Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy)
Abstract
:1. Introduction
2. Research Object Description
3. Hydrogeological Setting and Conceptual Model of the Geothermal Area
4. Numerical Simulation of Geothermal Exploitation
4.1. Governing Equations
4.2. Boundary and Initial Conditions
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amoresano, A.; Angelino, A.; Anselmi, M.; Bianchi, B.; Botteghi, S.; Brandano, M.; Brilli, M.; Bruno, P.P.; Caielli, G.; Caputi, A.; et al. VIGOR: Sviluppo geotermico nella regione Campania—Studi di Fattibilità a Mondragone e Guardia Lombardi. In Progetto VIGOR—Valutazione del Potenziale Geotermico delle Regioni della Convergenza, POI Energie Rinnovabili e Risparmio Energetico 2007-2013; CNR-IGG: Pisa, Italy, 2014; ISBN 9788879580151. [Google Scholar]
- Kiryukhin, A.V.; Vorozheikina, L.A.; Voronin, P.O.; Kiryukhin, P.A. Thermal and permeability structure and recharge conditions of the low temperature Paratunsky geothermal reservoirs in Kamchatka, Russia. Geothermics 2017, 70, 47–61. [Google Scholar] [CrossRef]
- Manni, M.; Coccia, V.; Nicolini, A.; Marseglia, G.; Petrozzi, A. Towards zero energy stadiums: The case study of the Dacia arena in Udine, Italy. Energies 2018, 11, 2396. [Google Scholar] [CrossRef] [Green Version]
- Bonati, A.; De Luca, G.; Fabozzi, S.; Massarotti, N.; Vanoli, L. The integration of exergy criterion in energy planning analysis for 100% renewable system. Energy 2019, 174, 749–767. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Lund, H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating. Appl. Energy 2011, 88, 479–487. [Google Scholar] [CrossRef]
- Kiryukhin, A.V.; Asaulova, N.P.; Vorozheikina, L.A.; Obora, N.V.; Voronin, P.O.; Kartasheva, E.V. Recharge Conditions of the Low Temperature Paratunsky Geothermal Reservoir, Kamchatka, Russia. Procedia Earth Planet. Sci. 2017, 17, 132–135. [Google Scholar] [CrossRef]
- Pocasangre, C.; Fujimitsu, Y.; Nishijima, J. Interpretation of gravity data to delineate the geothermal reservoir extent and assess the geothermal resource from low-temperature fluids in the Municipality of Isa, Southern Kyushu, Japan. Geothermics 2020, 83, 101735. [Google Scholar] [CrossRef]
- Zimmermann, G.; Moeck, I.; Blöcher, G. Cyclic waterfrac stimulation to develop an Enhanced Geothermal System (EGS)—Conceptual design and experimental results. Geothermics 2010, 39, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ma, G.; Wang, H.; Li, T.; Wang, Y.; Sun, Z. Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects. Renew. Energy 2020, 148, 326–337. [Google Scholar] [CrossRef]
- Simsek, S. Hydrogeological and isotopic survey of geothermal fields in the Buyuk Menderes graben, Turkey. Geothermics 2003, 32, 669–678. [Google Scholar] [CrossRef]
- Gouasmia, M.; Gasmi, M.; Mhamdi, A.; Bouri, S.; Dhia, H.B. Prospection géoélectrique pour l’étude de l’aquifère thermal des calcaires récifaux, Hmeïma–Boujabeur (Centre ouest de la Tunisie). Comptes Rendus Geosci. 2006, 338, 1219–1227. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Bagheri, R.; Jahanshahi, R. Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran. Geothermics 2010, 39, 242–249. [Google Scholar] [CrossRef]
- Duan, Z.; Pang, Z.; Wang, X. Sustainability evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin, China. Geothermics 2011, 40, 125–135. [Google Scholar] [CrossRef]
- Pasquale, V.; Verdoya, M.; Chiozzi, P. Heat flow and geothermal resources in northern Italy. Renew. Sustain. Energy Rev. 2014, 36, 277–285. [Google Scholar] [CrossRef]
- Homuth, S.; Götz, A.; Sass, I. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): Role of thermofacies as exploration tool. Geotherm. Energy Sci. 2015, 3, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Montanari, D.; Minissale, A.; Doveri, M.; Gola, G.; Trumpy, E.; Santilano, A.; Manzella, A. Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review. Earth-Sci. Rev. 2017, 169, 180–201. [Google Scholar] [CrossRef]
