Optimal Management of the Energy Flows of Interconnected Residential Users
Abstract
:1. Introduction
1.1. Problem Statement
1.2. Literature Review
1.3. Objective and Novelty of This Paper
2. Methodology
2.1. Energy System Modeling
2.2. Objective Function
2.3. Optimization Algorithm
3. Case Study
3.1. Energy System Configuration
3.2. User Energy Demand
3.3. Prime Mover
3.4. Electrical and Thermal Energy Storage
3.5. System Parameters
3.6. Control Variables and States
4. Results
4.1. Primary Energy Consumption and PM Working Hours
4.2. Energy Share
4.3. Optimized Strategy
4.3.1. Optimized Strategy with Shared TES and EES
- 2 Ecowill PMs;
- TES capacity, 20 kWh;
- EES capacity, 5.0 kWh.
4.3.2. Optimized Strategy with Shared TES, EES and PM
- 1 Ecowill PM;
- TES capacity, 20 kWh;
- EES capacity, 5.0 kWh.
4.4. Discussion
4.5. Economic Feasibility
- one or two PMs (two PMs in the “shared TES and EES” configuration, one PM in the “shared TES, EES and PM” configuration);
- one TES;
- one EES.
- one or two PMs (see the comment above),
- one AB (see the comment above),
- one TES.
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
E | Energy [kWh] |
n | Number |
p | Parameter which accounts for EG losses |
P | Power [kW] |
SOC | State of charge [%] |
u | PM load rate [%] |
Δt | Time step [s] |
ϵ | Thermal leakage [%] |
η | Efficiency [%] |
Subscripts and superscripts | |
+ | To the user |
− | From the user |
1 | User 1 |
2 | User 2 |
AB | Auxiliary boiler |
ch | EES charging |
DHG | District heating grid |
EES | Electrical energy storage |
EG | Delivered to or taken from the national electrical grid |
EGm | Mean value of national electrical grid generation efficiency |
el | Electrical |
inv | Inverter |
max | Maximum, Rated |
p | Primary |
PM | Prime mover |
t | Time |
TES | Thermal energy storage |
th | Thermal |
user | User |
Acronyms | |
AB | Auxiliary boiler |
CHP | Combined heat and power |
DHG | District heating grid |
DP | Dynamic programming |
EES | Electrical energy storage |
EG | Electrical grid |
IC | Investment cost |
PM | Prime mover |
TES | Thermal energy storage |
References
- Barbieri, E.S.; Melino, F.; Morini, M. Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications. Appl. Energy 2012, 97, 714–722. [Google Scholar] [CrossRef]
- Transforming Our World: The 2030 Agenda for Sustainable Development, A/RES/70/1. Available online: https://sustainabledevelopment.un.org (accessed on 3 February 2020).
- Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 3 February 2020).
- Caliano, M.; Bianco, N.; Graditi, G.; Mongibello, L. Economic optimization of a residential micro-CHP system considering different operation strategies. Appl. Therm. Eng. 2016, 101, 592–600. [Google Scholar] [CrossRef]
- Andersen, A.N.; Østergaard, P.A. A method for assessing support schemes promoting flexibility at district energy plants. Appl. Energy 2018, 225, 448–459. [Google Scholar] [CrossRef]
- De Pascali, P.; Bagaini, A. Energy transition and urban planning for local development. A critical review of the evaluation of integrated spatial and energy planning. Energies 2019, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Luck, R.; Eksioglu, S.; Chamra, L.M. Cost-optimized real-time operation of CHP systems. Energy Build. 2009, 41, 445–451. [Google Scholar] [CrossRef]
- Sameti, M.; Haghighat, F. Optimization approaches in district heating and cooling thermal network. Energy Build. 2017, 140, 121–130. [Google Scholar] [CrossRef]
- Yin, S.; Xia, J.; Jiang, Y. Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China. Energies 2020, 13, 242. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.; Ghazvini, M.A.F.; Vale, Z.; Oliveira, P.M. A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads. Appl. Energy 2016, 162, 1074–1088. [Google Scholar] [CrossRef]
