Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses
Abstract
:1. Introduction
2. Dairy Energy
2.1. Dairy Energy Assessment
2.1.1. Total Energy
2.1.2. Indirect Energy
Ancillary Energy
Embodied Energy
2.1.3. Direct Energy
Electrical energy
Liquid Fuel Energy
2.1.4. Dairy Energy Assessment Summary
2.2. Dairy Energy Prediction Modelling
2.2.1. Mechanistic Modelling
2.2.2. Regression Modelling
2.2.3. Machine-Learning
2.2.4. Prediction Modelling Summary
2.3. Dairy Energy Analysis
3. Discussion and Perspective
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Study | System5 | Country | n | Total Energy | Direct | Electrical |
---|---|---|---|---|---|---|
Arsenault et al. [72] | Conv-c | CAN | 1 | 4.871 | n/a | n/a |
Arsenault et al. [72] | Conv-g | CAN | 1 | 4.991 | n/a | n/a |
Basset-Mens et al. [73] | Conv-g | NZL | 1 | 1.511,4 | n/a | n/a |
Cederberg and Flysjö [74] | Org-g | SWE | 6 | 2.10 | n/a | 0.74 |
Cederberg and Flysjö [74] | Conv-c | SWE | 17 | 2.66 | 0.93 | 0.59 |
Cederberg and Mattson [35] | Org-g | SWE | 1 | 2.51 | n/a | n/a |
Cederberg and Mattson [35] | Conv-c | SWE | 1 | 3.55 | n/a | n/a |
Frorip et al. [75] | Conv-c | EST | 1 | 5.36 | n/a | n/a |
Haas et al. [76] | Org-g | DEU | 6 | 1.201 | n/a | n/a |
Haas et al. [76] | Conv-g | DEU | 6 | 1.301 | n/a | n/a |
Haas et al. [76] | Conv-g | DEU | 6 | 2.701 | n/a | n/a |
Hartman and Sims [30] | Conv-g | NZL | 62 | 3.903 | 2.03 | 1.17 |
Hospido et al. [36] | AMS-c | ESP | 2 | 6.031 | 0.73 | 0.58 |
Kraatz [22] | Conv-c | DEU | n/a | 3.54 | 1.24 | 0.39 |
Meul et al. [15] | Conv-c | BEL | 74 | 3.581 | 1.20 | 0.34 |
Mikkola and Ahokas [77] | Conv-c | FIN | n/a | 3.201 | 1.60 | 0.70 |
Nguyen et al. [78] | Conv-g | FRA | 1 | 3.977 | n/a | n/a |
O′Brien et al. [5] | Conv-g | IRL | 1 | 2.37 | 0.30 | n/a |
O′Brien et al. [5] | Conv-c | IRL | 1 | 4.02 | 0.21 | n/a |
Ogino et al. [79] | Conv-c | JPN | 1 | 5.538 | n/a | n/a |
Pagani et al. [16] | Org-c | ITA | 3 | 1.97 | 0.80 | n/a |
Pagani et al. [16] | Org-g | USA | 3 | 4.07 | 2.23 | n/a |
Pagani et al. [16] | Conv-c | ITA/USA | 5 | 4.32 | 1.62 | n/a |
Pagani et al. [16] | Conv-c | ITA/USA | 4 | 3.35 | 1.38 | n/a |
Refsgaard et al. [80] | Org-c | DNK | 14 | 2.16 | n/a | 0.66 |
Refsgaard et al. [80] | Conv-c | DNK | 17 | 3.34 | n/a | 0.66 |
Sefeedpari et al. [20,21] | Conv-c | IRN | 50 | 8.05 | 1.57 | 0.26 |
Thomassen et al. [37] | Conv-c | NLD | 10 | 5.15 | 0.62 | 0.356 |
Thomassen et al. [37] | Org-g | NLD | 11 | 3.19 | 0.99 | 0.556 |
Todde et al. [17,29] | Conv-c | ITA | 285 | 8.91 | 2.60 | 0.27 |
Upton et al. [4] | Conv-g | IRL | 22 | 2.37 | 0.48 | 0.29 |
Van der Werf et al. [81] | Org-g | FRA | 6 | 2.68 | n/a | n/a |
Van der Werf et al. [81] | Conv-c | FRA | 41 | 2.88 | n/a | n/a |
Wells [14] | Conv-g | NZL | 96 | 1.98 | 0.87 | 0.47 |
Williams et al. [82] | Conv-g | GBR | n/a | 2.441,2,4 | n/a | n/a |
Williams et al. [82] | Conv-g | GBR | n/a | 1.551,2,4 | n/a | n/a |
References
- Bruinsma, J.; Alexandratos, N. World Agriculture towards 2030/2050: The 2012 Revision. Available online: http://www.fao.org/docrep/016/ap106e/ap106e.pdf (accessed on 9 March 2020).
