1. Introduction
In a wind farm, each wind turbine will generally perform worse than an isolated turbine. The power loss with respect to an isolated turbine can be substantial, with typical losses of 10–20%, but as much as 40% in worst-case scenarios [
1]. This degradation in performance occurs because the wakes of other turbines reduce the energy available in the wind. Despite the economic importance of these losses, a general, theoretical performance limit for wind farms is not known, as recently noted by Meneveau [
2]. Wind turbine performance is often measured in terms of a power coefficient
, which is the ratio of power generated by the turbine to the power available in the wind, if the turbine were not there. An inviscid and irrotational analysis of a streamtube encountering an idealized actuator disk illuminates a trade-off between turbine force and turbine power. This is the so-called Betz limit, which sets the maximum power coefficient to be
[
3]. The aim of this study is to apply the same streamtube approach to numerical simulation data, which allows the relaxation of certain unrealistic assumptions in the classical analysis, namely that the turbine is isolated, the flow is irrotational, and the inflow is uniform.
Several studies have extended the Betz limit beyond its original assumptions. Garrett and Cummins [
4] studied the effect of confinement, which is especially relevant to tidal turbines. Wagner et al. [
5] suggested a correction to the calculation of power coefficient in order to account for the effect of shear. Both Chamorro and Arndt [
6] and Draper et al. [
7] derived a Betz limit for sheared, steady inflow. Their analyses assume an inviscid fluid, use the actuator disk approximation, and use streamtube arguments in the same spirit as the classical Betz analysis, but they differ in how the disk is modeled. Draper et al. use an actuator disk with uniform local resistance, whereas Charmorro and Arndt model the disk as applying a uniform force over its area, despite the variation in local velocity. None of the aforementioned studies consider the effects of turbulence or the wakes of other turbines. Luzzatto-Fegiz and Caulfield [
8] have studied large eddy simulation (LES) and field data from finite extent wind farms using a boundary layer hypothesis to predict a fundamental limit to wind farm efficiency without appealing to streamtube arguments. Their analysis uses ideas from the study of canopy flows and does not resolve the flow around individual turbines. Other efforts to predict limits to wind farm efficiency, including in wind farms with finite size, have been made by Nishino [
9,
10].
The transport of momentum and energy have been previously studied in the context of wind farms and wind turbine wakes. Abkar and Porté-Agel [
11] used LES to study mean and turbulent kinetic energy (TKE) budgets in an infinite wind farm in a conventionally neutral atmospheric boundary layer, although their work included Coriolis acceleration and focused on horizontally-averaged budgets. The dependence of mean kinetic energy budget on a turbine’s location in a wind farm has been examined by Cortina et al. [
12]. The streamtube energy budget for a lightly loaded wind turbine in a small array was studied in a wind tunnel experiment by Lebron et al. [
13]. They found that turbulence-related energy fluxes were of the same order of magnitude as power extracted by the wind turbine, and that production of TKE in the turbine wake was increased. Meyers and Meneveau [
14] studied the geometry of streamtubes and some components of the momentum and energy budgets in an infinite wind farm setting. In the present work, this is extended by studying how all the budget terms are influenced by changing the turbine resistance.
The goal of this work is to use LES of an infinite wind farm to study the combined effects of shear, boundary layer turbulence, and the presence of other wind turbines on wind turbine performance. Using a suite of large eddy simulations (LES), turbine resistance is varied in an infinite wind farm with a well-studied “aligned” layout. Connections are drawn between the flow physics around individual wind turbines and wind farm performance trade-offs, which determine the optimal turbine thrust in the wind farm. This work is in the same vein as fundamental investigations of other variables affecting wind farm physics and performance, such as wind direction [
15], turbine spacing [
16], and atmospheric stability [
11,
17,
18]. Especially as induction control strategies are being increasingly explored, understanding the flow physics of wind farms operating at different thrust coefficients becomes more important [
19]. This study contributes to understanding of this issue in the limit of the infinite wind farm. All of the analysis in the present work is conducted through the lens of streamtubes, which are commonly used in the development of wake models to predict the velocity deficit behind a wind turbine. Extending this analysis to the flow in the wake shows how these two perspectives offer complementary views of the flow physics.