- Espe, E.; Potdar, V.; Chang, J. Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions. Energies 2018, 11, 2528. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, L.; Esposito, F.; Becciani, M.; Ferrara, G.; Magnani, S.; Andreini, M.; Bellissima, A.; Cantù, M.; Petretto, G.; Pentolini, M. Development of an optimization algorithm for the energy management of an industrial Smart User. Appl. Energy 2017, 208, 1468–1486. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; De Pascale, A.; Peretto, A. Application of environmental performance assessment of CHP systems with local and global approaches. Appl. Energy 2014, 130, 774–782. [Google Scholar] [CrossRef]
- Barbieri, E.S.; Spina, P.R.; Venturini, M. Analysis of innovative micro-CHP systems to meet household energy demands. Appl. Energy 2012, 97, 723–733. [Google Scholar] [CrossRef]
- Raine, R.D.; Finney, K.N.; Swithenbank, J. Optimisation of combined heat and power production for buildings using heat storage. Energy Convers. Manag. 2014, 87, 164–174. [Google Scholar] [CrossRef]
- Ghadimi, P.; Kara, S.; Kornfeld, B. The optimal selection of on-site CHP systems through integrated sizing and operational strategy. Appl. Energy 2014, 126, 38–46. [Google Scholar] [CrossRef]
- Buoro, D.; Pinamonti, P.; Reini, M. Optimization of a Distributed Cogeneration System with solar district heating. Appl. Energy 2014, 124, 298–308. [Google Scholar] [CrossRef]
- De Paepe, M.; D’Herdt, P.; Mertens, D. Micro-CHP systems for residential applications. Energy Convers. Manag. 2006, 47, 3435–3446. [Google Scholar] [CrossRef]
- Reynolds, J.; Ahmad, M.W.; Rezgui, Y.; Hippolyte, J.-L. Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm. Appl. Energy 2019, 235, 699–713. [Google Scholar] [CrossRef]
- Brett, D.; Fraga, E.S.; Brett, D.J. A modelling study for the integration of a PEMFC micro-CHP in domestic building services design. Appl. Energy 2018, 225, 85–97. [Google Scholar]
- Comodi, G.; Giantomassi, A.; Severini, M.; Squartini, S.; Ferracuti, F.; Fonti, A.; Cesarini, D.N.; Morodo, M.; Polonara, F. Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies. Appl. Energy 2015, 137, 854–866. [Google Scholar] [CrossRef]
- Orehounig, K.; Evins, R.; Dorer, V. Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Appl. Energy 2015, 154, 277–289. [Google Scholar] [CrossRef]
- McKenna, R.; Merkel, E.; Fichtner, W. Energy autonomy in residential buildings: A techno-economic model-based analysis of the scale effects. Appl. Energy 2017, 189, 800–815. [Google Scholar] [CrossRef] [Green Version]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shahryari, E.; Moradzadeh, M.; Siano, P. A Survey on Microgrid Energy Management Considering Flexible Energy Sources. Energies 2019, 12, 2156. [Google Scholar] [CrossRef] [Green Version]
- Dehghanpour, K.; Colson, C.; Nehrir, H. A Survey on Smart Agent-Based Microgrids for Resilient/Self-Healing Grids. Energies 2017, 10, 620. [Google Scholar] [CrossRef]
- Ghiani, E.; Serpi, A.; Pilloni, V.; Sias, G.; Simone, M.; Marcialis, G.L.; Armano, G.; Pegoraro, P.A. A Multidisciplinary Approach for the Development of Smart Distribution Networks. Energies 2018, 11, 2530. [Google Scholar] [CrossRef] [Green Version]
- Georgilakis, P.S. Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Research. Energies 2020, 13, 186. [Google Scholar] [CrossRef] [Green Version]
- Entchev, E.; Yang, L.; Ghorab, M.; Rosato, A.; Sibilio, S. Energy, economic and environmental performance simulation of a hybrid renewable microgeneration system with neural network predictive control. Alex. Eng. J. 2018, 57, 455–473. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.; Mandal, K.K.; Mandal, A.C.; Patra, S.N. Analysis of energy management in micro-grid—A hybrid BFOA and ANN approach. Renew. Sustain. Energy Rev. 2018, 82, 4296–4308. [Google Scholar] [CrossRef]
