The Composition and Properties of Polish Waste Focused on Biostabilisation in MBT Plants during the Heating Season
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Morphological Composition of OFMSW
3.2. Moisture and Values of Loss on Ignition and Total Organic Carbon Content in OFMSW
3.3. Moisture and Loss on Ignition Values of Fine Fractions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Energy statistics in 2015 and 2016. Central Statistical Office. Statistical Publishing Establishment Warsaw, 2017; ISSN 1506-7947. Available online: http://www.stat.gov.pl (accessed on 20 December 2019).
- Energy consumption in households in 2015. Central Statistical Office, Statistical Information and Elaborations; Warsaw, Poland, 2017. Available online: http://www.me.gov.pl (accessed on 20 December 2019).
- Question Put to a Minister—Interpelacja Poselska (Barbara Dziuk, Grzegorz Wojciechowski) nr 11834 z Dnia 07.04.2017, in Polish. Available online: http://www.sejm.gov.pl (accessed on 20 December 2019).
- Jędrczak, A. Stan i prognoza rozwoju instalacji MBP w Polsce State and forecast for the development of MBP plants in Poland. In Proceedings of the VI Konferencja Mechaniczno-Biologiczne Przetwarzanie Odpadów, Elbląg, Poland, 7–9 May 2013; pp. 101–110, ISBN 83-89018-09-8. (In Polish). [Google Scholar]
- Den Boer, E.; Jędrczak, A.; Kowalski, Z.; Kulczycka, J.; Szpadt, R. A review of municipal solid waste composition and quantities in Poland. Waste Manag. 2010, 30, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Steinem, M. Status and trends in MBT across Europe, and relevant features. In Proceedings of the ISWA Beacon Conference Perugia, Perugia, Italy, 15–16 April 2010. [Google Scholar]
- Reports on the Implementation of Provincial Waste Management Plans in 2014–2016, in Polish. Available online: www.bip.mos.gov.pl (accessed on 5 November 2018).
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (JL L 312, 22.11.2008, p. 3). Available online: http://www.eur-lex.europa.eu (accessed on 20 December 2019).
- Directive 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on Waste (Text with EEA Relevance) (Dz.U.UE. L. 150/109,14.6.2018). Available online: http://www.eur-lex.europa.eu (accessed on 20 December 2019).
- Directive 2018/852 of the European Parliament and of the Council of 30 May 2018 Amending Directive 94/62/EC on Packaging and Packaging Waste (Dz.U.UE. L. 150.141,14.6.2018). Available online: http://www.eur-lex.europa.eu (accessed on 20 December 2019).
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thornef, R.J.; Colóng, J.; Ponság, S.; Anguilanoiet, L.; et al. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Ziembicki, P.; Kozioł, J.; Bernasiński, J.; Nowogoński, I. Innovative system for heat recovery and combustion gas cleaning. Energies 2019, 12, 4255. [Google Scholar] [CrossRef] [Green Version]
- Pikoń, K.; Krawczyk, K.; Badyda, K.; Bogacka, M. Predictive analysis of waste co-combustion with fossil fuels using the life cycle assessment (LCA) methodology. Energies 2019, 12, 3691. [Google Scholar] [CrossRef] [Green Version]
- Glushkov, D.; Kuznetsov, G.; Paushkina, K. Switching coal-fired thermal power plant to composite fuel for recovering industrial and municipal waste: Combustion characteristics, emissions, and economic effect. Energies 2020, 13, 259. [Google Scholar] [CrossRef] [Green Version]
- Mlonka-Mędrala, A.; Magdziarz, A.; Gajek, M.; Nowińska, K.; Nowak, W. Alkali metals association in biomass and their impact on ash melting behavior. Fuel 2020, 261, 116–421. [Google Scholar] [CrossRef]
- Kassman, H.; Pettersson, J.; Steenari, B.M.; Åmand, L.E. Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion—Injection of ammonium sulphate and co-combustion with peat. Fuel Process. Technol. 2013, 105, 170–180. [Google Scholar] [CrossRef]
- Kotlicki, T.; Wawszczak, A. Spalanie odpadów w kotłach energetycznych. Górnictwo Geoinżynieria 2011, 35, 155–163. (In Polish) [Google Scholar]
- Agnew, J.M.; Leonard, J.J. Physical properties of compost—A review. Compost Sci. Util. 2003, 11, 138–264. [Google Scholar] [CrossRef]
- Bidlingmaier, W. Steurengsmöglichkeiten für biologische Verfahren über das Inputmaterial. 6. Münsteraner Abfallwirtschaftstage; Fachhochschule Institut für Wasser, Ressourcen und Umwelt-IWARU: Münster, Germany, 1999; p. 206. [Google Scholar]
- Epstein, E. The Science of Composting; Technomic Publishing Com., Inc.: Lancaster, CA, USA, 1997. [Google Scholar]
- Jędrczak, A. Biologiczne Przetwarzanie Odpadów; PWN: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Jędrczak, A. Composting and fermentation of biowaste—Advantages and disadvantages of processes. Civil. Environ. Eng. Rep. 2018, 28, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Petric, I.; Helić, A.; Avdhodžić Avdić, E. Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresour. Technol. 2012, 117, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 20 December 2019).
