Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts
Abstract
:1. Introduction
2. Problem Formulation and Data Description
3. Construction of a Selling Strategy
3.1. The Model
- is a vector of dummy variables for Monday, Saturday, Sunday/Holidays, and the other days of the week,
- is a vector of exogenous variables,
- L is a set corresponding to a pre-defined lag structure. It means that if , the observation from the day is one of the explanatory variables included in electricity price forecast for day t. In this paper , and are considered,
- and are vectors of coefficients, which correspond to and , respectively,
- is an autoregressive parameter,
- is a coefficient describing the influence of the price from the day-ahead market on the balancing price,
- is independent, identically distributed noise with a finite variance.
3.2. Probabilistic Forecasting
3.2.1. Historical Simulation
3.2.2. Quantile Regression Averaging
- Take the predicted values and build quantile regression models fortreating each individual prediction as independent variable.
- On the base of the obtained models, for , make prediction of the qth quantile of distribution and construct its inverse cumulative distribution functions .
- Generate vector of independent, uniform random variables on [0,1].
- For each , with interpolate a single day-ahead price scenario as:
3.3. Optimization of the Selling Strategy
- Calculate different values with and .
- For each of calculate .
- Select which maximizes for .
- Apply the sequential least square programming method with taken as a starting point in the maximization of for .
3.4. Strategy Evaluation Metrics
4. Results
4.1. Profit-Maximization Based Strategy
4.2. Risk-Minimization Based Strategy
4.3. Median-Maximization Based Strategy
4.4. Comparison of the Strategies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained (accessed on 17 January 2020).
- Gianfreda, A.; Parisio, L.; Pelagatti, M. The impact of RES in the Italian day-ahead and balancing markets. Energy J. 2016, 37, 161–184. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Anido, C.B.; Brinkman, G.; Hodge, B. The impact of wind power on electricity prices. Renew. Energy 2016, 94, 474–487. [Google Scholar] [CrossRef] [Green Version]
- Woo, C.K.; Moore, J.; Schneiderman, B.; Ho, T.; Olson, A.; Alagappan, L.; Chawlab, K.; Toyamad, N.; Zarnikau, J. Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets. Energy Policy 2016, 92, 299–312. [Google Scholar] [CrossRef]
- Uniejewski, B.; Marcjasz, G.; Weron, R. Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO. Int. J. Forecast. 2019, 35, 1533–1547. [Google Scholar] [CrossRef] [Green Version]
- Maciejowska, K.; Nitka, W.; Weron, T. Day-ahead vs. intraday—Forecasting the price spread to maximize economic benefits. Energies 2019, 12, 631. [Google Scholar] [CrossRef] [Green Version]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef] [Green Version]
- Karakatsani, N.V.; Bunn, D.W. Forecasting electricity prices: The impact of fundamentals and time-varying coefficients. Int. J. Forecast. 2008, 24, 764–785. [Google Scholar] [CrossRef]
- Kristiansen, T. Forecasting nord pool day-ahead prices with an autoregressive model. Energy Policy 2012, 49, 328–332. [Google Scholar] [CrossRef]
- Kosater, P.; Mosler, K. Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices. Appl. Energy 2006, 83, 943–958. [Google Scholar] [CrossRef] [Green Version]
- Janczura, J.; Weron, R. An empirical comparison of alternate regime-switching models for electricity spot prices. Energy Econ. 2010, 32, 1059–1073. [Google Scholar] [CrossRef] [Green Version]