- Seo, B.; Yoon, Y.; Mun, J.; Cho, S. Application of Artificial Neural Network for the Optimum Control of HVAC Systems in Double-Skinned Office Buildings. Energies 2019, 12, 4754. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, T.; Xie, X.; Ling, Z.; Gao, G.; Dong, X. Optimal Capacity Configuration of a Hybrid Energy Storage System for an Isolated Microgrid Using Quantum-Behaved Particle Swarm Optimization. Energies 2018, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Shi, X.; Liao, L.; Zhou, C.; Zhou, H.; Su, Y. A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization. Energies 2019, 12, 642. [Google Scholar] [CrossRef] [Green Version]
- Collazos, A.; Maréchal, F.; Gahler, C. Predictive optimal management method for the control of polygeneration systems. Comput. Chem. Eng. 2009, 33, 1584–1592. [Google Scholar] [CrossRef]
- Wille-Haussmann, B.; Erge, T.; Wittwer, C. Decentralized optimization of cogeneration in virtual power plants. Solar Energy 2010, 84, 604–611. [Google Scholar] [CrossRef]
- Ren, H.; Gao, W. A MILP model for integrated plan and evaluation of distributed energy systems. Appl. Energy 2010, 87, 1001–1014. [Google Scholar] [CrossRef]
- Steen, D.; Stadler, M.; Cardoso, G.; Groissböck, M.; Deforest, N.; Marnay, C. Modeling of thermal storage systems in MILP distributed energy resource models. Appl. Energy 2015, 137, 782–792. [Google Scholar] [CrossRef] [Green Version]
- Wouters, C.; Fraga, E.S.; James, A. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning—A South Australian case-study. Energy 2015, 85, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Ford, R.; Pritoni, M.; Sanguinetti, A.; Karlin, B. Categories and functionality of smart home technology for energy management. Build. Environ. 2017, 123, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Rafique, M.K.; Haider, Z.M.; Mehmood, K.K.; Zaman, M.S.U.; Irfan, M.; Khan, S.U.; Kim, C.-H. Optimal Scheduling of Hybrid Energy Resources for a Smart Home. Energies 2018, 11, 3201. [Google Scholar] [CrossRef] [Green Version]
- Sanguinetti, A.; Karlin, B.; Ford, R.; Salmon, K.; Dombrovski, K. What’s energy management got to do with it? Exploring the role of energy management in the smart home adoption process. Energy Effic. 2018, 11, 1897–1911. [Google Scholar] [CrossRef] [Green Version]
- Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic Programming; University Press: Princeton, NJ, USA, 1957. [Google Scholar]
- Yu, S.; Gao, S.; Sun, H. A dynamic programming model for environmental investment decision-making in coal mining. Appl. Energy 2016, 166, 273–281. [Google Scholar] [CrossRef]
- Seijo, S.; Del Campo, I.; Echanobe, J.; García-Sedano, J. Modeling and multi-objective optimization of a complex CHP process. Appl. Energy 2016, 161, 309–319. [Google Scholar] [CrossRef]
- Chen, X.; Hewitt, N.; Li, Z.; Wu, Q.; Yuan, X.; Roskilly, T. Dynamic programming for optimal operation of a biofuel micro CHP-HES system. Appl. Energy 2017, 208, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Berrueta, A.; Heck, M.; Jantsch, M.; Ursúa, A.; Sanchis, P. Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants. Appl. Energy 2018, 228, 1–11. [Google Scholar] [CrossRef]
- Gambarotta, A.; Morini, M.; Pompini, N.; Spina, P.R. Optimization of Load Allocation Strategy of a Multi-source Energy System by Means of Dynamic Programming. Energy Procedia 2015, 81, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Rist, J.F.; Dias, M.F.; Palman, M.; Zelazo, D.; Cukurel, B. Economic dispatch of a single micro-gas turbine under CHP operation. Appl. Energy 2017, 200, 1–18. [Google Scholar] [CrossRef]
- Alahaivala, A.; Heß, T.; Cao, S.; Lehtonen, M. Analyzing the optimal coordination of a residential micro-CHP system with a power sink. Appl. Energy 2015, 149, 326–337. [Google Scholar] [CrossRef]
