Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems
Abstract
:1. Introduction
2. State of the Art of Lower Cretaceous Geothermal Water Use in Poland
2.1. Geological and Hydrological Characteristics of the Lower Cretaceous Aquifer
2.1.1. Characteristics of Hydrogeothermal Conditions in the Mszczonów Area
2.1.2. Characteristics of Hydrogeothermal Conditions in the Uniejów Area
2.1.3. Characteristics of Hydrogeothermal Conditions in the Poddębice Area
2.2. Operating Geothermal Heating Installations Using Lower Cretaceous Waters
2.2.1. Characteristics of the Mszczonów Geothermal Installation
2.2.2. Characteristics of the Uniejów Geothermal Installation
2.2.3. Characteristics of the Poddębice Geothermal Installation
3. Geothermics as Environmentally Friendly Heating Systems
3.1. Available Geothermal Resources
- mp—cumulative thickness of groundwater horizons in the reservoir [m];
- pe—effective porosity [-];
- Ts—temperature at the top surface of the groundwater reservoir [°C];
- To—mean annual temperature at the Earth’s surface [°C];
- ps and pw—mean density of the rock framework and water, respectively [kg/m3];
- cs and cw—mean specific heat of the rock framework and water, respectively [J/kg °C];
- A—area of the calculation block [m2].
3.2. Conditions for Geothermal Installations
- 130/65 °C (where the first temperature corresponds to the supply temperature, while the second to the return temperature) for large district heating systems;
- 90/70 °C for small local systems.
3.3. Important Environmental Aspects
- A total of 48 kg/year SO2 for natural gas as a reference fuel and 23.8 × 103 kg/year for hard coal;
- In the case of CO2, emissions of 1200 × 103 kg/year for natural gas and 3027 × 103 kg/year for hard coal are avoided.
- In total, 35 × 103 kg/year SO2 for coal as a reference fuel;
- In total, 5000 × 103 kg/year CO2 for coal as a reference fuel, and 2900 × 103 kg/year CO2 for natural gas as a reference fuel.
3.4. Important Economic Aspects
4. Prospectives for Geothermal Energy in Poland
5. Conclusions
- Raising public awareness through appropriate education programmes aimed at the youngest school children;
- Systemic, efficient energy management measures at the central, regional and local levels;
- Providing financial support and ensuring that regulations and laws are conducive to the development of geothermal resources.
Author Contributions
Funding
Conflicts of Interest
References
- Dowgiałło, J. Geologia i wykorzystanie energetyczne zasobów geotermicznych we włoszech. Przegląd Geol. 1972, 20, 109–113. [Google Scholar]
- Wang, X.; Wang, G.I.; Gan, H.N.; Liu, Z.; Nan, D.W. Hydrochemical characteristics and evolution of geothermal fluids in the Chabu high-temperature geothermal system, Southern Tibet. Geofluids 2018, 2018, 8532840. [Google Scholar] [CrossRef] [Green Version]
- Sowiżdżał, A.; Kaczmarczyk, M. Analysis of thermal parameters of Triassic, Permian and Carboniferous sedimentary rocks in central Poland. Geol. J. 2016, 51, 65–76. [Google Scholar] [CrossRef]
- Śliwa, T.; Kruszewski, M.; Zare, A.; Adssadi, M.; Sapińska-Śliwa, A. Potential application of vacuum insulated tubing for deep borehole heat exchangers. Geothermics 2018, 75, 58–67. [Google Scholar] [CrossRef]
- Tomaszewska, B.; Bundschuh, J.; Pająk, L.; Dendys, M.; Delgado Quezada, V.; Bodzek, M.; Armienta, A.A.; Ormachea Munioz, M.; Kasztelewicz, A. Use of low-enthalpy and waste geothermal energy sources to solve arsenic problems in freshwater production in selected regions of Latin America using a process membrane distillation-research into model solutions. Sci. Total Environ. 2020, 714, 136853. [Google Scholar] [CrossRef] [PubMed]
- Morales-Arredondo, I.; Armienta, M.A.; Segovia, N. Groundwater chemistry and overpressure evidences in cerro prieto geothermal field. Geofluids 2017, 2017, 2395730. [Google Scholar] [CrossRef]