- Bessa, R.J.; Trindade, A.; Miranda, V. Spatial-temporal solar power forecasting for smart grids. IEEE T. Ind. Inf. 2015, 11, 232–241. [Google Scholar] [CrossRef]
- Corizzo, R.; Pio, G.; Ceci, M.; Malerba, D. DENCAST: Distributed density-based clustering for multi-target regression. J. Big Data 2019, 6, 43. [Google Scholar] [CrossRef]
- Weron, R.; Misiorek, A. Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models. Int. J. Forecast. 2008, 24, 744–763. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.; Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A.; Conde, P. Short-term price forecasting models based on artificial neutral networks for intraday sessions in the Iberian electricity markets. Energies 2016, 9, 721. [Google Scholar] [CrossRef]
- Ceci, M.; Corizzo, R.; Malerba, D.; Rashkovska, A. Spatial autocorrelation and entropy for renewable energy forecasting. Data Min. Knowl. Disc. 2019, 33, 698. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- Areekul, P.; Senju, T.; Toyama, H.; Chakraborty, S.; Yona, A.; Urasaki, N.; Mandal, P.; Saber, A.Y. New method for next-day price forecasting for PJM electricity market. Int. J. Emerg. Electr. Power Syst. 2010, 11, 3. [Google Scholar] [CrossRef]
- Narajewski, M.; Ziel, F. Econometric modelling and forecasting of intraday electricity prices. J. Commod. Mark. 2019. [Google Scholar] [CrossRef] [Green Version]
- Poplawski, T.; Dudek, G.; Łyp, J. Forecasting methods for balancing energy market in Poland. Int. J. Electr. Power 2015, 65, 94–101. [Google Scholar] [CrossRef]
- Kiesel, R.; Paraschiv, F. Econometric analysis of 15-minute intraday electricity prices. Energy Econ. 2017, 64, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Ortner, A.; Totschnig, G. The future relevance of electricity balancing markets in Europe—A 2030 case study. Energy Strateg. Rev. 2019, 24, 111–120. [Google Scholar] [CrossRef]
- Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sust. Energ. Rev. 2018, 81, 1548–1568. [Google Scholar] [CrossRef]
- Andrade, J.R.; Filipe, J.; Reis, M.; Bessa, R.J. Probabilistic price forecasting for day-ahead and intraday markets: Beyond the statistical model. Sustainability 2017, 9, 1990. [Google Scholar] [CrossRef] [Green Version]
- Browell, J. Risk constrained trading strategies for stochastic generation with a single-price balancing market. Energies 2018, 11, 1345. [Google Scholar] [CrossRef] [Green Version]
- TGE. Available online: https://tge.pl/statistic-data (accessed on 17 February 2020).
- PSE. Available online: https://www.pse.pl/web/pse-eng/data (accessed on 17 February 2020).
- Hubicka, K.; Marcjasz, G.; Weron, R. A note on averaging day-ahead electricity price forecasts across calibration windows. IEEE T. Sustain. Energ. 2019, 10, 321–323. [Google Scholar] [CrossRef]
- Maciejowska, K.; Nowotarski, J.; Weron, R. Probabilistic forecasting of electricity spot prices using factor quantile regression averaging. Int. J. Forecast. 2016, 32, 957–965. [Google Scholar] [CrossRef]
- Marcjasz, G.; Serafin, T.; Weron, R. Selection of calibration windows for day-ahead electricity price forecasting. Energies 2018, 11, 2364. [Google Scholar] [CrossRef] [Green Version]
- Gneiting, T.; Katzfuss, M. Probabilistic forecasting. Annu. Rev. Stat. Appl. 2014, 1, 125–151. [Google Scholar] [CrossRef]
- Koenker, R.; Basset, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Nowotarski, J.; Weron, R. Computing electricity spot price prediction intervals using quantile regression and forecast averaging. Comput. Stat. 2015, 30, 791–803. [Google Scholar] [CrossRef] [Green Version]
- McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques and Tools: Concepts, Techniques and Tools; Princeton University Press: Princeton, NJ, USA, 2005; p. 38. [Google Scholar]
