The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical Analysis of Materials
2.3. Laboratory-Scale Biogas Production
2.4. The Construction and Operation of an Industrial Installation
2.5. Collection of Samples for Tests
2.6. Qualitative and Quantitative Analysis of Biogas
2.7. Biochemical Methane Potential Correction Coefficient (BMPCC)—Calculation Methodology Based on
3. Results
3.1. Physicochemical Parameters of Substrates—Laboratory-Scale Measurements
3.1.1. pH of Substrates
3.1.2. Total Solids in Substrates
3.1.3. Volatile Solids in Substrates
3.2. Laboratory-Scale Biogas Efficiency of Samples
3.2.1. Volume of Biogas Obtained from Substrates per Fresh Matter
3.2.2. Volume of Biogas Obtained from Substrates per Total Solids Content
3.2.3. Volume of Biogas Obtained from Substrates per Volatile Solids Content
3.3. pH—Industrial-Scale Measurements
3.4. Temperature—Industrial-Scale Measurements
3.5. The Actual Amount of Substrate Fed each Month
3.6. The Mass of Methane Produced from Each Substrate Each Month
3.7. Biomass Conversion in Laboratory
3.8. Biomass Conversion under Industrial Conditions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pilarski, K.; Pilarska, A.A. Production efficiency of Poland farm-scale biogas plants: A case study. In Proceedings of the Renewable Energy Sources—6th International Conference, ICoRES 2019, Krynica, Poland, 12–14 June 2019. E3S Web of Conferences, Volume 154, 02002, 2020. [Google Scholar]
- Stürmer, B. Feedstock change at biogas plants—Impact on production costs. Biomass Bioenergy 2017, 98, 228–235. [Google Scholar]
- Samarappuli, D.; Berti, M.T. Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. J. Clean. Prod. 2018, 194, 515–524. [Google Scholar]
- Carmona, P.C.R.; Witaszek, K.; Janczak, D.; Czekała, W.; Lewicki, A.; Dach, J.; Pilarski, K.; Mazur, R. Methane fermentation of the poultry manure as an alternative and environmentally friendly technology of its management. Arch. Waste Manag. Environ. Prot. 2014, 16, 21–26. [Google Scholar]
- Müller, F.P.C.; Maack, G.C.; Buescher, W. Effects of biogas substrate recirculation on methane yield and efficiency of a liquid-manure-based biogas plant. Energies 2017, 10, 325. [Google Scholar]
- Pilarska, A.A.; Pilarski, K.; Wolna-Maruwka, A.; Boniecki, P.; Zaborowicz, M. Use of confectionery waste in biogas production by the anaerobic digestion process. Molecules 2019, 24, 37. [Google Scholar]
- Stoknes, K.; Scholwin, F.; Krzesiński, W.; Wojciechowska, E.; Jasińska, A. Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag. 2016, 56, 466–476. [Google Scholar]
- Ardolino, F.; Parrillo, F.; Arena, U. Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. J. Clean. Prod. 2018, 174, 462–476. [Google Scholar]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar]
- Silvestre, G.; Illa, J.; Fernández, B.; Bonmatí, A. Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties. Appl. Energ. 2014, 117, 87–94. [Google Scholar]
