.Z.; Li, Y.; Huang, J.F.; Liao, H.F.; Hao, B.; Li, Q.; Peng, L.C.; et al. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour. Technol. 2015, 183, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Eggeman, T.; Elander, R.T. Process and economic analysis of pretreatment technologies. Bioresour. Technol. 2005, 96, 2019–2025. [Google Scholar] [CrossRef]
- Duque, S.H.; Cardona, C.A.; Moncada, J. Techno-economic and environmental analysis of ethanol production from agroindustrial residues in Colombia. Energy Fuels 2015, 29, 775–783. [Google Scholar] [CrossRef]
- Denis, B.; Mark, M.W.; Robert, B. More than ethanol: A techno-economic analysis of a corn stover-ethanol biorefinery integrated with a hydrothermal liquefaction process to convert lignin into biochemicals. Biofuels Bioprod. Biorefin. 2018, 12, 497–509. [Google Scholar] [CrossRef]
- Du, J. Novozymes accelerates cellulosic ethanol commercialized. China WTO Trib. 2010, 10, 81. (In Chinese) [Google Scholar] [CrossRef]
- Puligundla, P.; Smogrovicova, D.; Mok, C.; Obulam, V.S.R. A review of recent advances in high gravity ethanol fermentation. Renew. Energy 2018, 133, 1366–1379. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, Q.; Liu, H.J.; Li, S.Z.; Jiang, Z.Q. Characterization of actinidin from Chinese kiwifruit cultivars and its applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. LWT-Food Sci. Technol. 2017, 78, 1–7. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, B.; Yan, Q.J.; Jiang, Z.Q. Comparative analysis on the distribution of protease activities among fruits and vegetable resources. Food Chem. 2016, 213, 708–713. [Google Scholar] [CrossRef]
- Nosrati-Ghods, N.; Harrison, S.T.L.; Isafiade, A.J.; Tai, S.L. Ethanol from biomass hydrolysates by efficient fermentation of glucose and xylose—A Review. Chembioeng. Rev. 2018, 5, 294–311. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Yang, H.Y.; Yan, Q.J.; Yang, S.Q.; Jiang, Z.Q.; Li, S.Z. Biochemical properties and application of a novel beta-1,3-1,4-glucanase from Paenibacillus barengoltzii. Food Chem. 2017, 234, 68–75. [Google Scholar] [CrossRef] [PubMed]
Different Pretreatment | Acid/alkali Addition (%) | Solid Yield (%) | HC (%) | CC (%) | LC (%) | SS from Pretreatment (mg/g RS) 1 |
---|---|---|---|---|---|---|
Control | -- | -- | 29.7 ± 0.9 | 33.0 ± 0.7 | 23.0 ± 1.1 | -- |
AP with H2SO4 | 1.0% | 59.4 ± 0.3 | 18.2 ± 1.7 | 55.1 ± 1.3 | 18.1 ± 1.3 | 55.8 ± 1.5 |
2.0% | 52.3 ± 0.6 | 17.0 ± 0.9 | 57.2 ± 2.2 | 19.2 ± 1.7 | 71.8 ± 0.4 | |
3.0% | 51.4 ± 0.3 | 14.0 ± 1.2 | 57.9 ± 0.6 | 20.4 ± 1.5 | 98.8 ± 1.0 | |