- FAO. Agricultural Outlook 2018-2027 Dairy and Dairy Products 2018. Available online: http://www.agri-outlook.org/commodities/Agricultural-Outlook-2018-Dairy.pdf (accessed on 8 March 2020).
- Agriculture and Horticulture Development Board-World Milk Deliveries 2019. Available online: https://dairy.ahdb.org.uk/non_umbraco/download.aspx?media=26233 (accessed on 1 August 2019).
- Upton, J.; Humphreys, J.; Groot Koerkamp, P.W.G.; French, P.; Dillon, P.; De Boer, I.J.M. Energy demand on dairy farms in Ireland. J. Dairy Sci. 2013, 96, 6489–6498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, D.; Shalloo, L.; Patton, J.; Buckley, F.; Grainger, C.; Wallace, M. A life cycle assessment of seasonal grass-based and confinement dairy farms. Agric. Syst. 2012, 107, 33–46. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Martin, N.P.; Kebreab, E.; Knowlton, K.F.; Grant, R.J.; Stephenson, M.; Sniffen, C.J.; Harner, J.P., III; Wright, A.D.; Smith, S.I. Invited review: Sustainability of the US dairy industry. J. Dairy Sci. 2013, 96, 5405–5425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortall, J.; Shalloo, L.; Foley, C.; Sleator, R.D.; O’Brien, B. Investment appraisal of automatic milking and conventional milking technologies in a pasture-based dairy system. J. Dairy Sci. 2016, 99, 7700–7713. [Google Scholar] [CrossRef] [PubMed]
- Shine, P.; Scully, T.; Upton, J.; Shalloo, L.; Murphy, M.D. Electricity & direct water consumption on Irish pasture based dairy farms: A statistical analysis. Appl. Energy 2018, 210, 529–537. [Google Scholar] [CrossRef]
- Food and Apicultural Organization. Food and Agricultural Organization. Greenhouse Gas Emissions from the Dairy Sector A Life Cycle Assessment; Food and Apicultural Organization: Rome, Italy, 2010. [Google Scholar] [CrossRef]
- Baldini, C.; Gardoni, D.; Guarino, M. A critical review of the recent evolution of Life Cycle Assessment applied to milk production. J. Clean. Prod. 2017, 140, 421–435. [Google Scholar] [CrossRef]
- European Commission. Energy Union and Climate Action: Driving Europe’s Transition to A Low-Carbon Economy; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Lanigan, G.; Donnellan, T.; Hanrahan, K.; Paul, C.; Shalloo, L.; Krol, D.; Forrestal, P.; Farrelly, N.; O’Brien, D.; Ryan, M.; et al. An Analysis of Abatement Potential of Greenhouse Gas Emissions in Irish Agriculture 2021–2030. Available online: https://www.teagasc.ie/media/website/publications/2018/An-Analysis-of-Abatement-Potential-of-Greenhouse-Gas-Emissions-in-Irish-Agriculture-2021-2030.pdf (accessed on 8 March 2020).
- Barnett, J.; Russell, J. Energy Use on Dairy Farms. Bull. Int. Dairy Fed. 2010, 443, 23–32. [Google Scholar]
- Wells, C. Total Energy Indicators of Agricultural Sustainability: Dairy Farming Case Study; Technical paper; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2001.