- Pilarska, A.A.; Wolna-Maruwka, A.; Pilarski, K. Kraft lignin grafted with polyvinylpyrrolidone as a novel microbial carrier in biogas production. Energies 2018, 11, 3246. [Google Scholar]
- Piechocki, J.; Solowiej, P.; Neugebauer, M. The use of biomass for electric power production in polish power plants. Hung. Agric. Eng. 2015, 28, 19–22. [Google Scholar]
- Abubaker, J.; Cederlund, H.; Arthurson, V.; Pell, M. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Appl. Soil Ecol. 2013, 72, 171–180. [Google Scholar]
- Ruiz, D.; San Miguel, G.; Corona, B.; Gaitero, A.; Domínguez, A. Environmental and economic analysis of power generation in a thermophilic biogas plant. Sci. Total Environ. 2018, 633, 1418–1428. [Google Scholar] [PubMed]
- Schlegel, M.; Kanswohl, N.; Rössel, D.; Sakalauskas, A. Essential technical parameters for effective biogas production. Agron. Res. 2008, 6, 341–348. [Google Scholar]
- Zhou, J.; Zhang, R.; Liu, F.; Yong, X.; Wu, X.; Zheng, T.; Jiang, M.; Jia, H. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour. Technol. 2016, 217, 44–49. [Google Scholar] [PubMed]
- Yan, L.; Yea, J.; Zhang, P.; Xu, D.; Wu, Y.; Liu, J.; Zhang, H.; Fang, W.; Wang, B.; Zeng, G. Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH. Bioresour. Technol. 2018, 259, 67–74. [Google Scholar] [PubMed]
- Nie, H.; Fabian, J.H.; Strach, K.; Xu, C.; Zhou, H.; Liebetrau, J. Mono-fermentation of chicken manure: Ammonia inhibition and recirculation of the digestate. Bioresour. Technol. 2015, 178, 238–246. [Google Scholar]
- Bousek, J.; Scroccaro, D.; Sima, J.; Weissenbacher, N.; Fuchs, W. Influence of the gas composition on the efficiency of ammonia stripping of biogas digestate. Bioresour. Technol. 2016, 203, 259–266. [Google Scholar]
- Sun, Z.Y.; Yamaji, S.; Cheng, Q.S.; Yang, L.; Yue-Qin, T.; Kida, K. Simultaneous decrease in ammonia and hydrogen sulfide inhibition during the thermophilic anaerobic digestion of protein-rich stillage by biogas recirculation and air supply at 60 °C. Process Biochem. 2014, 49, 2214–2219. [Google Scholar]
- Goberna, M.; Gadermaier, M.; Franke-Whittle, I.H.; García, C.; Wett, B.; Insam, H. Start-up strategies in manure-fed biogas reactors: Process parameters and methanogenic communities. Biomass Bioenergy 2015, 75, 46–56. [Google Scholar]
- Woźniak, E.; Twardowski, T. The bioeconomy in Poland within the context of the European Union. New Biotechnol. 2018, 40, 96–102. [Google Scholar]
- Pilarski, K. Wydajność Procesu Fermentacji Metanowej w Biogazowniach Rolniczych (In English: Efficiency of Anaerobic Digestion Process in Agricultural Biogas Plants); Poznań University of Life Sciences: Poznań, Poland, 2019. [Google Scholar]
- Piwowar, A.; Dzikuć, M.; Adamczyk, J. Agricultural biogas plants in Poland—Selected technological, market and environmental aspects. Renew. Sustain. Energy Rev. 2016, 58, 69–74. [Google Scholar]
- Bouallagui, H.; Marouani, L.; Hamdi, M. Performances comparison between laboratory and full-scale anaerobic digesters treating a mixture of primary and waste activated sludge. Resour. Conserv. Recycl. 2010, 55, 29–33. [Google Scholar]