Section 2 derives expressions for the mean momentum and mean kinetic energy budgets for a mean streamtube around an actuator disk.
Section 3 details the computational approach for the large eddy simulations and postprocessing used in this work.
Section 4 reports the streamtube properties, as well as mean momentum and mean kinetic energy budgets. This includes breaking the momentum and energy budgets down into components and analyzing the changes in flow physics as turbine thrust is varied. Comparisons are also made between the wind farm LES and data from a simulation of an isolated actuator disk.
Section 5 discusses the role of atmospheric boundary layer shear in modifying wind turbine performance, compares the simulation results to the wind farm theory of Nishino, and demonstrates design trade-offs that can be examined with Nishino’s model. Conclusions from the study are summarized in
Section 6.
2. Momentum and Energy Budgets for a Streamtube
For LES of an incompressible, turbulent, inviscid (
), steady-on-average flow, the transport equation for mean kinetic energy (MKE) can be written as Equation (
1), using the Einstein summation convention.
Here,
is the resolved fluid velocity vector,
is fluid density, and
P is the hydrodynamic pressure. An overbar denotes time averaging, and a prime denotes fluctuations from the time-averaged quantity (e.g.,
). The Reynolds stress tensor is given by
, the strain rate tensor by
, and the subgrid scale stress tensor by
. The term
represents a generic body force. Viscous effects on the resolved scales are neglected because the Reynolds number in wind farms is exceedingly high. The body forces of interest are due to turbines and to the body force driving the flow, which represents a steady pressure gradient in the streamwise direction due to geostrophic wind. Calaf et al. [
20] discussed the appropriateness of neglecting resolved viscous forces, and of representing the effect of geostrophic wind with a body force. Integrating Equation (
1) over some control volume (CV), employing the divergence theorem, and rearranging terms so that surface energy fluxes appear together on the left hand side, the following equation is obtained.
The dimension of each term in Equation (
2) is Energy/Time, so each term expresses a rate at which the energy of the mean flow is entering or leaving the control volume via some particular physical process. The left hand side of Equation (
2) represents exchanges of energy through the surface of the control volume. The four surface fluxes are advection of MKE by the mean flow, pressure work, energy transfer due to resolved turbulent stresses, and energy transfer due to subgrid scale stresses. The right hand side represents volumetric processes. These are due to production of turbulent kinetic energy (TKE), energy transfer into turbulence due to sub-grid scale stresses, and work done by body forces.
The control volume of choice in this study is a streamtube that is initialized as a circle concentric with the turbine disk. One such control volume is visualized in
Figure 1. Because the streamtube follows the mean flow, the first two terms in the surface integral evaluate to zero on the tube surface, except for those surfaces at each end of the tube, which are defined to be perpendicular to the streamwise direction. For convenience, and because their contributions to the mean budget are small, all of the effects of the subgrid scale stresses are treated as another body force. With this choice, and substituting in for the relevant body force terms, the MKE budget becomes
where
is the body force representing the streamwise pressure gradient, and
is the streamwise body force due to the actuator disk. In the traditional analysis, the flow in the streamtube is treated as 1-D, considering only streamwise velocity and forces. Following this practice, velocity and pressure values are averaged over each streamtube slice, and a shape factor
is defined for MKE advection, also known as an energy coefficient or Coriolis coefficient [
6].
where
denotes the area of the streamtube cross-section, and
denotes averaging over the streamtube cross-section. In addition, turbine power can be parametrized in terms of a power coefficient
, which is computed in the following way, assuming the turbine is within the CV:
where
is the actuator disk area and
is the freestream velocity. The precise definition of
is discussed in
Section 4.1. Other simplifications can also be made. Since
is a constant body force, it can be factored out of the volume integral. Furthermore, the remaining integral
, which is constant due to mass conservation in the streamtube. Arbitrary points
and
are defined as streamwise positions that mark the start and end points of the control volume. With these substitutions, Equation (
3) becomes
which can be rearranged into an alternate expression for
.