- Ziel, F.; Steinert, R. Electricity price forecasting using sale and purchase curves: The X-Model. Energy Econ. 2016, 59, 435–454. [Google Scholar] [CrossRef] [Green Version]
Variable Name | Notation | Unit |
---|---|---|
Day-ahead price | PLN/MWh | |
Balancing price | PLN/MWh | |
Forecast of energy demand | MWh | |
Forecast of wind generation | MWh | |
Forecast of reserves | MWh |
Day-Ahead | Balancing | Spread | ||||
---|---|---|---|---|---|---|
Hour | Mean | SD | Mean | SD | Mean | SD |
1 | 124.47 | 14.26 | 125.25 | 26.20 | 0.78 | 21.18 |
2 | 118.69 | 16.02 | 119.67 | 27.61 | 0.98 | 22.84 |
3 | 115.36 | 16.69 | 117.31 | 27.72 | 1.95 | 22.53 |
4 | 114.83 | 16.83 | 116.16 | 27.58 | 1.33 | 22.97 |
5 | 116.09 | 16.65 | 117.94 | 27.14 | 1.85 | 22.89 |
6 | 121.35 | 16.33 | 124.76 | 27.02 | 3.41 | 22.06 |
7 | 135.00 | 19.62 | 138.76 | 27.12 | 3.76 | 18.51 |
8 | 154.35 | 28.71 | 162.58 | 59.55 | 8.23 | 50.50 |
9 | 172.88 | 41.63 | 185.60 | 105.39 | 12.72 | 88.32 |
10 | 187.26 | 67.73 | 202.83 | 135.07 | 15.56 | 108.21 |
11 | 188.75 | 72.56 | 206.01 | 143.14 | 17.26 | 112.56 |
12 | 196.99 | 90.39 | 218.40 | 176.19 | 21.42 | 136.36 |
13 | 196.37 | 89.69 | 217.58 | 183.04 | 21.21 | 139.63 |
14 | 194.02 | 89.13 | 199.33 | 153.66 | 5.31 | 114.32 |
15 | 178.53 | 63.81 | 184.40 | 124.82 | 5.87 | 101.65 |
16 | 171.19 | 42.94 | 181.26 | 112.25 | 10.07 | 95.15 |
17 | 176.88 | 60.73 | 186.10 | 122.82 | 9.21 | 100.13 |
18 | 182.41 | 70.96 | 189.94 | 132.73 | 7.53 | 108.13 |
19 | 179.57 | 57.28 | 185.75 | 96.82 | 6.18 | 75.98 |
20 | 183.09 | 68.90 | 190.02 | 110.39 | 6.92 | 82.79 |
21 | 171.05 | 32.05 | 175.29 | 75.40 | 4.24 | 66.56 |
22 | 154.04 | 18.76 | 155.88 | 45.81 | 1.84 | 40.44 |
23 | 140.01 | 14.37 | 140.34 | 25.24 | 0.33 | 21.12 |
24 | 128.28 | 14.34 | 130.51 | 26.96 | 2.23 | 22.78 |
Total | 158.40 | 58.90 | 165.50 | 105.27 | 7.10 | 79.26 |
Model/Objective | Maximal Profit | Minimal Risk | Maximal Median | Benchmark | |||||
---|---|---|---|---|---|---|---|---|---|
X | L | VaR | VaR | VaR | VaR | ||||
,, | 86425.10 | −819.25 | 10788.94 | −80.10 | 69302.53 | −642.83 | 71657.50 | −689.34 | |
,, | 86265.34 | −819.76 | 12291.50 | −99.57 | 70583.69 | −674.40 | 74498.54 | −711.64 | |
, | 86576.17 | −819.82 | 8613.33 | −86.78 | 68494.10 | −595.03 | 69432.62 | −665.17 | |
, | 86434.65 | −819.66 | 10590.37 | −86.29 | 71279.46 | −597.58 | 75920.59 | −700.35 | |
- | 85629.16 | −819.82 | 13298.53 | −110.72 | 68942.19 | −660.79 | 70080.61 | −697.81 | |
- | 85790.13 | −819.82 | 13212.41 | −108.06 | 69779.47 | −590.72 | 76343.77 | −681.19 | |
,, | 86276.94 | −819.82 | 14932.28 | −136.20 | 69354.50 | −657.27 | 71413.99 | −635.12 | |
- | 84745.57 | −811.17 | 18215.60 | −139.33 | 68942.19 | −660.79 | 72044.88 | −649.27 | |
, | 86416.38 | −810.60 | 13288.63 | −118.61 | 67023.06 | −627.00 | 69131.99 | −642.48 | |
QRA | 82936.20 | −774.78 | 16572.90 | −113.72 | 72962.60 | −489.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janczura, J.; Michalak, A. Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts. Energies 2020, 13, 1045. https://doi.org/10.3390/en13051045
Janczura J, Michalak A. Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts. Energies. 2020; 13(5):1045. https://doi.org/10.3390/en13051045
Chicago/Turabian StyleJanczura, Joanna, and Aleksandra Michalak. 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts" Energies 13, no. 5: 1045. https://doi.org/10.3390/en13051045
APA StyleJanczura, J., & Michalak, A. (2020). Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts. Energies, 13(5), 1045. https://doi.org/10.3390/en13051045