- Kaczmarczyk, M. Impact of rock mass temperature on potential power and electricity generation in the ORC installation. In Proceedings of the E3Web of Conferences, Kraków, Poland, 25–27 September 2017; Volume 24. Article number 02007. [Google Scholar]
- Wu, B.; Ma, T.; Feng, G.; Chen, Z.; Zhang, X. An approximate solution for predicting the heat extraction and preventing heat loss from a closed-loop geothermal reservoir. Geofluids 2017, 2017, 2041072. [Google Scholar] [CrossRef] [Green Version]
- Bakhsh, K.J.; Nakagawa, M.; Arshad, M.; Dunnington, L. On heat and mass transfer within thermally shocked region of enhanced geothermal system. Geofluids 2017, 2017, 2759267. [Google Scholar]
- Bertani, R. Geothermal power generation in the world 2010–2014 update report. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Lund, J.W.; Boyd, T.L. Direct utilization of geothermal energy 2015: Worldwide review. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Kępińska, B. Geothermal energy country update report from Poland, 2010–2014. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Bujakowski, W.; Barbacki, A.; Miecznik, M.; Pająk, L.; Skrzypczak, R. A structural-thermal model of the Karkonosze Pluton (Sudetes Mountains, SW Poland) for Hot Dry Rock (HDR) geothermal use. Arch. Min. Sci. 2016, 61, 917–935. [Google Scholar] [CrossRef] [Green Version]
- Szulc, A.; Tomaszewska, B. Perspectives on the use of geothermal heat pump systems to reduce low emitted air pollutants in the health resort areas. In Proceedings of the E3Web of Conferences, Pune, India, 18–20 December 2019; Volume 116. Article number 00087. [Google Scholar]
- Kaczmarczyk, M.; Sowiżdżał, A.; Tomaszewska, B. Energetic and environmental aspects of individual heat generation for sustainable development at a local scale—A case study from Poland. Energies 2020, 13, 454. [Google Scholar] [CrossRef] [Green Version]
- Buńczyk, A. Energetyka Cieplna W Liczbach—2016; Urząd Regulacji Energetyki: Warszawa, Poland, 2017; p. 97. [Google Scholar]
- Operacz, A.; Wałęga, A.; Cupak, A.; Tomaszewska, B. The comparison for investment in Poland or river protection? J. Clean. Prod. 2018, 2018, 575–592. [Google Scholar] [CrossRef]
- Operacz, A. The term “effective hydropower potential”, based on sustainable development—An initial case study of the Raba River in Poland. Renew. Sustain. Energy Rev. 2017, 75, 1453–1463. [Google Scholar] [CrossRef]
- Operacz, A.; Tomaszewska, B. The review of Polish formal and legal aspects related to hydropower plants. Environ. Sci. Pollut. Res. 2016, 23, 18953–18959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Górecki, W. Atlas Zasobów Geotermalnych Formacji Mezozoicznych Na Niżu Polskim; Wyd. GOLDRUK: Kraków, Poland, 2006. [Google Scholar]
- Sowiżdżał, A. Geothermal energy resources in Poland—Overview of the current state of knowledge. Renew. Sustain. Energy Rev. 2018, 82, 4020–4027. [Google Scholar] [CrossRef]
- Bujakowski, W.; Balcer, M.; Barbacki, A.P.; Bielec, B.; Tomaszewska, B.; Pająk, L.; Skrzypczak, R.; Dendys, M.; Kasztelewicz, A.; Dajek, B.K. Otwór Geotermalny Mszczonów IG-1 Rekonstrukcja I Wieloletnia Eksploatacja (Mszczonów IG-1 Geothermal Well Reconstruction and Long-Time Exploitation–In Polish); Wydawnictwo IGSMiE PAN(PAS MEERI Published): Kraków, Poland, 2017. [Google Scholar]
- Górecki, W.; Hajto, M.; Strzetelski, W.; Szczepański, A. Dolnokredowy oraz dolnojurajski zbiornik wód geotermalnych na Niżu Polskim. Przegląd Geol. 2010, 58, 589–593. [Google Scholar]
- Szczepański, A. Warunki hydrogeologiczne dolnojurajskiego I dolnokredowego zbiornika wód geotermalnego. In Atlas Wód Geotermalnych Niżu Polskiego; Górecki, W., Ed.; Wydawnictwa AGH: Kraków, Poland, 1990. [Google Scholar]
- Sowiżdżał, A.; Chmielowska, A.; Tomaszewska, B.; Operacz, A.; Chowaniec, J. Could geothermal water and Energy use improve living conditions?. Environmental effects from Poland. Arch. Environ. Prot. 2019, 45, 109–118. [Google Scholar]