- Meul, M.; Nevens, F.; Reheul, D.; Hofman, G. Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agric. Ecosyst. Environ. 2006, 119, 135–144. [Google Scholar] [CrossRef]
- Pagani, M.; Vittuari, M.; Johnson, T.G.; De Menna, F. An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna. Agric. Syst. 2016, 145, 116–126. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A Comprehensive energy analysis and related carbon footprint of dairy farms, Part 2: Investigation and modeling of indirect energy requirements. Energies 2018, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Aguirre-Villegas, H.A.; Passos-Fonseca, T.H.; Reinemann, D.J.; Larson, R. Corrigendum to “Grazing intensity affects the environmental impact of dairy systems”. J. Dairy Sci. 2019, 102, 923–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Villegas, H.A.; Passos-Fonseca, T.H.; Reinemann, D.J.; Larson, R. Grazing intensity affects the environmental impact of dairy systems. J. Dairy Sci. 2017, 100, 6804–6821. [Google Scholar] [CrossRef] [PubMed]
- Sefeedpari, P.; Rafiee, S.; Akram, A.; Komleh, S.H.P. Modeling output energy based on fossil fuels and electricity energy consumption on dairy farms of Iran: Application of adaptive neural-fuzzy inference system technique. Comput. Electron. Agric. 2014, 109, 80–85. [Google Scholar] [CrossRef]
- Sefeedpari, P.; Rafiee, S.; Akram, A.; Chau, K.-W.; Komleh, S.H.P. Modeling Energy Use in Dairy Cattle Farms by Applying Multi-Layered Adaptive Neuro-Fuzzy Inference System (MLANFIS). Int. J. Dairy Sci. 2015, 10, 173–185. [Google Scholar] [CrossRef]
- Kraatz, S. Energy intensity in livestock operations-Modeling of dairy farming systems in Germany. Agric. Syst. 2012, 110, 90–106. [Google Scholar] [CrossRef]
- Calcante, A.; Tangorra, F.M.; Oberti, R. Analysis of electric energy consumption of automatic milking systems in different configurations and operative conditions. J. Dairy Sci. 2016, 99, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Edens, W.C.; Pordesimo, L.O.; Wilhelm, L.R.; Burns, R.T. Energy use analysis of major milking components at a dairy experiment station. Appl. Eng. Agric. 2003, 19, 711–716. [Google Scholar] [CrossRef]
- Hörndahl, T. Energy Use in Farm Buildings—A Study of 16 Farms with Different Enterprises 2008. Available online: https://pub.epsilon.slu.se/3396/1/Eng-rapport145-v1.pdf (accessed on 8 March 2020).
- Murgia, L.; Todde, G.; Caria, M.; Pazzona, A. A partial life cycle assessment approach to evaluate the energy intensity and related greenhouse gas emission in dairy farms. J. Agric. Eng. 2013, 44, 186–190. [Google Scholar] [CrossRef]
- Rajaniemi, M.; Jokiniemi, T.; Alakukku, L.; Ahokas, J. Electric energy consumption of milking process on some finish dairy farms. Agric. Food Sci. 2017, 26, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Shortall, J.; O’Brien, B.; Sleator, R.D.; Upton, J. Daily and seasonal trends of electricity and water use on pasture-based automatic milking dairy farms. J. Dairy Sci. 2018, 101, 1565–1578. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A comprehensive energy analysis and related carbon footprint of dairy farms, part 1: Direct energy requirements. Energies 2018, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hartman, K.; Sims, R. Saving Energy on the dairy farm makes good sense. In Proceedings of the 4th Dairy3 Conference, Palmerston North, New Zealand; 2006; pp. 11–21. [Google Scholar]
- Teagasc. Teagasc National Farm Survey 2016 Dairy Enterprise 2016. Available online: https://www.teagasc.ie/media/website/publications/2017/NFS-2016-Dairy-Enterprise-Factsheet.pdf (accessed on 17 May 2018).
