Analysis of Progressive Failure Mechanism of Rock Slope with Locked Section Based on Energy Theory
Abstract
:1. Introduction
2. Establishment of Mechanical Model
3. Energy Balance Relationship of Slope System
4. Calculation and Analysis of Starting Velocity of Slope Instability
4.1. Calculation Formula of Starting Velocity
4.2. Analysis of Calculation Results
5. Calculation and Analysis of Safety Factor
5.1. Calculation Formula of Safety Factor
5.2. Analysis of Calculation Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eberhardt, E.; Stead, D.; Coggan, J.S. Numerical analysis of initiation and progressive failure in natural rock slopes—The 1991 Randa rockslide. Int. J. Rock Mech. Min. Sci. 2004, 41, 69–87. [Google Scholar] [CrossRef]
- Elmo, D.; Donati, D.; Stead, D. Challenges in the characterisation of intact rock bridges in rock slopes. Eng. Geol. 2018, 245, 81–96. [Google Scholar] [CrossRef]
- Bonilla–Sierra, V.; Scholtès, L.; Donzé, F.V.; Elmouttie, M. DEM analysis of rock bridges and the contribution to rock slope stability in the case of translational sliding failures. Int. J. Rock Mech. Min. Sci. 2015, 80, 67–78. [Google Scholar] [CrossRef]
- Guo, Q.; Pan, J.; Cai, M.; Zhang, Y. Investigating the Effect of Rock Bridge on the Stability of Locked Section Slopes by the Direct Shear Test and Acoustic Emission Technique. Sensors 2020, 20, 638. [Google Scholar] [CrossRef] [Green Version]
- Brideau, M.A.; Yan, M.; Stead, D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 2009, 103, 30–49. [Google Scholar] [CrossRef]
- Tuckey, Z.; Stead, D. Improvements to field and remote sensing methods for mapping discontinuity persistence and intact rock bridges in rock slopes. Eng. Geol. 2016, 208, 136–153. [Google Scholar] [CrossRef]
- Bishop, A.W. The use of the slip circle in the stability analysis of slopes. Geotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Wei, W.B.; Cheng, Y.M.; Li, L. Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods. Comput. Geotech. 2009, 36, 70–80. [Google Scholar] [CrossRef]
- Liu, S.Y.; Shao, L.T.; Li, H.J. Slope stability analysis using the limit equilibrium method and two finite element methods. Comput. Geotech. 2015, 63, 291–298. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Stead, D.; Eberhardt, E.; Coggan, J.S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng. Geol. 2006, 83, 217–235. [Google Scholar] [CrossRef]
- Scholtès, L.U.C.; Donzé, F.V. Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int. J. Rock Mech. Min. Sci. 2012, 52, 18–30. [Google Scholar] [CrossRef]
- Drucker, D.C.; Prager, W. Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 1952, 10, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.S.; Salgado, R.; Sloan, S.W.; Kim, J.M. Limit analysis versus limit equilibrium for slope stability. J. Geotech. Geoenviron. Eng. 1998, 124, 1–11. [Google Scholar] [CrossRef]
- Utili, S. Investigation by limit analysis on the stability of slopes with cracks. Geotechnique 2013, 63, 140–154. [Google Scholar] [CrossRef]
- Michalowski, R.L. Stability assessment of slopes with cracks using limit analysis. Can. Geotech. J. 2013, 50, 1011–1021. [Google Scholar] [CrossRef]
- Fellenius, W. Calculation of stability of earth dam. In Transactions Second Congress Large Dams, 2nd ed.; United States Government Printing Office: Washington, DC, USA, 1936; Volume 4, pp. 445–462. [Google Scholar]
- Janbu, N. Application of composite slip surface for stability analysis. In Proceedings of the European Conference on Stability of Earth Slopes, Stockholm, Sweden, 20–25 September 1954; Volume 3, pp. 43–49. [Google Scholar]
- Moregenstern, N. Stability charts for earth slopes during rapid drawdown. Geotechnique 1963, 13, 121–131. [Google Scholar] [CrossRef]
- Morgenstern, N.U.; Price, V.E. The analysis of the stability of general slip surfaces. Geotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Morgenstern, N.R.; Price, V.E. A numerical method for solving the equations of stability of general slip surfaces. Comput. J. 1967, 9, 388–393. [Google Scholar] [CrossRef]
- Spencer, E. A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- Scavia, C. Fracture mechanics approach to stability analysis of rock slopes. Eng. Fract. Mech. 1990, 35, 899–910. [Google Scholar] [CrossRef]
- Terzaghi, K. Stability of steep slopes on hard unweathered rock. Geotechnique 1962, 12, 251–270. [Google Scholar] [CrossRef]
- Einstein, H.H.; Veneziano, D.; Baecher, G.B.; O’reilly, K.J. The effect of discontinuity persistence on rock slope stability. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20, 227–236. [Google Scholar] [CrossRef]
- Jennings, J.E. A mathematical theory for the calculation of the stability of slopes in open cast mines. In Planning Open Pit Mines, Proceedings, Johannesburg; AA Balkema: Cape Town, South Africa, 1970; Volume 21, pp. 87–102. [Google Scholar]