- Bahlawan, H.; Morini, M.; Pinelli, M.; Spina, P.R. Dynamic programming based methodology for the optimization of the sizing and operation of hybrid energy plants. Appl. Therm. Eng. 2019, 160, 113967. [Google Scholar] [CrossRef]
- Cattozzo, M.; Manservigi, L.; Spina, P.R.; Venturini, M. Minimization of the primary energy consumption of residential users connected by means of an energy grid. In Proceedings of the AIP Conference Proceedings, Modena, Italy, 11–13 September 2019; 2019; Volume 2191, p. 020041. [Google Scholar] [CrossRef]
- Marano, V.; Rizzo, G.; Tiano, F.A. Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage. Appl. Energy 2012, 97, 849–859. [Google Scholar] [CrossRef]
- Sundstrom, O.; Guzzella, L. A generic dynamic programming Matlab function. In Proceedings of the 18th IEEE International Conference on Control Applications Part of 2009 IEEE Multi-Conference on Systems and Control, Saint Petersburg, Russia, 8–10 July 2009. [Google Scholar]
- Available online: http://www.idsc.ethz.ch/research-guzzella-onder/downloads.html (accessed on 21 January 2019).
- Macchi, E.; Campanari, S.; Silva, P. La Microcogenerazione a Gas Naturale; Polipress: Milano, Italy, 2006. [Google Scholar]
- Ippolito, F.; Venturini, M. Development of a Simulation Model of Transient Operation of Micro-Combined Heat and Power Systems in a Microgrid. J. Eng. Gas Turbines Power 2017, 140, 032001. [Google Scholar] [CrossRef]
- Ziviani, D.; Beyene, A.; Venturini, M. Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Appl. Energy 2014, 121, 79–95. [Google Scholar] [CrossRef]
- Adam, A.; Fraga, E.S.; Brett, D. Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration. Appl. Energy 2015, 138, 685–694. [Google Scholar] [CrossRef]
- Murugan, S.; Horák, B. A review of micro combined heat and power systems for residential applications. Renew. Sustain. Energy Rev. 2016, 64, 144–162. [Google Scholar] [CrossRef]
- Xiong, L.; Nour, M. Nour Techno-Economic Analysis of a Residential PV-Storage Model in a Distribution Network. Energies 2019, 12, 3062. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Gao, W.; Ruan, Y. Optimal sizing for residential CHP system. Appl. Therm. Eng. 2008, 28, 514–523. [Google Scholar] [CrossRef]
- COMMISSION DELEGATED REGULATION (EU) 2015/2402 of 12 October 2015, Official Journal of the European Union. Available online: https://eur-lex.europa.eu (accessed on 3 February 2020).
- Decreto Ministeriale 5 Settembre 2011—Regime di Sostegno per la Cogenerazione ad alto Rendimento; 2011. Available online: https://www.mise.gov.it/images/stories/normativa/DM-5-SETTEMBRE2011.pdf (accessed on 3 February 2020). (In Italian)
- Available online: https://www.e-education.psu.edu/eme812/node/738 (accessed on 3 February 2020).
- Facci, A.L.; Ubertini, S. Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios. Appl. Energy 2018, 216, 60–72. [Google Scholar] [CrossRef]
- Telaretti, E.; Ippolito, M.G.; Dusonchet, L. A Simple Operating Strategy of Small-Scale Battery Energy Storages for Energy Arbitrage under Dynamic Pricing Tariffs. Energies 2015, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Darrow, K.; Tidball, R.; Wang, J.; Hampson, A. Catalog of CHP Technologies, U.S. Environmental Protection Agency Combined Heat and Power Partnership; 2017. Available online: https://www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies.pdf (accessed on 3 March 2020).
- Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables); European Commission Directorate-General for Energy Directorate C; 2—New Energy Technologies, Innovation and Clean Coal. 2016. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/mapping-hc-excecutivesummary.pdf (accessed on 3 March 2020).
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.metrotherm.dk/en (accessed on 3 March 2020).