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. Dairy Energy Prediction (DEP) model: A tool for predicting energy use and related emissions and costs in dairy farms. Comput. Electron. Agric. 2017, 135, 216–221. [Google Scholar] [CrossRef]
- Rossi, P.; Gastaldo, A. Consumi energetici in allevamenti bovini da latte. Inf. Agrar 2012, 3, 45–47. [Google Scholar]
- Brøgger Rasmussen, J.; Pedersen, J. Electricity and Water Consumption at Milking; Danish Agricultural Advisory Service: Aarhus, Denmark, 2004. [Google Scholar]
- Cederberg, C.; Mattsson, B. Life Cycle assessment of Swedish milk production—A comparison of conventional farming. J. Clean. Prod. 2000, 8, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Hospido, A.; Moreira, M.T.; Feijoo, G. Simplified life cycle assessment of galician milk production. Int. Dairy J. 2003, 13, 783–796. [Google Scholar] [CrossRef]
- Thomassen, M.A.; van Calker, K.J.; Smits, M.C.J.; Iepema, G.L.; de Boer, I.J.M. Life cycle assessment of conventional and organic milk production in the Netherlands. Agric. Syst. 2008, 96, 95–107. [Google Scholar] [CrossRef]
- Upton, J.; Murphy, M.; Shalloo, L.; Groot Koerkamp, P.W.G.; De Boer, I.J.M. A mechanistic model for electricity consumption on dairy farms: Definition, validation, and demonstration. J. Dairy Sci. 2014, 97, 4973–4984. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Pila, J.; DeLorenzo, M.A.; Beede, D.K.; Staples, C.R.; Holter, J.B. Evaluation of equations based on animal factors to predict intake of lactating Holstein cows. J. Dairy Sci. 1996, 79, 1562–1571. [Google Scholar] [CrossRef]
- Shine, P.; Murphy, M.D.; Upton, J.; Scully, T. Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms. Comput. Electron. Agric. 2018, 150, 74–87. [Google Scholar] [CrossRef]
- Shine, P.; Scully, T.; Upton, J.; Murphy, M.D. Multiple linear regression modelling of on-farm direct water and electricity consumption on pasture based dairy farms. Comput. Electron. Agric. 2018, 148, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.; De Boer, I.J.M.; van Middelaar, C.; Holden, N.; Curran, P.; Upton, J. Predicting fresh water demand on Irish dairy farms using farm data. Clean. Prod. 2017, 166, 58–65. [Google Scholar] [CrossRef]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Breen, M.; Murphy, M.D.; Upton, J. Development of a Dairy Multi-Objective Optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms. Appl. Energy 2019, 242, 1697–1711. [Google Scholar] [CrossRef]
- Ruelle, E.; Shalloo, L.; Wallace, M.; Delaby, L. Development and evaluation of the pasture-based herd dynamic milk (PBHDM) model for dairy systems. Eur. J. Agron. 2015, 71, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Breen, M.; Murphy, M.; Upton, J. Development and validation of photovoltaic and wind turbine models to assess the impacts of renewable generation on dairy farm electricity consumption. In 2015 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: New Orleans, LA, USA, 2015; pp. 1–11. [Google Scholar] [CrossRef]
- Murphy, M.D.; Shine, P.; Breen, M.; Upton, J. DSSED: Decision Support System for Energy Use in Dairy Production. Available online: https://www.seai.ie/resources/publications/SEAI-DSSED-Final-Report.pdf (accessed on 9 March 2020).
- Shine, P.; Breen, M.; Upton, J.; O’Donovan, A.; Murphy, M.D. A decision support system for energy use on dairy farms. In Proceedings of the 9th European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; pp. 45–52. [Google Scholar]
- SAS User’s Guide 2015. Available online: https://www.sas.com/en_ie/home.html (accessed on 16 May 2018).
- Sefeedpari, P.; Rafiee, S.; Akram, A. Application of artificial neural network to model the energy output of dairy farms in Iran. Int. J. Energy Technol. Policy 2013, 9, 82. [Google Scholar] [CrossRef]
- Mhundwa, R.; Simon, M.; Tangwe, S.L. Modelling of an on-farm direct expansion bulk milk cooler to establish baseline energy consumption without milk pre-cooling: A case of Fort Hare Dairy Trust, South Africa. African J. Sci. Technol. Innov. Dev. 2017, 1338, 62–68. [Google Scholar] [CrossRef]
- Shine, P.; Scully, T.; Upton, J.; Murphy, M.D. Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine. Appl. Energy 2019, 250, 1110–1119. [Google Scholar] [CrossRef]
- Upton, J.; Murphy, M.; Shalloo, L.; Groot Koerkamp, P.W.G.; De Boer, I.J.M. Assessing the impact of changes in the electricity price structure on dairy farm energy costs. Appl. Energy 2014, 137, 1–8. [Google Scholar] [CrossRef]
- Crill, R.L.; Hanchar, J.J.; Gooch, C.A.; Richards, S.T. Net Present Value Economic Analysis Model for Adoption of Photoperiod Manipulation in Lactating Cow Barns. Pro-Dairy 2000, 1–6. Available online: https://ecommons.cornell.edu/bitstream/handle/1813/36961/photoperiod.pdf;sequence=1 (accessed on 8 March 2020).
