High-Order AVO Inversion for Effective Pore-Fluid Bulk Modulus Based on Series Reversion and Bayesian Theory
Abstract
:1. Introduction
2. Theory and Method
2.1. Sensitivity Analysis of the Effective Pore-Fluid Bulk Modulus
2.2. P-Wave High-Order AVO Approximations for the Effective Pore-Fluid Bulk Modulus
2.3. Effective Pore-Fluid Bulk Modulus Nonlinear AVO Inversion Method
3. Results
3.1. Model Data Test
3.2. Field Data Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. The Weighting Coefficients before , , and of
Appendix A.2. The Weighting Coefficients before , , and of
Appendix A.3. The Weighting Coefficients before , , and of
References
- Smith, G.C.; Gidlow, P.M. Weighting stacking for rock property estimation and detection of gas. Geophys. Prospect. 1987, 35, 993–1014. [Google Scholar] [CrossRef]
- Fatti, J.L.; Smith, G.C.; Vail, P.J.; Strauss, P.J.; Levitt, P.R. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique. Geophysics 1994, 59, 1362–1376. [Google Scholar] [CrossRef]
- Goodway, B.; Chen, T.; Downton, J. Improved AVO Fluid Detection and Lithology Discrimination Using Lame Petrophysical Parameters: “λρ”, “μρ” and “λ/μ Fluid Stack” from P and S Inversions; SEG Expanded Abstracts: Dallas, TX, USA, 1997; pp. 183–186. [Google Scholar]
- Quakenbush, M.; Shang, B.; Tuttle, C. Poisson impedance. Lead. Edge 2006, 25, 128–138. [Google Scholar] [CrossRef]
- Russell, B.H.; Gray, D.; Hampson, D.P. Linearized AVO and poroelasticity. Geophysics 2011, 76, C19–C29. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, X.; Zhang, F. Quasi Fluid Modulus for Delicate Lithology and Fluid Discrimination; SEG Expanded Abstracts: Denver, CO, USA, 2010; pp. 404–408. [Google Scholar]
- Yin, X.; Zhang, S. Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation. Geophysics 2014, 79, R221–R232. [Google Scholar] [CrossRef]
- Yin, X.; Wang, H.; Cao, D.; Zhou, Q.; Sun, W. Three-term AVO approximation of Kf-fm-ρ and prestack seismic inversion for deep reservoirs. Oil Geophys. Prospect. 2018, 53, 129–135. [Google Scholar]
- Hilterman, F.J. Seismic Amplitude Interpretation; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001; Volume 4. [Google Scholar]
- Zoeppritz, K. Erdbebenwellen VIII B: Über die Reflexion and Durchgang seismischer Wellen durch Unstetigkeitsflächen. Gott. Nachr. 1919, 1, 66–84. [Google Scholar]
- Keys, R.G. Polarity reversals in reflections from layered media. Geophysics 1989, 54, 900–905. [Google Scholar] [CrossRef]
- Kim, S.; Innanen, K. Linear and nonlinear poroelastic AVO. CREWES Res. Rep. 2013, 25, 1–28. [Google Scholar]
- Han, D.; Batzle, M. Gain Function and Hydrocarbon Indicators; SEG Expanded Abstracts: Dallas, TX, USA, 2003; pp. 1695–1698. [Google Scholar]
- Nur, A.; Mavko, G.; Dvorkin, J.; Galmudi, D. Critical porosity: A key to relating physical properties to porosity in rocks. Lead. Edge 1998, 17, 357–362. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology; W. H. Freeman and Company: San Francisco, CA, USA, 1980. [Google Scholar]
- De Nicolao, A.; Drufuca, G.; Rocca, F. Eigenvalues and eigenvectors of linearized elastic inversion. Geophysics 1993, 58, 670–679. [Google Scholar] [CrossRef]
- Russell, B.H.; Hedlin, K.; Hilterman, F.J. Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics 2003, 68, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Russell, B.H.; Gray, D.; Hampson, D.P.; Lines, L.R. Linearized AVO and poroelasticity. CREWES Res. Rep. 2006, 18, 1–25. [Google Scholar] [CrossRef]
- Frank, H.W.; Tat, S.Y. New applications of non-linear chirp scaling in SAR data processing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 946–953. [Google Scholar]
- Zhang, H.; Weglein, A.B. Direct nonlinear inversion of multiparameter 1D elastic media using the inverse scattering series. Geophysics 2009, 74, WCD15–WCD27. [Google Scholar] [CrossRef]
- Zhou, L.; Li, J.Y.; Chen, X.H. Nonlinear three-term AVO inversion based on exact Zoeppritz equation. Chin. J. Geophys. 2016, 59, 2663–2673. [Google Scholar]
Type | Pore-Fluid | P-Wave Velocity (m/s) | S-Wave Velocity (m/s) | Density (g/cm3) | Porosity (%) |
---|---|---|---|---|---|
1 | Water | 4115 | 2453 | 2.32 | 15 |
Gas | 4050 | 2526 | 2.21 | 20 | |
2 | Water | 3048 | 1595 | 2.23 | 15 |
Gas | 2781 | 1665 | 2.08 | 20 | |
3 | Water | 2134 | 860 | 2.11 | 15 |
Gas | 1543 | 901 | 1.88 | 20 |
Type | Pore-Fluid | P-wave Modulus (GPa) | Gassmann Fluid Factor (GPa) | Effective Pore-Fluid Bulk Modulus (GPa) |
---|---|---|---|---|
1 | Water | 39.29 | −16.56 | −17.66 |
Gas | 36.25 | −20.16 | −12.90 | |
2 | Water | 20.72 | −19.75 | −21.07 |
Gas | 16.09 | −6.98 | −5.58 | |
3 | Water | 9.61 | 3.37 | 3.59 |
Gas | 4.48 | −1.63 | −1.70 |
Pore-Fluid | (g/cm3) | (%) | |||||
---|---|---|---|---|---|---|---|
Model 1 | Gas | 0.10 | 1.99 | 1920 | 1230 | 25 | 40 |
Water | 2.38 | 2.26 | 2590 | 1150 | 25 | 40 | |
Model 2 | Water | 2.38 | 2.26 | 2590 | 1150 | 25 | 40 |
Water | 2.38 | 2.34 | 3580 | 2070 | 25 | 40 | |
Model 3 | Gas | 0.10 | 2.12 | 3340 | 2170 | 25 | 40 |
Water | 2.38 | 2.26 | 2590 | 1150 | 25 | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Sun, Y.; Liu, Y.; Cova, D.; Liu, J. High-Order AVO Inversion for Effective Pore-Fluid Bulk Modulus Based on Series Reversion and Bayesian Theory. Energies 2020, 13, 1313. https://doi.org/10.3390/en13061313
Shi L, Sun Y, Liu Y, Cova D, Liu J. High-Order AVO Inversion for Effective Pore-Fluid Bulk Modulus Based on Series Reversion and Bayesian Theory. Energies. 2020; 13(6):1313. https://doi.org/10.3390/en13061313
Chicago/Turabian StyleShi, Lei, Yuhang Sun, Yang Liu, David Cova, and Junzhou Liu. 2020. "High-Order AVO Inversion for Effective Pore-Fluid Bulk Modulus Based on Series Reversion and Bayesian Theory" Energies 13, no. 6: 1313. https://doi.org/10.3390/en13061313
APA StyleShi, L., Sun, Y., Liu, Y., Cova, D., & Liu, J. (2020). High-Order AVO Inversion for Effective Pore-Fluid Bulk Modulus Based on Series Reversion and Bayesian Theory. Energies, 13(6), 1313. https://doi.org/10.3390/en13061313