- Kowalczyk, A.; Schwede, S.; Gerber, M.; Roland Span, R. Scale up of laboratory scale to industrial scale biogas plants, in bioenergy technology. In Proceedings of the 2011 World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011. [Google Scholar]
- Hamawand, I.; Baillie, C. Anaerobic digestion and biogas potential: Simulation of lab and industrial-scale processes. Energies 2015, 8, 454–474. [Google Scholar]
- Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A. The future agricultural biogas plant in Germany: A vision. Energies 2019, 12, 396. [Google Scholar]
- Zhai, N.; Zhang, T.; Yin, D.; Yang, G.; Wang, X.; Ren, G.; Feng, Y. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag. 2015, 38, 126–131. [Google Scholar]
- Pilarska, A.A.; Pilarski, K.; Wolna-Maruwka, A. Cell immobilization on lignin–polyvinylpyrrolidone material used for anaerobic digestion of waste wafers and sewage sludge. Environ. Eng. Sci. 2019, 36, 478–490. [Google Scholar]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar]
- Pilarska, A.A.; Pilarski, K.; Witaszek, K.; Waliszewska, H.; Zborowska, M.; Waliszewska, B.; Kolasiński, M.; Szwarc-Rzepka, K. Treatment of dairy waste by anaerobic digestion with sewage sludge. Ecol. Chem. Eng. S 2016, 23, 99–115. [Google Scholar]
- Pilarska, A.A.; Pilarski, K.; Ryniecki, A.; Tomaszyk, K.; Dach, J.; Wolna-Maruwka, A. Utilization of vegetable dumplings waste from industrial production by anaerobic digestion. Int. Agrophys. 2017, 31, 93–102. [Google Scholar]
- Pilarska, A.A.; Wolna-Maruwka, A.; Pilarski, K.; Janczak, D.; Przybył, K.; Gawrysiak-Witulska, M. The use of lignin as a microbial carrier in the co-digestion of cheese and wafer waste. Polymers 2019, 11, 2073–2092. [Google Scholar]
- DIN Guideline 38 414-S8. Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; German Institute for Standardization: Berlin, Germany, 1985. [Google Scholar]
- ISO. Guide to the Expression of Uncertainty in Measurement (GUM); ISO: Geneva, Switzerland, 1993. [Google Scholar]
- Konieczka, P.; Namieśnik, J. Evaluation and Quality Control of Analytical Measurement Results; Scientific-Technical Publishing House WNT: Warsaw, Poland, 2007. [Google Scholar]
- Kukier, E.; Kwiatek, K.; Grenda, T.; Goldsztejn, M. Mikroflora kiszonek. Życie Wet. 2014, 89, 1031–1036. [Google Scholar]
- Marszałek, M.; Kowalski, Z.; Makara, A. Physicochemical and microbiological characteristics of pig slurry. Tech. Trans. 2014, 111, 81–91. [Google Scholar]
- Jacob, S.; Chintagunta, A.D.; Banerjee, R. Selective digestion of industrial potato wastes for efficient biomethanation: A sustainable solution for safe environmental disposal. Int. J. Environ. Sci. Technol. 2016, 13, 2363–2374. [Google Scholar]
- Arumuganainar, S.; Choi, H.L.; Kannan, N.; Rajagopal, K. Biochemical methane potentials and organic matter degradation of swine slurry under mesophilic anaerobic digestion. Ind. J. Sci. Technol. 2016, 9, 1–6. [Google Scholar]
- Sadecka, Z.; Suchowska-Kisielewicz, M. The possibility of using organic substrates in the fermentation process. Ann. Set Environ. Prot. 2016, 18, 400–413. [Google Scholar]