The integral bounds are dropped to simplify notation. This equation is an alternative way to frame the energy budget for a control volume around a wind turbine. Since the objective of a wind turbine is to maximize the power produced, the advantage of this framing is that it highlights which physical processes contribute to power production. Term i is the change in MKE, term ii is the pressure work, term iii is the energy added volumetrically by the body force driving the flow, term iv is work done by Reynolds stresses on the surfaces of the control volume, term v is the production of TKE in the volume, and term vi is the work done by mean subgrid scale forces throughout the volume. Following a similar procedure with the streamwise momentum equation, analogous expressions for the thrust coefficient
can also be written. This requires the definition of shape factor for streamwise momentum flux
, also known as a Boussinesq coefficient [
6].
The equations for thrust coefficient, analogous to Equations (
5) and (
7), are given below.
Term i is the change in streamwise momentum, term ii is the pressure force, term iii is the “” body force driving the flow, term iv is the normalized force due to Reynolds stress, and term v is the normalized force due to subgrid scale stresses.
The traditional streamtube analysis considers only the first two terms in Equations (
7) and (
10), with
. The third term would have appeared in the traditional analysis if the flow was driven by a body force. The following terms are the result of turbulence. The choice of control volume will affect the relative magnitudes of these terms, but since
and
are measures of turbine performance, the variations in the terms will always yield consistent
and
, provided the control volume encloses the entire actuator disk. In the limiting case that the control volume streamwise length goes to zero, only the pressure term remains, since it is discontinuous across the actuator disk. In the simulations, this is not achievable because the turbine force is smeared over the neighboring computational grid, so the grid must be considered when using Equations (
7) and (
10) to interpret the results. In
Section 4, the relative magnitude of each term in the budgets is examined, as well as how these terms are affected by choice of control volume and local turbine thrust coefficient.
3. Simulation Method
For this study, several wall-modeled large eddy simulations of an “infinite” wind farm are conducted, largely following the method of Calaf et al. [
20]. This is a half-channel flow with actuator disks, in which stratification, gravity, and Coriolis acceleration are neglected. The boundary conditions are periodic in streamwise and spanwise directions, with zero stress at the top boundary and a wall model applied at the bottom boundary. A constant body force is used to represent the effect of a streamwise pressure gradient.
The simulations are performed using a computational code, PadéOps-igrid, employing spectral differentiation in periodic directions and 6th order compact finite differencing otherwise. PadéOps is a code developed in the Flow Physics and Aeroacoustics Laboratory at Stanford University, which is freely available at [
21]. The incompressible grid (igrid) branch is used in this work. This code has been validated on a number of incompressible flow problems, and has been previously used to study wind energy and atmospheric boundary layer flows [
22,
23,
24]. The turbines are implemented as regularized actuator disks without rotation, using the same method as the JHU-LES code [
20]. The Reynolds number is infinite, meaning there are no viscous forces on resolved scales. Full details regarding subgrid scale model, time stepping, and other aspects of the solver can be found in Appendix A of Ghate and Lele [
22].
The infinite wind farm regime is only reached once the internal boundary of the wind farm within the atmospheric boundary layer (ABL) has grown to the full height of the ABL, meaning that as a simulation technique, it approximates the flow in wind farms which are much longer in the streamwise direction than the spanwise direction [
25]. While the infinite wind farm method is less realistic than precursor methods [
26], it has been widely used to study various aspects of wind farm physics, including scalar transport [
27], the effect of wind turbine spacing [
16], and atmospheric stability [
28]. Also, periodic boundary conditions in the spanwise direction are still commonly used in simulations using an ABL precursor to study finite-extent wind farms.
A cartoon of the domain used in the wind farm simulations is shown in
Figure 2. All cases use same disk diameter and “4 × 6” planform layout. They are differentiated only by
, the local thrust coefficient, which is used to determine the thrust the actuator disk exerts instantaneously on the flow based on the velocity at the turbine.
Unlike or , is an input specified to the simulations.
Applying the streamtube control volume analysis to simulation data requires careful attention to the numerical implementation of the actuator disk. In order for the budget Equations (
7) and (
10) to be satisfied, the streamtube must contain the entire actuator disk. In the classical analysis, this means that the streamtube diameter at the disk is equal to the turbine diameter. However, this streamtube is too small for simulation data, because the actuator disk force is smeared over the numerical grid for stability. To resolve this, the streamtube is initialized so that it captures 99% of the force exerted on the flow by the disk. For the wind farm cases presented here, this diameter is
times the actuator disk diameter. This means that the streamtube is oversized by 2.1 grid points in the y-direction, and 4.5 grid points in the z-direction.