- Jędrczak, A.; den Boer, E. Final Report of the 3rd Stage of the Study to Carry Out Waste Tests in 20 Plants for Mechanical and Biological Waste Treatment; University of Zielona Góra: Zielona Góra, Poland, 2015; (Printed Version, In Polish). [Google Scholar]
- Jędrczak, A.; Szpadt, R. Określenie Metodyki Badań Składu Sitowego, Morfologicznego i Chemicznego Odpadów Komunalnych; Kamieniec Wrocławski: Zielona Góra, Poland, 2006. (In Polish) [Google Scholar]
- Development of a Methodological Tool to Enhance the Precision and the Comparability of Solid Waste Analysis Data. Deliverable 8—Demonstration Part, Methodology for the Analysis of Solid Waste (SWA-Tool) Version User, European Commission, Projekt nr EVK4-CT-2000-00030, 2001–2004. Available online: http://www.mos.gov.pl (accessed on 20 December 2018).
- PN-EN 15169: 2011+Ap1: 2012: Determination of Ignition Losses of the Oversize Fraction Samples Directed for Storage/Recovery; PKN: Warsaw, Poland, 2012.
- PN-EN 14346: 2011: Determination of the Moisture Content of Fraction Samples Directed for Stabilisation; PKN: Warsaw, Poland, 2011.
- PN-EN 13137: 2004: Determination of the Organic Carbon in the Fraction Directed for Stabilisation; PKN: Warsaw, Poland, 2004.
System | Designed Operation Capacity [1000 Mg/year] | Intensive Phase of Bio-Stabilization | Maturation in Windrows, Days | ||
---|---|---|---|---|---|
Mechanical Part | Biological Part | Reactor | Duration, Days | ||
MBT1 | 70 | 18 | Meso-philic dry fermentation of fraction <60 mm, after removal of Fe and hard particles | 25 | 20 |
MBT2 | 50 | 30 | Thermo-philic dry fermentation of fraction <40 mm without Fe and 40–80 mm after removal of Fe and hard particles | 26 | 21 |
MBT3 | 210 | 95 | Reinforced concrete cells in the hall, with forced aeration and waste transfer | 24 | 42 |
MBT4 | 59 | 19 | 28 | 33 | |
MBT5 | 80 | 33 | 25 | 41 | |
MBT6 | 65 | 32.5 | Reinforced concrete reactors with reinforced concrete roofing | 64 | 20 |
MBT7 | 45 | 26 | 29 | 42 | |
MBT8 | 70 | 16 | 35 | 24 | |
MBT9 | 157 | 100 | 24 | 33 | |
MBT10 | 100 | 48 | 20 | 20 | |
MBT11 | 80 | 21 | Reinforced concrete reactors with reinforced plastic roofing | 23 | 19 |
MBT12 | 72 | 16 | 29 | 55 | |
MBT13 | 27 | 13 | 27 | 41 | |
MBT14 | 60 | 30 | Cells with gates and roofs covered with GORE® laminates | 30 | 47 |
MBT15 | 85 | 28 | 22 | 63 | |
MBT16 | 65 | 20 | Steel reactors (containers) | 18 | 35 |
MBT17 | 50 | 25 | No reactor, the entire process is carried out in windrows within an open area | - | 134 |
MBT18 | 150 | 75 | Foil sleeves | 51 | - |
MBT19 | 44 | 16 | 50 | ||
MBT20 | 60 | 26 | Windrows with GORE® laminates | 56 | 20 |
MBT21 | 150 | 60 | Bio-drying in piles in the hall | 25 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędrczak, A.; Myszograj, S.; Połomka, J. The Composition and Properties of Polish Waste Focused on Biostabilisation in MBT Plants during the Heating Season. Energies 2020, 13, 1072. https://doi.org/10.3390/en13051072
Jędrczak A, Myszograj S, Połomka J. The Composition and Properties of Polish Waste Focused on Biostabilisation in MBT Plants during the Heating Season. Energies. 2020; 13(5):1072. https://doi.org/10.3390/en13051072
Chicago/Turabian StyleJędrczak, Andrzej, Sylwia Myszograj, and Jacek Połomka. 2020. "The Composition and Properties of Polish Waste Focused on Biostabilisation in MBT Plants during the Heating Season" Energies 13, no. 5: 1072. https://doi.org/10.3390/en13051072
APA StyleJędrczak, A., Myszograj, S., & Połomka, J. (2020). The Composition and Properties of Polish Waste Focused on Biostabilisation in MBT Plants during the Heating Season. Energies, 13(5), 1072. https://doi.org/10.3390/en13051072