- Fugol, M.; Szlachta, J. The reason for using corn and fermented liquid manure ensilage for biogas production. Agric. Eng. 2010, 1, 119–174. [Google Scholar]
- Oleszek, M.; Krzemińska, I. Enhancement of biogas production by co-digestion of maize silage with common goldenrod rich in biologically active compounds. BioResources 2017, 12, 704–714. [Google Scholar]
- Pessuto, J.; Scopel, B.S.; Perondi, D.; Godinho, M.; Dettmer, A. Enhancement of biogas and methane production by anaerobic digestion of swine manure with addition of microorganisms isolated from sewage sludge. Proc. Saf. Environ. Prot. 2016, 104, 233–239. [Google Scholar]
- Miroshnichenko, I.; Lindner, J.; Lemmer, A.; Oechsner, H.; Vasilenko, I. Anaerobic digestion of sugar beet pulp in Russia. Landtechnik 2016, 71, 175–185. [Google Scholar]
- Ziemiński, K.; Kowalska-Wentel, M. Effect of different sugar beet pulp pretreatments on biogas production efficiency. Appl. Biochem. Biotechnol. 2017, 181, 1211–1227. [Google Scholar] [PubMed] [Green Version]
- Matulaitis, R.; Juškienė, V.; Juška, R. Measurement of methane production from pig and cattle manure in Lithuania. Zemdir. Agric. 2015, 102, 103–110. [Google Scholar]
- Fugol, M.; Szlachta, J. Use of the potato industry waste for anaerobic digestion. Przem. Chem. 2013, 92, 824–828. [Google Scholar]
- Hartmann, S.; Helmut, D. The economics of sugar beets in biogas production. Landtechnik 2011, 66, 250–253. [Google Scholar]
- Szymańska, M.; Sosulski, T.; Szara, E.; Pilarski, K. Conversion and properties of anaerobic digestates from biogas production. Przem. Chem. 2015, 94, 1419–1423. [Google Scholar]
- Witaszek, K.; Pilarska, A.A.; Pilarski, K. Selected methods of vegetable raw material pre-treatment used in biogas production. Ekon. Environ. 2015, 53, 138–152. [Google Scholar]
- Pilarski, K.; Pilarska, A.A.; Witaszek, K.; Dworecki, Z.; Żelaziński, T.; Ekielski, A.; Makowska, A.; Michniewicz, J. The impact of extrusion on the biogas and biomethane yield of plant substrates. J. Ecol. Eng. 2016, 17, 264–272. [Google Scholar]
- Pilarska, A.A.; Pilarski, K.; Waliszewska, B.; Zborowska, M.; Witaszek, K.; Waliszewska, H.; Kolasiński, M.; Szwarc-Rzepka, K. Evaluation of bio-methane yields for high-energy organic waste and sewage sludge: A pilot-scale study for a wastewater treatment plant. Environ. Eng. Manag. J. 2019, 18, 2023–2034. [Google Scholar]
Substrate | pH (-) | TS (%) | VS (%) | Biogas (m3·Mg−1 FM) | Biogas (m3·Mg−1 TS) | Biogas (m3·Mg−1 VS) | CH4 (%) |
---|---|---|---|---|---|---|---|
1MS | 4.21 ± 0.06 | 32.68 ± 0.51 | 95.15 ± 1.76 | 188 ± 3.6 | 575 ± 12.6 | 605 ± 13.4 | 51.2 ± 1.29 |
2MS | 4.28 ± 0.06 | 32.21 ± 0.50 | 94.61 ± 1.75 | 183 ± 3.5 | 568 ± 12.4 | 601 ± 13.4 | 52.3 ± 1.31 |
3MS | 4.39 ± 0.06 | 32.11 ± 0.50 | 94.21 ± 1.75 | 181 ± 3.5 | 564 ± 12.3 | 598 ± 13.3 | 50.4 ± 1.27 |
4MS | 4.31 ± 0.06 | 31.86 ± 0.50 | 93.65 ± 1.74 | 178 ± 3.4 | 559 ± 12.2 | 595 ± 13.2 | 50.9 ± 1.28 |