To compute the mean streamtubes, as well as all streamtube properties and budgets, the velocity field is averaged in time and over an ensemble of all turbines in the domain. For example,
Figure 3 shows the time-averaged streamwise velocity at hub height for one wind farm simulation. In
Figure 3a, some evidence of high-speed streaks between the turbine rows is visible. This has been observed in other wall-bounded flows, and wind farm LES in particular, where the streamwise domain is not large enough to allow flow structures to break up [
29]. This effect is mitigated by ensemble averaging over the 24 turbines in that domain, as shown in
Figure 3b.
The streamtubes are initialized with 100 points around the circumference of the actuator disk, and fluid particle trajectories for those points are computed downstream and upstream of the turbine based on the mean flow field described above. The trajectories are computed with RK4 time stepping, using linear interpolation of the mean velocity field to define the velocity between grid points. Once the trajectories are obtained, streamtube cross-sections at
planes are defined by linearly interpolating the 100 trajectories at specified
x locations. These streamtube cross-sections, defined by 100 points around their perimeter, are used to compute various area and volume integrals in
Section 4. Area integrals, such mean velocity in the streamtube at a streamwise location, are computed by discretizing the streamtube cross-section area with 100 points in the radial direction, using the centroid of the boundary points as the origin. Then, the integral is evaluated in polar form using the midpoint rule, using spline interpolation to obtain the function values in the midpoint of the polar cells. Volume integrals in the streamtube are computed in a similar way, by taking area integrals at each station, and then integrating in the streamwise direction with fixed step size using the trapezoidal rule [
30].
The streamtube control volume analysis could also be applied to finite wind farms, with two important changes. First, the ensemble averaging over all turbines would be omitted, or replaced by averaging within rows, if the wind farm is spanwise homogeneous. Second, the energy budgets for each row would need to be considered separately, and the number of rows would be a design variable in the optimization, along with .
4. Results
The wind farm cases analyzed in this section were chosen to study a wide range of thrust coefficients
for a commonly studied layout, the 4 × 6 aligned grid. Nine different cases were simulated:
.
Table 1 lists the parameters common to all cases. Previous studies have focused on
, which is regarded as a typical value, with fewer cases conducted at
and
. The theoretical Betz limit occurs at
. The additional cases at higher and lower values of
presented here help to resolve the
curve, aid with validating Nishino’s model, and are useful for understanding trade-offs among energy budget terms which modify the Betz limit in this setting. The cases with
in this work correspond respectively to cases C, A, and B from Calaf et al. [
20].
Using the streamtube control volume discussed in
Section 2,
Figure 4 shows each term in the Reynolds-averaged streamwise momentum equation integrated over the streamtube cross section. Each term is normalized such that the turbine force term integrates to unity.
Figure 5 shows the same for each term in the MKE Equation (
1), normalized by the integrated turbine power. Only the budget for
is plotted in detail, but budgets were computed for all cases, and the influence of
is presented in
Section 4.2. Positive values in the budgets correspond to sources of mean momentum or mean energy, and negative values to sinks. The mean streamwise momentum and mean kinetic energy budgets provide very similar pictures of the physics for
, indicating that the energy budget is dominated by terms related to mean streamwise momentum. For this reason, only the energy budget is discussed in detail.
A prominent feature in the mean kinetic energy budget is the turbine work, which is the primary energy sink in the streamtube control volume. In the immediate vicinity of the turbine, pressure work and MKE advection are the primary sources of energy. However, because the wind farm is periodic, and hence the mean pressure and velocity fields are periodic, the net MKE advection and pressure work terms are very small when integrated over the entire streamtube volume. Although the work done by Reynolds stresses is generally small at each location along the streamtube, it is always positive, and so globally, it supplies the energy that is extracted by the turbine. This is the same physical mechanism as the frequently described vertical flux of kinetic energy [
20,
25,
26]. From the perspective of the streamtube control volume, there is a lateral (
) as well as vertical (
) kinetic energy flux. The lateral kinetic energy flux was also noted by Cortina et al. [
17] in wind farms with large spacing between turbines. In the wake of the turbine, some energy is removed from the mean through the production of turbulent kinetic energy (TKE). Most of the TKE production occurs between 0 and 3 diameters downstream of the turbine. In agreement with Lebron et al. [
13], both TKE production and energy flux due to Reynolds stresses peak in the wake of the turbine. After about 2.5 diameters downstream of the turbine, the Reynolds stress work and MKE advection terms roughly balance, indicating that the energy transported in by turbulent stresses is stored in mean kinetic energy.