- Cataldi, R.; Mongelli, F.; Squarci, P.; Taffi, L.; Zito, G.; Calore, C. Geothermal ranking of Italian territory. Geothermics 1995, 1, 115–129. [Google Scholar] [CrossRef]
- Minissale, A.; Duchi, V. Geothermometry on fluids circulating in a carbonate reservoir in north-central Italy. J. Volcanol. Geotherm. Res. 1988, 35, 237–252. [Google Scholar] [CrossRef]
- Della Vedova, B.; Bellani, S.; Pellis, G.; Squarci, P. Deep temperatures and surface heat flow distribution. In Anatomy of An Orogen: The Apennines and Adjacent Mediterranean Basins; Springer: Berlin/Heidelberg, Germany, 2001; pp. 65–76. [Google Scholar]
- Chiarabba, C.; Chiodini, G. Continental delamination and mantle dynamics drive topography, extension and fluid discharge in the Apennines. Geology 2013, 41, 715–718. [Google Scholar] [CrossRef]
- Giambastiani, B.; Tinti, F.; Mendrinos, D.; Mastrocicco, M. Energy performance strategies for the large scale introduction of geothermal energy in residential and industrial buildings: The GEO. POWER project. Energy Policy 2014, 65, 315–322. [Google Scholar] [CrossRef]
- Corniello, A.; Cardellicchio, N.; Cavuoto, G.; Cuoco, E.; Ducci, D.; Minissale, A.; Mussi, M.; Petruccione, E.; Pelosi, N.; Rizzo, E.; et al. Hydrogeological Characterization of a Geothermal system: The case of the Thermo-mineral area of Mondragone (Campania, Italy). Int. J. Environ. Res. 2015, 9, 523–534. [Google Scholar]
- Taillefer, A.; Soliva, R.; Guillou-Frottier, L.; Le Goff, E.; Martin, G.; Seranne, M. Fault-related controls on upward hydrothermal flow: An integrated geological study of the têt fault system, eastern pyrénées (France). Geofluids 2017, 2017, 8190109. [Google Scholar] [CrossRef]
- Chi, G.; Xue, C. An overview of hydrodynamic studies of mineralization. Geosci. Front. 2011, 2, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Lowell, R.P.; Farough, A.; Hoover, J.; Cummings, K. Characteristics of magma-driven hydrothermal systems at oceanic spreading centers. Geochem. Geophys. Geosystems 2013, 14, 1756–1770. [Google Scholar] [CrossRef] [Green Version]
- Lowell, R.P. A fault-driven circulation model for the Lost City Hydrothermal Field. Geophys. Res. Lett. 2017, 44, 2703–2709. [Google Scholar] [CrossRef]
- Moeck, I.S. Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Blöcher, G.; Cacace, M.; Reinsch, T.; Watanabe, N. Evaluation of three exploitation concepts for a deep geothermal system in the North German Basin. Comput. Geosci. 2015, 82, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Calise, F.; Di Fraia, S.; Macaluso, A.; Massarotti, N.; Vanoli, L. A geothermal energy system for wastewater sludge drying and electricity production in a small island. Energy 2018, 163, 130–143. [Google Scholar] [CrossRef]
- Di Fraia, S.; Macaluso, A.; Massarotti, N.; Vanoli, L. Energy, exergy and economic analysis of a novel geothermal energy system for wastewater and sludge treatment. Energy Convers. Manag. 2019, 195, 533–547. [Google Scholar] [CrossRef]
- Franco, A.; Vaccaro, M. Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review. Renew. Sustain. Energy Rev. 2014, 30, 987–1002. [Google Scholar] [CrossRef]
- Carotenuto, A.; Massarotti, N.; Mauro, A. A new methodology for numerical simulation of geothermal down-hole heat exchangers. Appl. Therm. Eng. 2012, 48, 225–236. [Google Scholar] [CrossRef]
- Carotenuto, A.; Ciccolella, M.; Massarotti, N.; Mauro, A. Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review. Renew. Sustain. Energy Rev. 2016, 60, 330–355. [Google Scholar] [CrossRef]