- Harner, J.P.; Smith, J.F. Lighting Low Profile Cross Ventilated Dairy Houses 2008. Available online: https://www.asi.k-state.edu/doc/dairy/lighting-low-profile-cross-ventilated-dairy-houses.pdf (accessed on 8 March 2020).
- Rajaniemi, M.; Turunen, M.; Ahokas, J. Direct energy consumption and saving possibilities in milk production. Agron. Res. 2015, 13, 261–268. [Google Scholar]
- Lighting Systems for Agricultural Facilities. Available online: https://www.spar.msstate.edu/class/EPP-2008/Chapter%201/Reading%20material/Solar%20Radiation/Lighting%20Systems%20for%20Agricultural%20Facilities.pdf (accessed on 8 March 2020).
- Ludington, D.; Johnson, E. Dairy Farm Energy Audit Summary. Available online: https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Energy-Audit-Reports/dairy-farm-energy.pdf (accessed on 8 March 2020).
- Dunn, P.; Butler, G.; Bilsborrow, P.; Brough, D. Energy + Efficiency—Renewable Energy and Energy Efficiency Options for UK Dairy Farms 2010. Available online: https://docplayer.net/6454694-Energy-efficiency-renewable-energy-and-energy-efficiency-options-for-uk-dairy-farms.html (accessed on 8 March 2020).
- Upton, J.; Murphy, M.; De Boer, I.J.M.; Groot Koerkamp, P.W.G.; Berentsen, P.B.M.; Shalloo, L. Investment appraisal of technology innovations on dairy farm electricity consumption. J. Dairy Sci. 2015, 98, 898–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morison, K.; Gregory, W.; Hooper, R. Improving Dairy Shed Energy Efficiency. Available online: https://ir.canterbury.ac.nz/bitstream/handle/10092/11588/Dairy_Technical_Report.pdf;sequence=1 (accessed on 8 November 2019).
- Upton, J.; Murphy, M.; French, P.; Dillon, P.; Systems, L. Dairy Farm Energy Consumption. In Proceedings of the Teagasc National Dairy Conference, Cork, Ireland, 17–18 November 2010; pp. 87–97. [Google Scholar]
- Karlsson, A.E.; Hörndahl, T.; Nordman, R. Energy recover from milk cooling. In Report 401; Agriculture & Industry; JTI-Swedish Institute of Agricultural and Environmental Engineering: Uppsala, Sweden, 2012. [Google Scholar]
- Murphy, M.D.; O’Mahony, M.J.; Upton, J. Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment. Appl. Energy 2015, 149, 392–403. [Google Scholar] [CrossRef]
- Breen, M.; Upton, J.; Murphy, M.D. Development of a discrete infrastructure optimization model for economic assessment on dairy farms (DIOMOND). Comput. Electron. Agric. 2019, 156, 508–522. [Google Scholar] [CrossRef]
- Donnellan, T.; Hennessy, T.; Thorne, F. The End of the Quota Era: A History of the Irish Dairy Sector and Its Future Prospects; Teagasc: Galway, Ireland, 2015. [Google Scholar]
- Finneran, E.; Crosson, P.; O’Kiely, P.; Shalloo, L.; Forristal, D.; Wallace, M. Simulation modelling of the cost of producing and utilising feeds for ruminants on Irish farms. J. Farm Manag. 2010, 14, 95–116. [Google Scholar]
- International Dairy Federation. Bulletin of the International Dairy Federation—A common carbon footprint approach for dairy. Bull. Int. Dairy Fed. 2010. [Google Scholar]
- Sjaunja, L.O.; Baevre, L.; Junkkarinen, L.; Pedersen, J.J.; Setälä, A. Nordic proposal for an energy corrected milk (ECM) formula. In Proceedings of the 27th Session International Committee for Recording and Productivity of Milk Animals, Paris, France, 2–6 July 1990. [Google Scholar]
- Energy in Ireland 2018. Available online: https://www.seai.ie/resources/publications/Energy-in-Ireland-2018.pdf (accessed on 8 March 2020).