It is also worth commenting on the relevance of the MKE budget to the total energy budget (MKE + TKE). In the streamtube control volumes, TKE is small compared to MKE for small values of . Around , TKE becomes comparable to MKE, especially in the turbine wake, eventually becoming larger than MKE for . This is due to large velocity deficit and intense turbulence created by large . It does not imply that the TKE budget is of greater importance to wind turbine performance for those cases, because the fluctuations’ contributions to total turbine power are always small: less than 3% for , and less than 6% for .
In order to interpret budgets as
is varied, it is helpful to look at quantities averaged over streamtube cross-sections, such as streamtube area, velocity, and pressure. These are plotted in
Figure 6. This allows comparison to the classical Betz analysis, which considers a one-dimensional velocity and pressure field inside the streamtube. As
is increased the pressure difference across the disk grows, and the velocity drops more as well. Note that as the thrust coefficient is increased, the average velocity in the streamtube also decreases. This happens because the turbines extract momentum from the flow, slowing it down. Because the streamtube is mass-conserving, these observations about velocity have straightforward connections to the cross-sectional area of the streamtube. As the streamtube approaches the turbine, it expands, and as the wake of the turbine recovers, the streamtube contracts (also seen in
Figure 1). This is in contrast to the classical streamtube analysis, where there would be an upstream and downstream state for both velocity and cross-sectional area. Because these results are for turbines situated in an infinite wind farm, the velocity and area are instead periodic in the streamwise direction. For low values of thrust coefficients, the area varies only slightly, maintaining a nearly cylindrical shape, as observed by Lebron et al. [
13].
The one-dimensional profiles plotted in
Figure 6 do not tell the entire story of the mean flow in the streamtube control volume. For additional perspective, the shape factors
and
, which quantify the non-uniformity of the velocity in the streamtube, are presented in
Figure 7. Unsurprisingly, the shape factors are generally close to unity except in the near wake of disks with large
. As the streamtube intersects the turbine, the velocity field becomes more non-uniform until about one diameter downstream, where it begins to recover towards uniformity. Cases with higher thrust coefficient depart further from unity because they create a larger velocity deficit behind the turbine. For much of the length of the streamtube, the shape factors are basically constant, even for large
. This does not mean the velocity is constant, but that the wake has reached a self-similar state as it recovers.
The peak value of both shape factors scales with
, as shown in
Figure 8. For the higher thrust coefficients simulated, the scaling diverges only slightly. This scaling can be predicted using a wake model, such as the lifting line model developed by Shapiro et al. [
31]. In this model, the steady-state velocity in the turbine wake is given by
where
a is the induction factor of the actuator disk, and
is a function describing wake spreading, which only depends on the location downstream of the turbine. The shape factor
can be expressed in terms of this velocity:
Subtracting 1 from
, the right hand side can be simplified.
Recognizing that
, and substituting in the definition
results in
In terms of scaling, this yields
where
is between
and
, based on the functional form of
. Therefore, a scaling of
is predicted by the wake model at small values of
, with some deviation at higher values depending on the value of
. A similar derivation for
results in a relationship with more complicated dependence on
, but which still allows for a scaling of
.
When interpreting the shape factors
and
, it is important to remember that this control volume is larger in diameter than the actuator disk, and so the shape factors may reflect both the faster flow outside the turbine wake and the slower flow inside it, especially in the near wake. The velocity profiles themselves are plotted in
Figure 9 and
Figure 10. As
increases, the non-uniformity of the velocity profiles increases dramatically, following the
scaling shown in
Figure 8. Also, as
increases, the transverse extent of the wake is significantly larger than the local streamtube diameter, even though the streamtube expands more as
increases. There is also evidence of blockage for non-zero values of
, where there is some acceleration of the flow outside the streamtube downstream of the turbine.
