Development of an Efficient Cooling Strategy in the Heading Face of Underground Mines
Abstract
:1. Introduction
2. Principles of the New Cooling Strategy in the Heading Face
2.1. Highly Effective Cooling Strategy for the Workers in the Heading Face
- (a)
- All the workers are located near the heading face of the excavation roadway.
- (b)
- There is only one worker in the control range of each tracking air cooler.
2.2. Cooling Load and Economic Analysis
3. Numerical Simulation of Airflow for the New Cooling Strategy
3.1. Physical Model
- (a)
- The airflow is regarded as an incompressible fluid, and the dissipative heat caused by work of the viscous force of the fluid is neglected;
- (b)
- The thermal environment of the roadway is in equilibrium;
- (c)
- The influence of the conveyor, hydraulic support, and irregularity of the roadway on the flow field is neglected;
- (d)
- The airflow is fully turbulent and satisfies the Boussinesq hypothesis.
3.2. Temperature Distribution of the Airflow in the Heading Face
4. Discussion
4.1. Main Findings of This Study
4.2. Limitation of the Current Study and Outline of Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du Plessis, G.E.; Liebenberg, L.; Mathews, E.H. Case study: The effects of a variable flow energy saving strategy on a deep-mine cooling system. Appl. Energy 2013, 102, 700–709. [Google Scholar] [CrossRef]
- Wang, Q.; Ge, S.T. Uncovering the effects of external demand on China’s coal consumption: A global input-output analysis. J. Clean. Prod. 2020, 245, 18. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, K.; Zou, J.; Kong, Y. The implications of coal consumption in the power sector for China’s CO2 peaking target. Appl. Energy 2019, 253, 14. [Google Scholar] [CrossRef]
- Bao, T.; Meldrum, J.; Green, C.; Vitton, S.; Liu, Z.; Bird, K. Geothermal energy recovery from deep flooded copper mines for heating. Energy Convers. Manag. 2019, 183, 604–616. [Google Scholar] [CrossRef]
- Chai, J.; Du, M.F.; Liang, T.; Sun, X.C.; Yu, J.; Zhang, Z.G. Coal consumption in China: How to bend down the curve? Energy Econ. 2019, 80, 38–47. [Google Scholar] [CrossRef]
- Maurya, T.; Karena, K.; Vardhan, H.; Aruna, M.; Raj, M.G. Effect of heat on underground mine workers. Procedia Earth Planet. Sci. 2015, 11, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Li, N.; Chang, Z.; Fan, Y.; Ni, L. Study on heat transfer characteristic parameters and cooling effect of cold wall cooling system in coal mines. Exp. Heat Transf. 2019, 33, 179–196. [Google Scholar] [CrossRef]
- Su, Z.-G.; Jiang, Z.-A.; Sun, Z.-Q. Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index. Procedia Earth Planet. Sci. 2009, 1, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Jia, Y.; Wang, M.; Liu, L. Experimental research on heat transfer and strength analysis of backfill with ice grains in deep mines. Sustainability 2019, 11, 2486. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, A.M.; Sinclair, M.J.; Bates, G.P. Heat exhaustion in a deep underground metalliferous mine. Occup. Environ. Med. 2000, 57, 165–174. [Google Scholar] [CrossRef]
- Donoghue, A. Occupational health hazards in mining: An overview. Occup. Med. 2004, 54, 283–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katavoutas, G.; Assimakopoulos, M.N.; Asimakopoulos, D.N. On the determination of the thermal comfort conditions of a metropolitan city underground railway. Sci. Total Environ. 2016, 566, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Lopez, R.M. Return to exercise training after heat exhaustion. J. Sport Rehabil. 2007, 16, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Kasap, Y. The effect of work accidents on the efficiency of production in the coal sector. S. Afr. J. Sci. 2011, 107, 77–85. [Google Scholar] [CrossRef]
- Li, H.S.; Liu, S.Y.; Chang, H.H. Experimental research on the influence of working parameters on the drilling efficiency. Tunnel. Undergr. Space Technol. 2020, 95, 11. [Google Scholar] [CrossRef]