- Kaczmarczyk, M. Potential of existing and newly designed geothermal heating plants in limiting of low emissions in Poland. In Proceedings of the E3S Web of Conferences, Berdiansk, Ukraine, 4–8 September 2018; Volume 44, p. 00062. [Google Scholar]
- Dowgiałło, J. Prowincja platformy paleozoicznej. In Hydrogeologia Regionalna Polski Tom II–Wody Mineralne, Lecznicze I Termalne Oraz Kopalniane; Paczyński, B., Sadurski, A., Eds.; Państwowy Instytut Geologiczny: Warszawa, Poland, 2007; pp. 38–56. [Google Scholar]
- Bujakowski, W. Dokumentacja Powykonawcza Z Prac Badawczo-Rozwojowych—Dostosowanie Otworu Mszczonów IG-1 Dla Potrzeb Eksploatacji Złoża Geotermalnego Do Systemu Grzewczego; IGSMiE PAN (Archiwum): Kraków, Poland, 1999; (unpublished). [Google Scholar]
- Tomaszewska, B. Warunki hydrogeotermalne w rejonie mszczonowa. Geol. Explor. Technol. Geotherm. Sustain. Dev. 2015, 2015, 81–94. [Google Scholar]
- Bujakowski, W. Pierwsza W Polsce Rekonstrukcja Głębokiego Otworu Wiertniczego Mszczonów IG-1 Do Celów Ciepłowniczych; Wyd. IGSMiE PAN: Kraków, Poland, 2001. [Google Scholar]
- Kępińska, B.; Bujakowski, W. Wytyczne Projektowe Poprawy Chłonności Skał Zbiornikowych W Związku Z Zatłaczaniem Wód Termalnych W Polskich Zakładach Geotermalnych; Wyd. EJB: Kraków, Poland, 2011. [Google Scholar]
- Tomaszewska, B.; Rajca, M.; Kmiecik, E.; Bodzek, M.; Bujakowski, W.; Wątor, K.; Tyszer, M. The influence of selected factors on the effectiveness of pre-treatment of geothermal water during the nanofiltration process. Desalination 2017, 406, 74–82. [Google Scholar] [CrossRef]
- Bojarski, L.; Sokołowski, A. Dokumentacja Zasobów Wód Termalnych W Kat. C I B Z Utworów Kredy Dolnej Rejonu Uniejowa; PIG Architekci: Warszawa, Poland, 1991; (unpublished). [Google Scholar]
- Bentkowski, A.; Biernat, H.; Kapuściński, J.; Posyniak, A. Dodatek Do Dokumentacji Ustalającej Zasoby Eksploatacyjne Wód Termalnych Z Utworów Kredy Dolnej Rejonu Uniejowa Wraz Z Określeniem Warunków Hydro-Geologicznych W Związku Z Wtłaczaniem Wód Do Dolnokredowego Poziomu Wodonośnego; Opr. Przedsiębiorstwo Geologiczne „Polgeol” SA. Arch. Geotermia Uniejów Sp. z o.o.: Uniejów, Poland, 2005; (unpublished). [Google Scholar]
- Kępińska, B. Przegląd stanu wykorzystania energii geotermalnej w Polsce w latach 2013–2015. Geol. Explor. Technol. Geotherm. Sustain. Dev. 2016, 2016, 19–35. [Google Scholar]
- Kępińska, B. Geothermal Energy Utylisation Potential in Poland-Town Poddębice. Study Visits’ Report; Project EOG: Kraków, Poland, 2017; No 115/2016/Wn05/OA-XN-04/D. [Google Scholar]
- Balcer, M. Geotermia Mazowiecka—Historia, teraźniejszość, przyszłość. Geol. Explor. Technol. Geotherm. Sustain. Dev. 2015, 2015, 9–16. [Google Scholar]
- Bujakowski, W. The use of geothermal waters in Poland (state in 2009). PrzeglądGeologiczny 2010, 58, 580–588. [Google Scholar]
- Geotermia. Available online: http://geotermia-uniejow.pl/ (accessed on 10 October 2019).
- Haenel, R.; Staroste, E. Atlas of geothermal resources in the European Community, Austria and Switzerland; The Schafer: Hannover, Germany, 1988; p. 74, 110 plates. [Google Scholar]
- Haenel, R.; Hurter, S. Atlas of Geothermal Resources in Europe; Office for the Official Publications of the European Communities: Brussels, Belgium, 2002. [Google Scholar]
- Górecki, W.; Sowiżdżał, A.; Hajto, M.; Wachowicz-Pyzik, A. Atlases of geothermal waters and energy resources in Poland. Environ. Earth Sci. 2015, 74, 7487–7495. [Google Scholar] [CrossRef] [Green Version]
- Rozporządzenie Ministra Infrastruktury I Budownictwa Z Dnia 14 Listopada 2017 R. Zmieniające Rozporządzenie W Sprawie Warunków Technicznych, Jakim Powinny Odpowiadać Budynki I Ich Usytuowanie; Dziennik Ustaw Poz. 2285 z 2017 roku: Warszawa, Poland, 2017.