4.1. Freestream Velocity
In order calculate
and
, a freestream velocity
by which to normalize must be chosen. In many experiments and simulations, and in the classical Betz analysis,
is straightforwardly defined as the flow velocity far upstream of the actuator disk. However, this poses a problem when considering infinite wind farms, since there is no “upstream” or “downstream”. Nishino’s [
9] approach to this problem is to consider the freestream velocity to be the velocity averaged over the disk location in the flow before turbines are added, and this convention is used in the present work. To make this more precise, using the same terminology as Nishino,
is defined by an integral of the time-averaged streamwise velocity over the actuator disk area:
If
is computed at the disk location in a flow without turbines, the result is
, where the subscript 0 refers to the case without turbines. In this study,
is treated as the freestream velocity:
This definition of naturally includes any non-uniformity in the freestream velocity.
4.2. Effect of on Budget Terms
Two important metrics for wind farm design are the overall values of thrust coefficient
and power coefficient
for the wind farm. These can be computed directly from LES data by integrating Equations (
5) and (
9) over the entire wind farm domain. Values of
and
can then be compared for different values of
, but this provides little insight into the physical processes underlying the trends in these values. The expressions for thrust and power coefficient derived from the energy and momentum budgets for the streamtube (Equations (
7) and (
10)) are useful for this purpose. In
Figure 11, the integrated momentum budget in terms of
is presented as a function of
. In
Figure 12, the energy budget is presented in a similar way. In each case two control volumes are used. “CV
” refers to a streamtube that extends upstream and downstream half a turbine diameter, comprising 6 grid points in the streamwise direction. “CV
” refers to a streamtube that extends upstream and downstream half the spacing between turbine rows, encompassing 48 grid points in the streamwise direction. Because of the limitations of numerical integration and statistical convergence, the values of
and
computed using the different control volumes are not exactly equal, nor are they equal to
and
calculated directly. However, these discrepancies are small, and they are detailed in
Appendix A. Both control volumes contain the actuator disk, so both sum to nearly the same value, but the distribution among terms is different. This draws attention to the fact that locally, a wind turbine is a device for harvesting mechanical energy from the wind, but on a large scale, the wind farm relies upon the work done by Reynolds stresses, which re-energize the wind turbine wake.
As before, positive terms in the budget are sources, and negative terms are sinks.
Figure 11 shows that as
increases, the pressure force exerted by the turbine increases monotonically. The momentum extraction increases up to a point, but then begins to decrease due to the blockage effect seen in
Figure 9 and
Figure 10, as well as the overall slowdown in the flow. This trade-off causes
to level off for large values of
. Also, for higher thrust coefficients, the Reynolds stresses actually remove momentum from the control volume just around the wind turbine. This is due to the
term. The other terms, which correspond to turbulent stresses due to shear from the top and sides of the streamtube, are always positive when integrated over the streamtube. At all thrust coefficients, the
term is negative in the near wake of the wind turbine, but it is severe enough at high thrust coefficients to affect the budget for the small CV chosen here. In other words, the actuator disk causes a local decrease in both the mean and the rms streamwise velocity. The body force and sub-grid scale force remain small compared to the other terms for all
. For the larger streamtube, the Reynolds stresses are the primary contributor to the turbine force budget. When
, this term is negative, which is expected for a standard channel flow. The turbines are in the log layer, where the Reynolds stress balances the stress due to the “
” body force.
Figure 12 shows that as thrust coefficient is increased, pressure work increases, but more slowly than the pressure force, due to blockage and slowdown in the mean flow. The contribution from MKE advection peaks for lower values of thrust coefficient than the momentum change term in the
budget for the same reason. In the larger streamtube CV, the maximum
results when the work done by Reynolds stress on the surface of the streamtube is maximized. Also, more MKE is lost to the production of TKE as thrust coefficient increases. The MKE budget for the larger streamtube highlights that the turbine power largely comes from the energy flux due to Reynolds stresses, and that some fraction of that energy is lost into production of TKE. This echoes the analysis of horizontally averaged MKE budgets [
11,
23]. These results are also consistent with experimental evidence that TKE production and dissipation increase in wind turbine wakes [
13,
32].
