Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Model
2.2. Mathematical Model
2.3. Solving Method
2.4. Model Validation
3. Results and Discussions
3.1. Effects of Inlet Exhaust Velocity on MSR
3.2. Effects of Inlet Exhaust Temperature on MSR
3.3. Effects of Reactant Inlet Velocity on MSR
3.4. Effects of Reactant Inlet Temperature on MSR
3.5. Effects of W/A on MSR
3.6. Effects of Parallel and Counter Flow on MSR
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, J.; Liao, Y.; Zhang, J.; Wang, S.; Li, S. Target Fusion Detection of LiDAR and Camera Based on the Improved YOLO Algorithm. Mathematics 2018, 6, 213. [Google Scholar] [CrossRef] [Green Version]
- Driely, C.; Andrew, G. An Analysis of Children Left Unattended in Parked Motor Vehicles in Brazil. Int. J. Environ. Res. Public Health 2016, 13, 649. [Google Scholar]
- Feng-Hua, L.I.; Zhang, Y.J.; Zhang, J.; Yuan, Y.; Lin, W.U.; Mao, H.J. Characteristics of Particulate and Inorganic Elements of Motor Vehicles Based on a Tunnel Environment. Environ. Sci. 2018, 39, 1014–1022. [Google Scholar]
- Chen, T.Z.; Yan-Li, G.E.; Liu, Y.C.; Hong, H.E. VOCs Emission from Motor Vehicles in China and Its Impact on the Atmospheric Environment. Environ. Sci. 2018, 39, 478–492. [Google Scholar]
- Popescu, M.; Goss, J.; Staton, D.A.; Hawkins, D.; Chong, Y.C. Electrical Vehicles—Practical Solutions for Power Traction Motor Systems. IEEE Trans. Ind. Appl. 2018, 54, 2751–2762. [Google Scholar] [CrossRef] [Green Version]
- Llorca, C.; Angel-Domenech, A.; Agustin-Gomez, F.; Garcia, A. Motor vehicles overtaking cyclists on two-lane rural roads. Anal. Speed Lateral Clear. 2017, 92, 302–310. [Google Scholar]
- Pashchenko, D. Thermochemical waste-heat recuperation by steam methane reforming with flue gas addition. Int. J. Energy Res. 2019, 43, 2216–2226. [Google Scholar] [CrossRef]
- Deb, P.; Debnath, P.; Denis, A.F.; Lepcha, O.T. Variability of soil physicochemical properties at different agroecological zones of Himalayan region: Sikkim, India. Environ. Dev. Sustain. 2019, 21, 2321–2339. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Zhang, T.; Zhou, S.; Yan, K. The effects of microbial fuel cells coupled with solar cells under intermittent illumination on sediment remediation. Environ. Sci. Process. Impacts 2019, 21, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jing, X.; Gao, C.; Huang, Q.; Cai, P. Recent advances in microbial electrochemical system for soil bioremediation. Chemosphere 2018, 211, 156–163. [Google Scholar] [CrossRef]
- Jung, G.; Chan, S.; Lai, C. Innovative membrane electrode assembly (MEA) fabrication for proton exchange membrane water electrolysis. Energies 2019, 12, 4218. [Google Scholar] [CrossRef] [Green Version]
- Prapinagsorn, W.; Sittijunda, S.; Reungsang, A. Co-digestion of napier grass and its silage with cow dung for bio-Hydrogen and methane production by two-stage anaerobic digestion process. Energies 2017, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Li, Y.; Chen, S. Chemical looping hydrogen production using activated carbon and carbon black as multi-function carriers. Int. J. Hydrog. Energy 2018, 43, 5501–5511. [Google Scholar]
- Wang, R.; Ni, S.; Liu, G.; Xu, X. Hollow CaTiO3 cubes modified by La/Cr co-doping for efficient photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 225, 139–147. [Google Scholar] [CrossRef]
- Andrade, T.S.; Papagiannis, I.; Dracopoulos, V. Visible-light activated titania and its application to photoelectrocatalytic hydrogen peroxide. Materials 2019, 12, 4238. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Xuan, M.; Guan, X.; Qiang, W.; Wang, T. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation. J. Nucl. Mater. 2018, 503, 198–204. [Google Scholar] [CrossRef]
- Pashchenko, D.I. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion. Therm. Eng. 2013, 60, 438–443. [Google Scholar] [CrossRef]
- Pashchenko, D.; Gnutikova, M.; Karpilov, I. Comparison study of thermochemical waste-heat recuperation by steam reforming of liquid biofuels. Int. J. Hydrog. Energy 2020, 45, 4174–4181. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, J.; Zhang, C. Thermodynamic analysis of the air-cooled transcortical Rankine cycle using CO2/R161 mixture based on natural draft dry cooling towers Thermodynamic analysis of the air-cooled transcritical Rankine cycle using CO2/R161 mixture based on natural draft dry cooling towers. Energies 2019, 12, 3342. [Google Scholar]