- Fritsche, U.R.; Greß, H.-W. Development of the Primary Energy Factor of Electricity Generation in the EU-28 from 2010–2013. Available online: http://www.iinas.org/tl_files/iinas/downloads/GEMIS/2015_PEF_EU-28_Electricity_2010-2013.pdf (accessed on 8 March 2020).
- Arsenault, N.; Tyedmers, P.; Fredeen, A. Comparing the environmental impacts of pasture-based and confinement-based dairy systems in Nova Scotia (Canada) using life cycle assessment. Int. J. Agric. Sustain. 2009, 7, 19–41. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Ledgard, S.; Boyes, M. Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecol. Econ. 2009, 68, 1615–1625. [Google Scholar] [CrossRef]
- Cederberg, C.; Flysjo, A. Life cycle inventory of 23 dairy farms in South-Western Sweden. Available online: https://pdfs.semanticscholar.org/b930/2a75bd2a17e4398ca3c880927b7924d66911.pdf?_ga=2.226958749.1090255613.1575905885-2041938671.1575905885 (accessed on 8 March 2020).
- Frorip, J.; Kokin, E.; Praks, J.; Poikalainen, V.; Ruus, A.; Veermäe, I.; Lepasalu, L.; Schäfer, W.; Mikkola, H.; Ahokas, J. Energy consumption in animal production—Case farm study. Agron. Res. 2012, 10, 39–48. [Google Scholar]
- Haas, G.; Wetterich, F.; Köpke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Environ. 2000, 83, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Mikkola, H.J.; Ahokas, J. Energy ratios in Finnish agricultural production. Agric. Food Sci. 2009, 18, 332–346. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Doreau, M.; Corson, M.S.; Eugène, M.; Delaby, L.; Chesneau, G.; Gallard, Y.; van der Werf, H.M.G. Effect of dairy production system, breed and co-product handling methods on environmental impacts at farm level. J. Environ. Manag. 2013, 120, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Ogino, A.; Ishida, M.; Ishikawa, T.; Ikeguchi, A.; Waki, M.; Yokoyama, H.; Tanaka, Y.; Hirooka, H. Environmental impacts of a Japanese dairy farming system using whole-crop rice silage as evaluated by life cycle assessment. Anim. Sci. J. 2008, 79, 727–736. [Google Scholar] [CrossRef]
- Refsgaard, K.; Halberg, N.; Kristensen, E.S. Energy utilization in crop and dairy production in organic and conventional livestock production systems. Agric. Syst. 1998, 57, 599–630. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, H.M.G.; Kanyarushoki, C.; Corson, M.S. An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. J. Environ. Manag. 2009, 90, 3643–3652. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities; Cranfield University: Bedford, UK; Department for Environment, Food and Rural Affairs (Defra): London, UK, 2006.