4.3. Actuator Disk with Uniform Turbulent Inflow
It is instructive to compare the wind farm results to the more idealized case of an isolated actuator disk interacting with an un-sheared turbulent freestream wind. The data for this comparison comes from a high-resolution LES study of the interaction of homogeneous isotropic turbulence with a single actuator disk performed by Ghate et al. [
24] (case 10) using the same code as the present study. The local thrust coefficient in this study was
. The horizontal and vertical boundary conditions are periodic, and for the streamwise boundary conditions, a fringe region is used so that periodic boundary conditions can be applied. In the fringe region, the flow is forced based on a concurrent simulation of homogeneous isotropic turbulence.
The streamtube is initialized as
to capture 99% of the turbine force. This diameter is smaller than the one used in the wind farm cases because the grid resolution was much finer than in the present study. To compare the terms in the energy budget between the isolated turbine and wind farm cases, it is useful to look at the cumulative MKE budget, which is created from the curves in
Figure 5 by starting at a point upstream of the turbine and integrating the area under them to a chosen point downstream. This integrated budget is shown in
Figure 13, comparing the isolated turbine data to the wind farm data with the same local thrust coefficient,
. In both cases, each term in the budget has been normalized so that the magnitude of the turbine work term is equal to 1 at the end of the CV.
For the isolated turbine, the terms in the classical streamtube analysis (pressure work, mean advection, turbine work) dominate until . After that, turbulence from the growing shear layers begins to add energy back to the wake via Reynolds stresses, and a small amount of mean kinetic energy is lost into turbulent kinetic energy. The wind farm energy budget shows qualitatively similar behavior in the vicinity of the turbine, although the turbine force and pressure drop are less sharply resolved, due to the coarser resolution used. In the wind farm case, the Reynolds stresses acting on the streamtube add energy throughout its length, especially after . Production of TKE is also more significant in the wind farm wake. Finally, the pressure and MKE advection terms return to zero in the wind farm, due to periodicity. For the isolated turbine, pressure does not decay down to the same value as upstream, in contrast to the Betz theory, because the domain has finite streamwise extent and the fringe region does not enforce streamwise periodicity in the pressure field.
Another instructive comparison can be made by considering streamtube area, velocity, and pressure, shown in
Figure 14. As expected, the streamtube expands due to the actuator disk, but it also begins to contract due to turbulent mixing in the wake. However, the streamtube expands more and shrinks more slowly in the isolated case than in the wind farm. This happens because the turbulence which causes wake recovery is different in the two cases. For the isolated turbine, homogeneous turbulence from the inflow and turbulence from the developing shear layers act to add momentum to the wake. In the wind farm, the turbulence of a fully developed channel flow transports momentum much more rapidly, so that the velocity deficits in the wind farm are smaller than in the isolated case. Wu and Porté-Agel [
33] have observed that an increase in inflow turbulence intensity accelerates wake recovery, which is consistent with the difference in wake recovery observed here.
The shape factors for the uniform inflow case and wind farm case with the same thrust coefficient are shown in
Figure 15. Velocity profiles for the same cases are shown in
Figure 16. The non-uniformity in the velocity profile is less intense for the isolated turbine, but persists much farther downstream than the wind farm cases. The later peak and downstream persistence is explained by the slower rate of turbulent mixing in the wake and slower velocity deficit recovery. The fact that the peak in shape factor is lower may have to do with the way the streamtube is initialized. Because the streamtube is constructed to capture 99% of the force exerted on the flow, it is larger relative to the turbine when a coarser grid is used, since the force is smeared over the grid for numerical stability. Immediately behind the turbine, the larger streamtube therefore contains faster fluid outside the wake.
and
calculated for the isolated turbine are presented in
Table 2, along with the wind farm data for the same local thrust coefficient. Interestingly, the power coefficient for the isolated turbine is higher than the value predicted by the Betz theory. This can be explained by the fact that “isolated” turbine is really in a periodic array in the y-z plane, so that the expansion of the streamtube around the turbine is limited by the presence of other turbines. The blockage effect can be estimated based on the ratio of disk area to domain area [
4]. For the setup used by Ghate et al., the Betz limit for
is multiplied by a factor of 1.18. While
is not necessarily the optimal local thrust coefficient, this suggests that the confinement effect is sufficient to account for the increased
.