- Wong, L.N.Y.; Wu, Z. Application of the numerical manifold method to model progressive failure in rock slopes. Eng. Fract. Mech. 2014, 119, 1–20. [Google Scholar] [CrossRef]
- Kokusho, T.; Ishizawa, T. Energy approach to earthquake-induced slope failures and its implications. J. Geotech. Geoenviron. Eng. 2007, 133, 828–840. [Google Scholar] [CrossRef]
- Tu, Y.; Liu, X.; Zhong, Z.; Li, Y. New criteria for defining slope failure using the strength reduction method. Eng. Geol. 2016, 212, 63–71. [Google Scholar] [CrossRef]
- Mauldon, M.; Ureta, J. Stability analysis of rock wedges with multiple sliding surfaces. Geotech. Geol. Eng. 1996, 14, 51–66. [Google Scholar] [CrossRef]
- Donald, I.B.; Chen, Z. Slope stability analysis by the upper bound approach: Fundamentals and methods. Can. Geotech. J. 1997, 34, 853–862. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yin, J.H.; Lee, C.F. The influence of a non-associated flow rule on the calculation of the factor of safety of soil slopes. Int. J. Numer. Anal. Methods Geomech. 2001, 25, 1351–1359. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Haberfield, C.; Yin, J.H.; Wang, Y. A three-dimensional slope stability analysis method using the upper bound theorem: Part I: Theory and methods. Int. J. Rock Mech. Min. Sci. 2001, 38, 369–378. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Wang, Y.; Yin, J.H.; Haberfield, C. A three-dimensional slope stability analysis method using the upper bound theorem Part II: Numerical approaches, applications and extensions. Int. J. Rock Mech. Min. Sci. 2001, 38, 379–397. [Google Scholar] [CrossRef]
- Gao, W.; Wang, X.; Dai, S.; Chen, D. Numerical study on stability of rock slope based on energy method. Adv. Mater. Sci. Eng. 2016, 2016, 2030238. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Dai, S.; Xiao, T.; He, T. Failure process of rock slopes with cracks based on the fracture mechanics method. Eng. Geol. 2017, 231, 190–199. [Google Scholar] [CrossRef]
- Qin, S.Q.; Jiao, J.J.; Li, Z.G. Nonlinear evolutionary mechanisms of instability of plane-shear slope: Catastrophe, bifurcation, chaos and physical prediction. Rock Mech. Rock Eng. 2006, 39, 59–76. [Google Scholar] [CrossRef]
- Qin, S.; Jiao, J.J.; Wang, S.; Long, H. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process. Int. J. Solids Struct. 2001, 38, 8093–8109. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Bolla, A.; Rigo, E. 3D stress-strain analysis of a failed limestone wedge influenced by an intact rock bridge. Rock Mech. Rock Eng. 2016, 49, 3223–3242. [Google Scholar] [CrossRef]
- Sun, P.P.; Yang, X.X.; Sun, D.K.; Qiao, W.G.; Wu, Y. Geometric and mechanical properties of a shear-formed fracture occurring in a rock bridge between discontinuous joints. Bull. Eng. Geol. Environ. 2019, 1–16. [Google Scholar] [CrossRef]
Working Temperature/°C | Scanning Angle in Horizontal Direction/(°) | Scanning Angle in Vertical Direction/(°) | Measurement Accuracy/mm | Spatial Resolution/m2 | Measurement Distance/km |
---|---|---|---|---|---|
−30 ~ +50 | ±104 | −33 ~ +55 | 0.2 | 3.5 × 3.5 | 2.5 |
Figure Number | h/(m) | γ/(kN/m3) | β/(°) | kp | θ/(°) | Variables | |||
---|---|---|---|---|---|---|---|---|---|
13a | 100–360 | 25 | 0 | 0.8 | 40 | 30 | 0.2 | 25 | h |
13b | 200 | 20–42 | 0 | 0.8 | 40 | 30 | 0.2 | 25 | |
13c | 200 | 25 | 40–70 | 0.8 | 40 | 30 | 0.2 | 25 | |
13d | 200 | 25 | 40 | 0.1–0.8 | 40 | 30 | 0.2 | 25 | kp |
13e | 200 | 25 | 40 | 0.8 | 6–42 | 30 | 0.2 | 25 | |
13f | 200 | 25 | 40 | 0.8 | 40 | 20–50 | 0.2 | 25 | |
13g | 200 | 25 | 40 | 0.8 | 40 | 30 | 0.05–0.25 | 25 | |
13h | 200 | 25 | 40 | 0.8 | 40 | 30 | 0.2 | 15–30 | θ |
h/(m) | β/(°) | θ/(°) | γ/(kN/m3) | kp | Fellenius | Bishop | Janbu | M-P | Equation (46) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
267 | 34 | 43.35° | 27 | 0.48 | 28.36 | 0.87 | 1.394 | 1.432 | 1.390 | 1.429 | 1.400 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Pan, J.; Cai, M.; Zhang, Y. Analysis of Progressive Failure Mechanism of Rock Slope with Locked Section Based on Energy Theory. Energies 2020, 13, 1128. https://doi.org/10.3390/en13051128
Guo Q, Pan J, Cai M, Zhang Y. Analysis of Progressive Failure Mechanism of Rock Slope with Locked Section Based on Energy Theory. Energies. 2020; 13(5):1128. https://doi.org/10.3390/en13051128
Chicago/Turabian StyleGuo, Qifeng, Jiliang Pan, Meifeng Cai, and Ying Zhang. 2020. "Analysis of Progressive Failure Mechanism of Rock Slope with Locked Section Based on Energy Theory" Energies 13, no. 5: 1128. https://doi.org/10.3390/en13051128
APA StyleGuo, Q., Pan, J., Cai, M., & Zhang, Y. (2020). Analysis of Progressive Failure Mechanism of Rock Slope with Locked Section Based on Energy Theory. Energies, 13(5), 1128. https://doi.org/10.3390/en13051128