Title | Conventional | Organic | ||
---|---|---|---|---|
Characteristic | Conv-g* | Conv-c | Org-g | Org-c |
No. of studies | 5 | 11 | 5 | 2 |
No. of countries | 4 | 11 | 4 | 2 |
Mean no. farms per study | 37 | 43 | 5 | 9 |
Total Energy (MJ kg−1 ECM) | 2.8 | 4.7 | 2.9 | 2.1 |
4.1 | 2.7 |
Study | System | Country | MJ kg−1 ECM | |
---|---|---|---|---|
Fertilizer | Meul et al. [15] | Conv-c | BEL | 0.82 |
O′Brien et al. [5] | Conv-c | IRL | 0.49 | |
Pagani et al. [16] | Conv-c | ITA/USA | 0.21 | |
Todde et al. [17] | Conv-c | ITA | 0.84 | |
O′Brien et al. [5] | Conv-g | IRL | 1.09 | |
Pagani et al. [16] | Conv-g | ITA / USA | 0.30 | |
Upton et al. [4] | Conv-g | IRL | 1.34 | |
Wells [14] | Conv-g | NZ | 0.66 | |
Pagani et al. [16] | Org-c | ITA | 0.00 | |
Pagani et al. [16] | Org-g | USA | 0.00 | |
Fertilizer mean | Conv-c | n/a | 0.59 | |
Fertilizer mean | Conv-g | n/a | 0.85 | |
Feed | Aguirre-Villegas et al. [18,19] | Conv-c | USA | 1.54 |
Meul et al. [15] | Conv-c | BEL | 0.24 | |
Pagani et al. [16] | Conv-c | ITA / USA | 2.28 | |
Sefeedpari et al. [20,21] | Conv-c | IRN | 6.30 | |
Todde et al. [17] | Conv-c | ITA | 3.90 | |
Pagani et al. [16] | Conv-g | ITA / USA | 1.44 | |
Upton et al. [4] | Conv-g | IRL | 0.49 | |
Pagani et al. [16] | Org-c | ITA | 0.85 | |
Pagani et al. [16] | Org-g | USA | 1.22 | |
Feed mean | Conv-c | n/a | 2.85 | |
Feed mean | Conv-g | n/a | 0.96 |
Study | System | Country | MJ kg−1 ECM | |
---|---|---|---|---|
Buildings and Facilities | Kraatz [22] | Conv | DEU | 0.10 |
Todde et al. [17] | Conv | ITA | 0.29 | |
Wells [14] | Conv | NZ | 0.25 | |
Buildings and facilities mean | Conv | n/a | 0.21 | |
Machinery and Equipment | Kraatz [22] | Conv-c | DEU | 0.57 |
Meul et al. [15] | Conv-c | BEL | 1.27 | |
Pagani et al. [16] | Conv-c | ITA / USA | 0.24 | |
Sefeedpari et al. [20,21] | Conv-c | IRN | 0.08 | |
Todde et al. [17] | Conv-c | ITA | 1.08 | |
Pagani et al. [16] | Conv-g | ITA / USA | 0.27 | |
Pagani et al. [16] | Org-c | ITA | 0.39 | |
Pagani et al. [16] | Org-g | USA | 0.62 | |
Machinery and equipment mean | Conv-c | n/a | 0.65 |
Study | System | Country | Total | Milk Cooling | Milk Harvesting | Water Heating | Water Pumping |
---|---|---|---|---|---|---|---|
Calcante et al. [23] | AMS-c | ITL | n/a | n/a | 11.13 | n/a | n/a |
Edens et al. [24] | Conv-c | USA | n/a | 21.17 | 22.82 | 13.50 | n/a |
Hörndahl [25] | Conv-c | SWE | n/a | 16.70 | 23.01 | 4.85 | n/a |
Hörndahl [25] | AMS-c | SWE | n/a | 13.20 | 20.49 | 5.05 | n/a |
Murgia et al. [26] | Conv-c | ITA | 42.84 | 9.85 | 8.14 | 3.43 | 4.71 |
Rajaniemi et al. [27] | Conv-c | FIN | n/a | 21.70 | 12.00 | 16.30 | 1.51 |
Rajaniemi et al. [27] | AMS-c | FIN | n/a | 21.90 | 29.30 | 2.20 | n/a |
Shine et al. [8] | Conv-g | IRL | 38.68 | 11.24 | 6.91 | 7.66 | 1.51 |
Shortall et al. [28] | AMS-g | IRL | 60.78 | 10.97 | 20.10 | 4.27 | 2.62 |
Todde et al. [29] | Conv-c | ITA | 73.00 | 13.87 | 16.79 | 10.95 | 6.57 |
Upton et al. [4] | Conv-g | IRL | 41.11 | 12.64 | 8.19 | 9.54 | 2.07 |
Mean | AMS-c | n/a | n/a | 17.45 | 14.54 | 10.67 | 1.51 |
Mean | Conv | n/a | 48.91 | 15.32 | 13.97 | 9.45 | 3.28 |