- Ribberink, H.; Entchev, E. Exploring the potential synergy between micro-cogeneration and electric vehicle charging. Appl. Therm. Eng. 2014, 71, 677–685. [Google Scholar] [CrossRef]
- Angrisani, G.; Canelli, M.; Roselli, C.; Sasso, M. Integration between electric vehicle charging and micro-cogeneration system. Energy Convers. Manag. 2015, 98, 115–126. [Google Scholar] [CrossRef]
- García-Villalobos, J.; Zamora, I.; Martin, J.I.S.; Asensio, F.J.; Aperribay, V. Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches. Renew. Sustain. Energy Rev. 2014, 38, 717–731. [Google Scholar] [CrossRef]
Energy System Component | Variable | DP (Dynamic Programming) Component |
---|---|---|
PM (prime mover) | u | Control variable |
AB (auxiliary boiler) | Pth,AB | Control variable |
DHG (district heating grid) | Pth,DHG | Control variable |
EG (electrical grid) | Pel,EG | Control variable |
TES (thermal energy storage) | SOCTES | State |
EES (electrical energy storage) | SOCEES | State |
PM | Pel (kW) | Pth (kW) | ηel | ηth | Ref. |
---|---|---|---|---|---|
Honda Ecowill | 1.00 | 3.25 | 0.200 | 0.630 | [14] |
Energy System Component | Variable | Minimum Value | Maximum Value | Discretization |
---|---|---|---|---|
PM | u | 0 | 1 | Binary value |
AB | Pth,AB | 0 kW | 24 kW | 5 steps |
DHG | Pth,DHG | −Pth,user,max | +Pth,user,max | 5 steps |
EG | Pel,EG | 0 | +Pel,user,max | 5 steps |
TES | SOCTES | 5% SOCTES,max | 95% SOCTES,max | Continuous |
EES | SOCEES | 5% SOCEES,max | 95% SOCEES,max | Continuous |
Reference Scenario | CHP Scenario | |||
---|---|---|---|---|
“Independent energy systems” (TES: 10 kWh; EES: 2.5 kWh) | “Shared TES and EES” (TES: 20 kWh; EES: 5 kWh) | “Shared TES, EES and PM” (TES: 20 kWh; EES: 5 kWh) | ||
Primary energy consumption | 1.98 MWh | 1.89 MWh | 1.88 MWh | 1.91 MWh |
Rate of PM working hours | N/A | 58% (PM 1) 47% (PM 2) | 64% (PM 1) 26% (PM 2) | 81% (shared PM) |
Energy System Component | Investment Cost | Maintenance Cost |
---|---|---|
PM | Estimated | 22.5 €/MWh [68] |
AB | 100 €/kW | 2% of investment cost [69] |
TES | 10 €/kWh [70] | 50 €/year [71] |
EES | 171 €/kWh [67] or 844 €/kWh [67] | 0 [67] |
System Configuration | Lead–Acid Battery (171 €/kWh) | Li–Ion Battery (844 €/kWh) |
---|---|---|
Shared TES and EES | 2000 €/kW | 300 €/kW |
Shared TES, EES and PM | 4000 €/kW | 450 €/kW |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manservigi, L.; Cattozzo, M.; Spina, P.R.; Venturini, M.; Bahlawan, H. Optimal Management of the Energy Flows of Interconnected Residential Users. Energies 2020, 13, 1507. https://doi.org/10.3390/en13061507
Manservigi L, Cattozzo M, Spina PR, Venturini M, Bahlawan H. Optimal Management of the Energy Flows of Interconnected Residential Users. Energies. 2020; 13(6):1507. https://doi.org/10.3390/en13061507
Chicago/Turabian StyleManservigi, Lucrezia, Mattia Cattozzo, Pier Ruggero Spina, Mauro Venturini, and Hilal Bahlawan. 2020. "Optimal Management of the Energy Flows of Interconnected Residential Users" Energies 13, no. 6: 1507. https://doi.org/10.3390/en13061507
APA StyleManservigi, L., Cattozzo, M., Spina, P. R., Venturini, M., & Bahlawan, H. (2020). Optimal Management of the Energy Flows of Interconnected Residential Users. Energies, 13(6), 1507. https://doi.org/10.3390/en13061507