- Carotenuto, A.; Marotta, P.; Massarotti, N.; Mauro, A.; Normino, G. Energy piles for ground source heat pump applications: Comparison of heat transfer performance for different design and operating parameters. Appl. Therm. Eng. 2017, 124, 1492–1504. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Butler, S.J.; Swenson, D.; Hardeman, B. Review of the state-of-the-art of numerical simulation of enhanced geothermal systems. In Proceedings of the World Geothermal Congress 2000, Kyushu, Japan, 28 May–10 June 2000. [Google Scholar]
- Burnell, J.; Clearwater, E.; Croucher, A.; Kissling, W.; O’Sullivan, J.; O’Sullivan, M.; Yeh, A. Future directions in geothermal modelling. In Proceedings of the (Electronic) 34rd New Zealand Geothermal Workshop, Auckland City, New Zealand, 19–21 November 2012. [Google Scholar]
- White, J.A.; Foxall, W. Assessing induced seismicity risk at CO2 storage projects: Recent progress and remaining challenges. Int. J. Greenh. Gas Control 2016, 49, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Moridis, G.J.; Pruess, K. T2SOLV: An enhanced package of solvers for the TOUGH2 family of reservoir simulation codes. Geothermics 1998, 27, 415–444. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, M.J.; Pruess, K.; Lippmann, M.J. State of the art of geothermal reservoir simulation. Geothermics 2001, 30, 395–429. [Google Scholar] [CrossRef]
- O’Sullivan, M.J.; Yeh, A.; Mannington, W.I. A history of numerical modelling of the Wairakei geothermal field. Geothermics 2009, 38, 155–168. [Google Scholar] [CrossRef]
- Bujakowski, W.; Barbacki, A.; Miecznik, M.; Pająk, L.; Skrzypczak, R.; Sowiżdżał, A. Modelling geothermal and operating parameters of EGS installations in the lower triassic sedimentary formations of the central Poland area. Renew. Energy 2015, 80, 441–453. [Google Scholar] [CrossRef]
- Carlino, S.; Troiano, A.; Di Giuseppe, M.G.; Tramelli, A.; Troise, C.; Somma, R.; De Natale, G. Exploitation of geothermal energy in active volcanic areas: A numerical modelling applied to high temperature Mofete geothermal field, at Campi Flegrei caldera (Southern Italy). Renew. Energy 2016, 87, 54–66. [Google Scholar] [CrossRef]
- Zyvoloski, G.; Dash, Z.; Kelkar, S. FEHMN 1.0: Finite Element Heat and Mass Transfer Code; Los Alamos National Lab: Los Alamos, NM, USA, 1992. [Google Scholar]
- Zyvoloski, G. FEHM: A control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer. In Los Alamos Unclassified Report LA-UR-07-3359; Los Alamos National Lab: Los Alamos, NM, USA, 2007. [Google Scholar]
- Kelkar, S.; Lewis, K.; Karra, S.; Zyvoloski, G.; Rapaka, S.; Viswanathan, H.; Mishra, P.; Chu, S.; Coblentz, D.; Pawar, R. A simulator for modeling coupled thermo-hydro-mechanical processes in subsurface geological media. Int. J. Rock Mech. Min. Sci. 2014, 70, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, D.; Kelkar, S.; Davatzes, N.; Hickman, S.; Moos, D. Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the Desert Peak Enhanced Geothermal System. Int. J. Rock Mech. Min. Sci. 2015, 78, 190–206. [Google Scholar] [CrossRef] [Green Version]
- Faust, C.R.; Mercer, J.W. Geothermal reservoir simulation: 1. Mathematical models for liquid-and vapor-dominated hydrothermal systems. Water Resour. Res. 1979, 15, 25–30. [Google Scholar] [CrossRef]
- Higuchi, S.; Nishijima, J.; Fujimitsu, Y. Integration of geothermal exploration data and numerical simulation data using GIS in a hot spring area. Procedia Earth Planet. Sci. 2013, 6, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Pola, M.; Fabbri, P.; Piccinini, L.; Zampieri, D. Conceptual and numerical models of a tectonically-controlled geothermal system: A case study of the Euganean Geothermal System, Northern Italy. Cent. Eur. Geol. 2015, 58, 129–151. [Google Scholar] [CrossRef]
- Aliyu, M.D.; Chen, H.-P. Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling. Renew. Energy 2017, 112, 151–165. [Google Scholar] [CrossRef]