5MS | 4.35 ± 0.06 | 31.45 ± 0.49 | 94.83 ± 1.76 | 180 ± 3.5 | 572 ± 12.5 | 604 ± 13.4 | 51.6 ± 1.30 |
6MS | 4.28 ± 0.06 | 31.06 ± 0.48 | 93.88 ± 1.74 | 184 ± 3.5 | 592 ± 12.9 | 631 ± 14.0 | 50.4 ± 1.27 |
1PM | 7.56 ± 0.10 | 4.86 ± 0.08 | 76.16 ± 1.41 | 17 ± 0.3 | 350 ± 7.6 | 459 ± 10.2 | 52.6 ± 1.32 |
2PM | 7.44 ± 0.10 | 4.32 ± 0.07 | 76.88 ± 1.43 | 19 ± 0.4 | 440 ± 9.6 | 572 ± 12.7 | 51.1 ± 1.28 |
3PM | 7.31 ± 0.10 | 4.94 ± 0.08 | 78.49 ± 1.46 | 20 ± 0.4 | 405 ± 8.9 | 516 ± 11.5 | 51.8 ± 1.30 |
4PM | 7.28 ± 0.10 | 4.65 ± 0.07 | 81.32 ± 1.51 | 22 ± 0.4 | 473 ± 10.3 | 582 ± 12.9 | 51.4 ± 1.29 |
5PM | 7.22 ± 0.10 | 5.06 ± 0.08 | 80.11 ± 1.49 | 21 ± 0.4 | 415 ± 9.1 | 518 ± 11.5 | 51.3 ± 1.29 |
6PM | 7.36 ± 0.10 | 5.01 ± 0.08 | 79.84 ± 1.48 | 18 ± 0.3 | 359 ± 7.8 | 450 ± 10.0 | 50.8 ± 1.28 |
1PW | 7.36 ± 0.10 | 21.31 ± 0.33 | 94.87 ± 1.76 | 68 ± 1.3 | 319 ± 7.0 | 336 ± 7.5 | 51.6 ± 1.30 |
2PW | 7.41 ± 0.10 | 21.33 ± 0.33 | 94.61 ± 1.75 | 69 ± 1.3 | 323 ± 7.1 | 342 ± 7.6 | 50.7 ± 1.27 |
3PW | 7.44 ± 0.10 | 21.45 ± 0.33 | 94.83 ± 1.76 | 67 ± 1.3 | 312 ± 6.8 | 329 ± 7.3 | 51.4 ± 1.29 |
4PW | 7.78 ± 0.11 | 21.85 ± 0.34 | 95.01 ± 1.76 | 70 ± 1.3 | 320 ± 7.0 | 337 ± 7.5 | 51.1 ± 1.28 |
5PW | 7.65 ± 0.10 | 21.78 ± 0.34 | 95.12 ± 1.76 | 71 ± 1.4 | 326 ± 7.1 | 343 ± 7.6 | 52.2 ± 1.31 |
6PW | 7.71 ± 0.10 | 21.86 ± 0.34 | 95.92 ± 1.78 | 70 ± 1.3 | 320 ± 7.0 | 334 ± 7.4 | 51.8 ± 1.30 |
1SB | 5.01 ± 0.07 | 23.88 ± 0.37 | 94.16 ± 1.75 | 99 ± 1.9 | 415 ± 9.1 | 440 ± 9.8 | 50.2 ± 1.26 |
2SB | 5.08 ± 0.07 | 23.44 ± 0.36 | 94.02 ± 1.74 | 97 ± 1.9 | 414 ± 9.0 | 441 ± 9.8 | 50.8 ± 1.28 |
3SB | 5.18 ± 0.07 | 23.58 ± 0.37 | 93.88 ± 1.74 | 96 ± 1.8 | 407 ± 8.9 | 434 ± 9.6 | 51.4 ± 1.29 |
4SB | 5.16 ± 0.07 | 23.41 ± 0.36 | 93.32 ± 1.73 | 93 ± 1.8 | 397 ± 8.7 | 426 ± 9.5 | 52.1 ± 1.31 |
5SB | 5.11 ± 0.07 | 23.67 ± 0.37 | 93.46 ± 1.73 | 94 ± 1.8 | 398 ± 8.7 | 425 ± 9.4 | 50.7 ± 1.27 |
6SB | 5.09 ± 0.07 | 23.33 ± 0.36 | 94.12 ± 1.74 | 95 ± 1.8 | 407 ± 8.9 | 433 ± 9.6 | 51.5 ± 1.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilarski, K.; Pilarska, A.A.; Boniecki, P.; Niedbała, G.; Durczak, K.; Witaszek, K.; Mioduszewska, N.; Kowalik, I. The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient. Energies 2020, 13, 1280. https://doi.org/10.3390/en13051280
Pilarski K, Pilarska AA, Boniecki P, Niedbała G, Durczak K, Witaszek K, Mioduszewska N, Kowalik I. The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient. Energies. 2020; 13(5):1280. https://doi.org/10.3390/en13051280
Chicago/Turabian StylePilarski, Krzysztof, Agnieszka A. Pilarska, Piotr Boniecki, Gniewko Niedbała, Karol Durczak, Kamil Witaszek, Natalia Mioduszewska, and Ireneusz Kowalik. 2020. "The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient" Energies 13, no. 5: 1280. https://doi.org/10.3390/en13051280
APA StylePilarski, K., Pilarska, A. A., Boniecki, P., Niedbała, G., Durczak, K., Witaszek, K., Mioduszewska, N., & Kowalik, I. (2020). The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient. Energies, 13(5), 1280. https://doi.org/10.3390/en13051280