4.0% | 50.8 ± 1.6 | 12.3 ± 0.7 | 58.3 ± 0.9 | 21.1 ± 1.5 | 114.3 ± 1.3 | |
FP with FeCl3 | 0.8% | 69.7 ± 1.3 | 15.4 ± 0.9 | 52.9 ± 1.3 | 20.3 ± 2.1 | 66.8 ± 4.4 |
1.6% | 60.8 ± 2.2 | 13.8 ± 1.2 | 59.6 ± 0.9 | 18.9 ± 1.8 | 165.4 ± 6.4 | |
3.2% | 55.6 ± 0.9 | 12.2 ± 0.8 | 60.8 ± 0.5 | 17.4 ± 0.7 | 189.3 ± 3.8 | |
4.8% | 52.4 ± 1.4 | 10.6 ± 1.4 | 62.9 ± 1.2 | 15.8 ± 0.7 | 197.8 ± 4.0 | |
ALP with NaOH | 0.6% | 73.7 ± 0.3 | 24.4 ± 0.2 | 48.9 ± 0.5 | 17.9 ± 0.9 | 52.5 ± 1.0 |
0.8% | 64.0 ± 1.1 | 20.0 ± 0.1 | 55.7 ± 1.6 | 16.7 ± 0.4 | 69.7 ± 1.3 | |
1.0% | 63.8 ± 1.7 | 16.6 ± 0.8 | 55.4 ± 2.1 | 14.6 ± 0.7 | 83.0 ± 2.8 | |
1.2% | 53.8 ± 0.1 | 16.2 ± 0.4 | 62.7 ± 0.7 | 13.7 ± 0.8 | 90.8 ± 0.6 |
Different Pretreatments | Solid Yield (%) | SS from PTS (mg/g RS) | SS from EH | Total SS | Enzyme Consumption | ||
---|---|---|---|---|---|---|---|
Step 1/2 | Step 1/2 | (mg/g PS) | (mg/g RS) | (mg/g RS) 1 | (FPU/g RS) 2 | ||
Control | -- | -- | -- | -- | 123.6 | 123.6 | 15 |
AP, FP and ALP process | |||||||
4%H2SO4 | -- | 50.8/-- | 114.3/-- | 240.0 | 121.9 | 236.2 | 7.6 |
3.2% FeCl3 | -- | 55.6/-- | 189.3/-- | 119.8 | 66.6 | 255.9 | 8.3 |
1.0%NaOH | -- | 63.8/-- | 83/-- | 455.3 | 290.5 | 373.5 | 9.6 |
1.2%NaOH | -- | 53.8/-- | 90.8/-- | 537.0 | 288.9 | 379.7 | 8.1 |
Two-step FALP process | |||||||
Step 1 | Step 2 | ||||||
1.6% FeCl3 | 1.0%NaOH | 60.8/61.0 | 165.4/24.7 | 525.3 | 194.8 | 384.9 | 5.6 |
1.6% FeCl3 | 1.2%NaOH | 60.8/59.5 | 165.4/26.4 | 585.7 | 211.9 | 403.7 | 5.4 |
3.2% FeCl3 | 1.0%NaOH | 55.6/60.6 | 189.3/23.5 | 539.9 | 181.9 | 394.7 | 5.1 |
3.2% FeCl3 | 1.2%NaOH | 55.6/58.0 | 189.3/24.9 | 639.7 | 206.2 | 420.4 | 4.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Cao, Y.; Xu, C.; Wu, Y.; Li, L.; Ye, P.; Luo, Y.; Gao, Y.; Liao, Y.; Yan, Q.; et al. One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L. Energies 2020, 13, 948. https://doi.org/10.3390/en13040948
Tang S, Cao Y, Xu C, Wu Y, Li L, Ye P, Luo Y, Gao Y, Liao Y, Yan Q, et al. One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L. Energies. 2020; 13(4):948. https://doi.org/10.3390/en13040948
Chicago/Turabian StyleTang, Shangyuan, Yushen Cao, Chunming Xu, Yue Wu, Lingci Li, Peng Ye, Ying Luo, Yifan Gao, Yonghong Liao, Qiong Yan, and et al. 2020. "One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L." Energies 13, no. 4: 948. https://doi.org/10.3390/en13040948
APA StyleTang, S., Cao, Y., Xu, C., Wu, Y., Li, L., Ye, P., Luo, Y., Gao, Y., Liao, Y., Yan, Q., & Cheng, X. (2020). One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L. Energies, 13(4), 948. https://doi.org/10.3390/en13040948