- Bakhsh, K.J.; Nakagawa, M.; Arshad, M.; Dunnington, L. Modeling thermal breakthrough in sedimentary geothermal system, using COMSOL multiphysics. In Proceedings of the 41st Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 February 2016. [Google Scholar]
- Romano-Perez, C.; Diaz-Viera, M. A Comparison of Discrete Fracture Models for Single Phase Flow in Porous Media by COMSOL Multiphysics® Software. In Proceedings of the 2015 COMSOL Conference in Boston, Boston, MA, USA, 7–9 October 2012. [Google Scholar]
- Pandey, S.; Chaudhuri, A.; Kelkar, S. A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir. Geothermics 2017, 65, 17–31. [Google Scholar] [CrossRef]
- Pandey, S.; Chaudhuri, A.; Kelkar, S.; Sandeep, V.; Rajaram, H. Investigation of permeability alteration of fractured limestone reservoir due to geothermal heat extraction using three-dimensional thermo-hydro-chemical (THC) model. Geothermics 2014, 51, 46–62. [Google Scholar] [CrossRef]
- Cherubini, Y.; Cacace, M.; Blöcher, G.; Scheck-Wenderoth, M. Impact of single inclined faults on the fluid flow and heat transport: Results from 3-D finite element simulations. Environ. Earth Sci. 2013, 70, 3603–3618. [Google Scholar] [CrossRef]
- Carotenuto, A.; De Luca, G.; Fabozzi, S.; Figaj, R.D.; Iorio, M.; Massarotti, N.; Vanoli, L. Energy analysis of a small geothermal district heating system in Southern Italy. Int. J. Heat Technol. 2016, 34, S519–S527. [Google Scholar] [CrossRef]
- Billi, A.; Bosi, V.; De Meo, A. Caratterizzazione strutturale del rilievo del M. Massico nell’ambito dell’evoluzione quaternaria delle depressioni costiere dei fiumi Garigliano e Volturno (Campania Settentrionale). Il Quat. 1997, 10, 15–26. [Google Scholar]
- Milia, A.; Torrente, M.M. Tectono-stratigraphic signature of a rapid multistage subsiding rift basin in the Tyrrhenian-Apennine hinge zone (Italy): A possible interaction of upper plate with subducting slab. J. Geodyn. 2015, 86, 42–60. [Google Scholar] [CrossRef]
- Luiso, P.; Paoletti, V.; Nappi, R.; La Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M. A multidisciplinary approach to characterize the geometry of active faults: The example of Mt. Massico, Southern Italy. Geophys. J. Int. 2018, 213, 1673–1681. [Google Scholar] [CrossRef]
- Corniello, A.; Ducci, D.; Ruggieri, G.; Iorio, M. Complex groundwater flow circulation in a carbonate aquifer: Mount Massico (Campania Region, Southern Italy). Synergistic hydrogeological understanding. J. Geochem. Explor. 2018, 190, 253–264. [Google Scholar] [CrossRef]
- Cuoco, E.; Minissale, A.; Tamburrino, S.; Iorio, M.; Tedesco, D. Fluid geochemistry of the Mondragone hydrothermal systems (southern Italy): Water and gas compositions vs. geostructural setting. Int. J. Earth Sci. 2017, 106, 2429–2444. [Google Scholar] [CrossRef]
- Adinolfi, M.; Maiorano, R.M.S.; Mauro, A.; Massarotti, N.; Aversa, S. On the influence of thermal cycles on the yearly performance of an energy pile. Geomech. Energy Environ. 2018, 16, 32–44. [Google Scholar] [CrossRef]
- Di Fraia, S.; Massarotti, N.; Nithiarasu, P. Modelling electro-osmotic flow in porous media: A review. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 472–497. [Google Scholar] [CrossRef] [Green Version]
- Arpino, F.; Carotenuto, A.; Ciccolella, M.; Cortellessa, G.; Massarotti, N.; Mauro, A. Transient natural convection in partially porous vertical annuli. Int. J. Heat Technol. 2016, 34, S512–S518. [Google Scholar] [CrossRef]
- Massarotti, N.; Ciccolella, M.; Cortellessa, G.; Mauro, A. New benchmark solutions for transient natural convection in partially porous annuli. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 1187–1225. [Google Scholar] [CrossRef]
- Banks, D. Thermogeological assessment of open-loop well-doublet schemes: A review and synthesis of analytical approaches. Hydrogeol. J. 2009, 17, 1149–1155. [Google Scholar] [CrossRef]