- Chatterjee, A.; Zhang, L.; Xia, X. Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff. Appl. Energy 2015, 146, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Bellas, I.; Tassou, S.A. Present and future applications of ice slurries. Int. J. Refrig. 2005, 28, 115–121. [Google Scholar] [CrossRef]
- Chou, J.S.; Hsu, Y.C.; Lin, L.T. Smart meter monitoring and data mining techniques for predicting refrigeration system performance. Expert. Syst. Appl. 2014, 41, 2144–2156. [Google Scholar] [CrossRef]
- MacLeod, I.M.; Stothert, A. Distributed intelligent control for a mine refrigeration system. IEEE Contr. Syst. Mag. 1998, 18, 31–38. [Google Scholar]
- Du Plessis, G.E.; Liebenberg, L.; Mathews, E.H.; Du Plessis, J.N. A versatile energy management system for large integrated cooling systems. Energy Convers. Manag. 2013, 66, 312–325. [Google Scholar] [CrossRef]
- Kuyuk, A.F.; Ghoreishi-Madiseh, S.A.; Sasmito, A.P.; Hassani, F. Designing a Large-Scale Lake Cooling System for an Ultra-Deep Mine: A Canadian Case Study. Energies 2019, 12, 811. [Google Scholar] [CrossRef] [Green Version]
- Kusiak, A.; Li, M.Y. Cooling output optimization of an air handling unit. Appl. Energy 2010, 87, 901–909. [Google Scholar] [CrossRef]
- Van Antwerpen, H.J.; Greyvenstein, G.P. Use of turbines for simultaneous pressure regulation and recovery in secondary cooling water systems in deep mines. Energy Convers. Manag. 2005, 46, 563–575. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.C.; Chen, S.L. Effectiveness of drilling ventilation on heading face in long-distance tunneling. Environ. Eng. Manag. J. 2019, 18, 2739–2746. [Google Scholar]
- Guo, P.; Chen, C. Field experimental study on the cooling effect of mine cooling system acquiring cold source from return air. Int. J. Min. Sci. Technol. 2013, 23, 453–456. [Google Scholar] [CrossRef]
- Zhou, Z.; Cui, Y.; Tian, L.; Chen, J.; Pan, W.; Yang, S.; Hu, P. Study of the Influence of Ventilation Pipeline Setting on Cooling Effects in High-Temperature Mines. Energies 2019, 12, 4074. [Google Scholar] [CrossRef] [Green Version]
- Du Plessis, G.E.; Liebenberg, L.; Mathews, E.H. The use of variable speed drives for cost-effective energy savings in South African mine cooling systems. Appl. Energy 2013, 111, 16–27. [Google Scholar] [CrossRef]
- Hartman, H.L.; Mutmansky, J.M.; Ramani, R.V.; Wang, Y. Mine Ventilation and Air Conditioning; John Wiley & Sons: New York, NY, USA, 2012; pp. 30–105. [Google Scholar]
- Homer, A.W. Coal mine safety regulation in China and the USA. J. Contemp. Asia 2009, 39, 424–439. [Google Scholar] [CrossRef]
- Sasmito, A.P.; Kurnia, J.C.; Birgersson, E.; Mujumdar, A.S. Computational evaluation of thermal management strategies in an underground mine. Appl. Therm. Eng. 2015, 90, 1144–1150. [Google Scholar] [CrossRef]
- Drenda, J.; Sułkowski, J.; Pach, G.; Różański, Z.; Wrona, P. Two stage assessment of thermal hazard in an underground mine. Arch. Min. Sci. 2016, 61, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Drenda, J.; Pach, G.; Różański, Z.; Wrona, P.; Sułkowski, J. Safe working conditions in hot mine environment―The analysis of different indices. Arch. Min. Sci. 2018, 63, 93–106. [Google Scholar]
Item | Temperature (°C) | Air Speed (m/s) |
---|---|---|
Inlet airflow | 27 | 12.00 |
Heading face wall | 40 | - |
Roadheader wall | 50 | - |
Roadway wall | 37 | - |
Tracking air cooler | 20 | 3.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Fu, H. Development of an Efficient Cooling Strategy in the Heading Face of Underground Mines. Energies 2020, 13, 1116. https://doi.org/10.3390/en13051116
Li X, Fu H. Development of an Efficient Cooling Strategy in the Heading Face of Underground Mines. Energies. 2020; 13(5):1116. https://doi.org/10.3390/en13051116
Chicago/Turabian StyleLi, Xian, and Houli Fu. 2020. "Development of an Efficient Cooling Strategy in the Heading Face of Underground Mines" Energies 13, no. 5: 1116. https://doi.org/10.3390/en13051116
APA StyleLi, X., & Fu, H. (2020). Development of an Efficient Cooling Strategy in the Heading Face of Underground Mines. Energies, 13(5), 1116. https://doi.org/10.3390/en13051116