Mean | Conv-c | n/a | 57.92 | 16.68 | 16.54 | 9.80 | 4.27 |
Mean | Conv-g | n/a | 39.89 | 11.94 | 7.55 | 8.60 | 1.79 |
Fuel | Study | System | Country | MJ kg−1 ECM |
---|---|---|---|---|
Diesel | Hospido et al. [36] | AMS-c | ESP | 0.16 |
Meul et al. [15] | Conv-c | BEL | 0.79 | |
Sefeedpari et al. [20,21] | Conv-c | IRN | 1.09 | |
Thomassen et al. [37] | Conv-c | NLD | 0.29 | |
Todde et al. [17] | Conv-c | ITA | 1.89 | |
Upton et al. [4] | Conv-g | IRL | 0.19 | |
Diesel mean | Conv-c | n/a | 1.01 | |
Kerosene | Sefeedpari et al. [20,21] | Conv-c | IRN | 0.04 |
Upton et al. [4] | Conv-g | IRL | 2.28x10−3 | |
LPG | Todde et al. [17] | Conv-c | ITA | 0.02 |
Lubricants | Meul et al. [15] | Conv-c | BEL | 0.05 |
Upton et al. [4] | Conv-g | IRL | 2.47x10−3 |
Study | Country | Model Type | Res | Prediction Variable | Validation Method | R2 | RMSE | RPE (%) |
---|---|---|---|---|---|---|---|---|
Edens et al. [24] | USA | MLR | M | Milk harvesting (kWh) | n/a | 0.44 | n/a | n/a |
Edens et al. [24] | USA | MLR | M | Milk cooling (kWh) | n/a | 0.74 | n/a | n/a |
Edens et al. [24] | USA | MLR | M | Water heating (kWh) | n/a | 0.34 | n/a | n/a |
Edens et al. [24] | USA | MLR | M | Air compressors (kWh) | n/a | 0.18 | n/a | n/a |
Edens et al. [24] | USA | MLR | M | Combined (kWh) | n/a | 0.62 | n/a | n/a |
Sefeedpari et al. [50] | IRN | ANN | A | Output energy of milk (MJ Cow-1) | Test set (20%) | 0.88 | 0.015 | n/a |
Upton et al. [38] | IRE | Mech | M | Total electricity use (kWh) | 3 typical farms | n/a | 125.0 | 7.5 |
Sefeedpari et al. [20] | IRN | Linear | A | Output energy of milk (MJ Cow-1) | Test set (20%) | 0.11 | 0.2 | n/a |
Sefeedpari et al. [20] | IRN | ANFIS | A | Output energy of milk (MJ Cow-1) | Test set (20%) | 0.79 | 0.1 | n/a |
Mhundwa et al. [51] | SA | MLR | D | Morning milk cooling (kWh) | Test set (30%) | 0.92 | n/a | n/a |
Mhundwa et al. [51] | SA | MLR | D | Evening milk cooling (kWh) | Test set (30%) | 0.90 | n/a | n/a |
Todde et al. [32] | ITL | PR | A | Total electricity use (kWh) | LOOCV | n/a | n/a | 11.4 |
Todde et al. [32] | ITL | PR | A | Total diesel use (kg) | LOOCV | n/a | n/a | 15.0 |
Shine et al. [41] | IRE | MLR | M | Total electricity use (kWh) | 10-fold CV | 0.72 | 543.0 | 16.1 |
Shine et al. [40] | IRE | SVM | M | Total electricity use (kWh) | 10-fold CV | 0.94 | 241.0 | 12.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shine, P.; Upton, J.; Sefeedpari, P.; Murphy, M.D. Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses. Energies 2020, 13, 1288. https://doi.org/10.3390/en13051288
Shine P, Upton J, Sefeedpari P, Murphy MD. Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses. Energies. 2020; 13(5):1288. https://doi.org/10.3390/en13051288
Chicago/Turabian StyleShine, Philip, John Upton, Paria Sefeedpari, and Michael D. Murphy. 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses" Energies 13, no. 5: 1288. https://doi.org/10.3390/en13051288
APA StyleShine, P., Upton, J., Sefeedpari, P., & Murphy, M. D. (2020). Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses. Energies, 13(5), 1288. https://doi.org/10.3390/en13051288