- McLean, K.; Zarrouk, S.J. Pressure transient analysis of geothermal wells: A framework for numerical modelling. Renew. Energy 2017, 101, 737–746. [Google Scholar] [CrossRef]
Thermal Power Plant | Network | Users |
---|---|---|
|
|
|
Layer Number | Depth from Ground Level (m) | Lithology | Density (kg/m3) | Permeability (m2) | Porosity (-) | Thermal Conductivity (W/(m K)) |
---|---|---|---|---|---|---|
1 | 0–1.20 | Silty-clayey vegetal soil | 1600 | 1.02 × 10−12 | 0.50 | 1.00 |
2 | 1.20–2.80 | Gravel in silty-clayey matrix | 1800 | 1.02 × 10−10 | 0.30 | 2.20 |
3 | 2.80–5.50 | Clays and silts, with sandy and peaty intercalations | 1450 | 1.02 × 10−14 | 0.60 | 1.50 |
4 | 5.50–15.0 | Peat pits and clays with sandy and coarse interactions | 1100 | 1.02 × 10−12 | 0.65 | 2.00 |
5 | 15.0–25.0 | Grey tuff | 2000 | 1.02 × 10−13 | 0.47 | 1.10 |
6 | 25.0–32.7 | Sands alternated with clayey silts | 1700 | 1.02 × 10−11 | 0.35 | 2.00 |
7 | 32.7–34.8 | Limestone from fractured to compact | 2000 | 1.00 × 10−13 | 0.15 | 2.80 |
8 | 34.8–51.4 | Highly fractured and karst limestone | 2200 | 1.00 × 10−12 | 0.15 | 2.80 |
9 | 51.5–101 | Highly fractured and karst limestone | 2100 | 1.00 × 10−11 | 0.30 | 3.00 |
10 | 101–123 | Milonitic rock, sometimes cemented friction breccia | 2500 | 1.00 × 10−10 | 0.15 | 2.80 |
11 | 123–157 | Very fractured limestone with karstic voids filled with loose material | 2100 | 1.00 × 10−11 | 0.15 | 2.80 |
12 | 157–167 | Very fractured limestone, calcite and manganese concretions in the fractures, episodic empty karst. Strongly fractured and karstic | 2200 | 1.00 × 10−12 | 0.15 | 2.80 |
Depth from Ground Level (m) | Temperature (°C) | Lithology |
---|---|---|
0–32 | 38.5–40.0 | Pyroclastic–alluvial deposits |
32–124 | 40.0 | Limestone passing to Milonitic rock |
124–160 | 40.0–36.0 | Milonitic rock passing to very fractured limestone |
160–240 | 36.0–35.0 | Limestone passing to very fractured limestone |
240–300 | 33.0–30.0 | Very fractured limestone passing to fractured limestone |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Hydraulic gradient | ix | 0.5% | m/m |
Extraction flow rate | 84.6 | m3/h | |
Reinjection flow rate | 84.6 | m3/h | |
Hydraulic head | H | 13.0 | m |
Extraction Temperature | Tout | 34.5 | °C |
Injection Temperature | Tin | 32.0 | °C |
External Temperature | Text | 16.0 | °C |
Convective heat transfer coefficient | h | 25.0 | W/(m2 K) |
Parameter | Case 1 | Case 2 |
---|---|---|
Tetrahedral elements | 3,373,929 | 3,671,990 |
Triangular elements | 168,494 | 182,727 |
Edge elements | 6134 | 6813 |
Vertex elements | 160 | 180 |
Minimum element quality | 0.03311 | 0.03311 |
Average element quality | 0.6594 | 0.6601 |
Element volume ratio | 3.95 × 10−6 | 2.10 × 10−6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, M.; Carotenuto, A.; Corniello, A.; Di Fraia, S.; Massarotti, N.; Mauro, A.; Somma, R.; Vanoli, L. Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy). Energies 2020, 13, 1237. https://doi.org/10.3390/en13051237
Iorio M, Carotenuto A, Corniello A, Di Fraia S, Massarotti N, Mauro A, Somma R, Vanoli L. Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy). Energies. 2020; 13(5):1237. https://doi.org/10.3390/en13051237
Chicago/Turabian StyleIorio, Marina, Alberto Carotenuto, Alfonso Corniello, Simona Di Fraia, Nicola Massarotti, Alessandro Mauro, Renato Somma, and Laura Vanoli. 2020. "Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy)" Energies 13, no. 5: 1237. https://doi.org/10.3390/en13051237
APA StyleIorio, M., Carotenuto, A., Corniello, A., Di Fraia, S., Massarotti, N., Mauro, A., Somma, R., & Vanoli, L. (2020). Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy). Energies, 13(5), 1237. https://doi.org/10.3390/en13051237