- Zhou, Y.; Li, Q.; Wang, Q. Energy Storage Analysis of UIO-66 and Water Mixed anofluids: An Experimental and Theoretical Study. Energies 2019, 12, 2521. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Ping, W.; Yi, Z.; Wark, M.; Yang, J.; Wang, X. Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type II junction structure for overall water splitting. Catal. Sci. Technol. 2018, 8, 3025–3033. [Google Scholar]
- Su, S.; Zhang, L.; Zhang, Y.; Lei, J.; Pan, L. Thermodynamic simulation for hydrogen production in the methanol steam reforming system of kilowatt PEMFC. J. Petrochem. Univ. 2015, 28, 19–25. [Google Scholar]
- Zhang, Y.; Li, H.; Han, W.; Bai, W.; Yang, Y.; Yao, M.; Wang, Y. Improved design of supercritical CO2 Brayton cycle for coal-fired power plant. Energy 2018, 155, 1–14. [Google Scholar] [CrossRef]
- Goldmann, A.; Sauter, W.; Oettinger, M. A Study on Electrofuels in Aviation. Energies 2018, 11, 392. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.C.; Kar, S.K.; Mishra, H. Effect of perforation on exhaust performance of a turbo pipe type muffler using methanol and gasoline blended fuel: A step to NOx control. J. Clean. Prod. 2018, 183, 869–879. [Google Scholar] [CrossRef]
- Kumar, C.; Rana, K.B.; Tripathi, B. Effect of diesel-methanol-nitromethane blends combustion on VCR stationary CI engine performance and exhaust emissions. Environ. Sci. Pollut. Res. 2019, 26, 6517–6531. [Google Scholar] [CrossRef]
- Feng, W.; Cao, Y.; Wang, G. Thermoelectric generation coupling methanol steam reforming characteristic in microreactor. Energy 2014, 80, 642–653. [Google Scholar]
- Abdullah, N.; Bahruji, H.; Rogers, S.M.; Wells, P.P.; Catlow, C.R.A.; Bowker, M. Pd local structure and size correlations to the activity of Pd/TiO2 for photocatalytic reforming of methanol. Phys. Chem. Chem. Phys. 2019, 21, 16154–16160. [Google Scholar] [CrossRef] [Green Version]
- Nowicka, E.; Althahban, S.M.; Luo, Y.; Kriegel, R.; Hutchings, G.J. Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catal. Sci. Technol. 2018, 8, 5848–5857. [Google Scholar] [CrossRef]
- Qing, S.; Hou, X.; Liu, Y.; Li, L.; Fan, W. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming. Chem. Commun. 2018, 54, 12242–12245. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Wang, F. Study on methane steam reforming coupling high-temperature exhaust heat utilization for hydrogen production. Int. J. Green Energy 2019, 16, 1–11. [Google Scholar] [CrossRef]
- Ngoenthong, N.; Hartley, M.; Sornchamni, T. Comparison of packed-bed and micro-channel reactors for hydrogen production via thermochemical cycles of water splitting in the presence of ceria-based catalysts. Processes 2019, 7, 767. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Ke, Y.; Pei, P.; Yu, W.; Chu, X.; Li, S.; Yang, K. Hydrogen production from cylindrical methanol steam reforming microreactor with porous Cu-Al fiber sintered felt. Int. J. Hydrog. Energy 2018, 43, 3643–3654. [Google Scholar] [CrossRef]
- Liang, Z.; Peng, G.; Tang, Z.; Min, L.; Sun, Y. Three dimensional porous Cu-Zn/Al foam monolithic catalyst for CO2 hydrogenation to methanol in microreactor. J. CO2 Util. 2017, 21, 191–199. [Google Scholar] [CrossRef]
- Pashchenko, D. Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes_ A combined experimental and numerical investigation. Energies 2019, 166, 462–470. [Google Scholar] [CrossRef]
- Mardle, P.; Fernihough, O.; Du, S. Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes. Coating 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.H.; Horng, R.F. Investigation on the hydrogen production by methanol steam reforming with engine exhaust heat recovery strategy. Int. J. Hydrogen Energy 2016, 41, 4957–4968. [Google Scholar] [CrossRef]
- Tripodi, A.; Compagnoni, M.; Martinazzo, R. Process simulation for the design and scale up of heterogeneous catalytic process: Kinetic modelling issues. Catalysts 2017, 7, 159. [Google Scholar] [CrossRef]
- Pickard, W.F.; Abraham-Shrauner, B. Simplified models of the symmetric single-pass parallel-plate counterflow heat exchanger: A tutorial. Roy Soc Open Sci 2018, 5, 171617. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wang, F.; Chen, B. Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery. Energies 2020, 13, 1564. https://doi.org/10.3390/en13071564
Wang G, Wang F, Chen B. Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery. Energies. 2020; 13(7):1564. https://doi.org/10.3390/en13071564
Chicago/Turabian StyleWang, Guoqiang, Feng Wang, and Bohong Chen. 2020. "Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery" Energies 13, no. 7: 1564. https://doi.org/10.3390/en13071564
APA StyleWang, G., Wang, F., & Chen, B. (2020). Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery. Energies, 13(7), 1564. https://doi.org/10.3390/en13071564