- Bujakowski, W.; Pająk, L.; Tomaszewska, B. Zasoby energii odnawialnej w województwie śląskim oraz możliwości ich wykorzystania. Miner. Resour. Manag. 2008, 24, 409–426. [Google Scholar]
- The National Center for Emissions Management KOBiZE. Wskaźniki Emisji Zanieczyszczeń Ze Spalania Paliw, Kotły O Mocy Nominalnej Do 5 MW (Indicators of Pollutant Emissions from Fuel Combustion, Boilers with a Nominal Power of up to 5 MW, In Polish); The National Center for Emissions Management KOBiZE: Warszawa, Poland, 2015. [Google Scholar]
- Tomaszewska, B.; Kasztelewicz, A.; Dendys, M.; Bujakowski, W.; Rahner, S.; Hartmann, M.; Weinreich, J. European educational concept in environmental, nature- and climate protection to safeguard a cross border sustainable development. In Proceedings of the E3S Web of Conferences, Berdiansk, Ukraine, 4–8 September 2018; Volume 66. no 03005. [Google Scholar]
- Kępińska, B.; Tomaszewska, B. Main barriers for geothermal energy development in Poland. Proposals of changes. Przegląd Geologiczny 2010, 58, 594–598. [Google Scholar]
- European Environment Agency. Air Quality in Europe—2017 Report; EEA Report, No. 13/2017; EEA: Coprnhagen, Denmark, 2017; ISBN 978-92-9213-921-6. [Google Scholar]
- Rahner, S.; Winter, I.; Hartmann, M.; Wittich, F.; Kasztelewicz, A.; Tomaszewska, B.; Pajak, L.; Dendys, M.; Operacz, A.; Mraz, M.; et al. Study on national activities and funding opportunities of furthering education programs for unemployed academics. In Proceedings of the E3S Web of Conferences, Berdiansk, Ukraine, 4–8 September 2018; Volume 66. no 03004. [Google Scholar]
- Pająk, L.; Bujakowski, W. Zmiany ceny zakupu energii cieplnej pochodzącej z polskich ciepłowni geotermalnych w latach 2007–2018 w świetle obowiązujących taryf rozliczeniowych (Changes in the purchase price of heat originating from Polish geothermal heating plants in the time period 2007–2018 based on settlement tariffs—in Polish, tables and figures in English). Geol. Explor. Technol. Geotherm. Energy Sustain. Dev. 2018, 1, 29–35. [Google Scholar]
- Ocetkiewicz, I.; Tomaszewska, B.; Mróz, A. Renewable energy in education for sustainable development. The Polish experience. Renew. Sustain. Energy Rev. 2017, 80, 92–97. [Google Scholar] [CrossRef]
Pollutant Name | Hard Coal, Heating Power P in the Range 500 kW < P ≤ 5 MW, Natural Chimney Draft [g/103 kg] | Natural Gas, Heating Power P in the Range of 500 kW < P ≤ 5 MW [g/m3] |
---|---|---|
SOx/SO2 | 16,000 shc | 0.002 sng |
NOx/NO2 | 1000 | 1.75 |
CO | 45,000 | 0.24 |
CO2 | 2106 | 2000 |
Total suspended participants (TSP) | 1500 Ahc | 0.0005 |
B(A)P | 14 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pająk, L.; Tomaszewska, B.; Bujakowski, W.; Bielec, B.; Dendys, M. Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems. Energies 2020, 13, 1302. https://doi.org/10.3390/en13061302
Pająk L, Tomaszewska B, Bujakowski W, Bielec B, Dendys M. Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems. Energies. 2020; 13(6):1302. https://doi.org/10.3390/en13061302
Chicago/Turabian StylePająk, Leszek, Barbara Tomaszewska, Wiesław Bujakowski, Bogusław Bielec, and Marta Dendys. 2020. "Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems" Energies 13, no. 6: 1302. https://doi.org/10.3390/en13061302
APA StylePająk, L., Tomaszewska, B., Bujakowski, W., Bielec, B., & Dendys, M. (2020). Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems. Energies, 13(6), 1302. https://doi.org/10.3390/en13061302