Two-Layer Ensemble-Based Soft Voting Classifier for Transformer Oil Interfacial Tension Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Data Pre-Processing
2.3. Data Visualization
2.4. Machine Learning Model Architecture
2.5. Evaluation Metrics
3. Results and Discussion
3.1. Classification Accuray of Both Individual and Combined Classifiers
3.2. Classification Under Reduced Number of Features
3.3. Classification Under Balanced Number of Input Features
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bernard, N.; Cucek, B. Methods for monitoring age-related changes in transformer oils. In Proceedings of the 2014 IEEE International Conference on Liquid Dielectrics, Bled, Slovenia, 30 June–3 July 2014. [Google Scholar]
- Abu-Siada, A.; Abu Bakar, N. A novel method of measuring transformer oil interfacial tension using UV-Vis Spectroscopy. IEEE Electr. Insul. Mag. 2016, 32, 7–13. [Google Scholar]
- Singh, J.; Sood, R.Y.; Verma, P. The influence of service aging on transformer insulating oil parameters. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 421–426. [Google Scholar] [CrossRef]
- Dubai Electricity and Water Authority. Services Guides, 5th ed.; Dubai Electricity and Water Authority: Dubai, United Arab Emirates, 2016. [Google Scholar]
- Gray, I.A.R. Interfacial Tension. Available online: https://www.satcs.co.za/Interfacial_Tension-IARGray2007.pdf (accessed on 14 February 2020).
- Jahromi, A.; Piercy, R.; Cress, S.; Service, J.; Fan, W. An Approach to Power Transformer Asset Management Using Health Index. IEEE Electr. Insul. Mag. 2009, 25, 20–34. [Google Scholar] [CrossRef]
- Abu-Elanien, A.E.B.; Salama, M.M.A.; Ibrahim, M. Calculation of a Health Index for Oil-Immersed Transformers Rated Under 69 kV Using Fuzzy Logic. IEEE Trans. Power Deliv. 2012, 27, 2029–2036. [Google Scholar] [CrossRef]
- Abu-Elanien, A.E.B.; Salama, M.M.A.; Ibrahim, M. Determination of Transformer Health Condition Using Artificial Neural Networks. In Proceedings of the International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Istanbul, Turkey, 15–18 June 2011. [Google Scholar]
- Alqudsi, A.; El-Hag, A. Application of Machine Learning in Transformer Health Index Prediction. Energies 2019, 12, 2694. [Google Scholar] [CrossRef] [Green Version]
- Shaban, K.; El-Hag, A.; Matveev, A. A Cascade of Artificial Neural Networks to Predict Transformers Oil Parameters. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 516–523. [Google Scholar] [CrossRef]
- Ghunem, R.A.; Assaleh, K.; El-Hag, A.H. Artificial Neural Networks with Stepwise Regression for predicting transformer oil Furan Content. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 414–420. [Google Scholar] [CrossRef]
- Wahab, M.A.; Hamada, M.M.; Zeitoun, A.G.; Ismail, G. Novel modeling for the prediction of aged transformer oil characteristics. Electr. Power Syst. Res. 1999, 51, 61–70. [Google Scholar] [CrossRef]
- Saqlain, M.; Jargalsaikhan, B.; Lee, J.Y. A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing. IEEE Trans. Semicond. Manuf. 2019, 32, 171–182. [Google Scholar] [CrossRef]
- Mitchell, T.M. Generative and Discriminative Classifiers: Naive Bayes And Logistic Regression. In Machine Learning; McGraw Hill: New York, NY, USA, 2015; Available online: http://www.cs.cmu.edu/~guestrin/Class/10701-S05/slides/NBayesLogReg-2-05.pdf (accessed on 14 February 2020).
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Elsevier: Amsterdam, The Netherlans, 2002; ISBN 978-0-12-374856-0. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, N.; El-Hag, A.H.; Shabaan, K. Machine Learning-based Regression and Classification Models for Oil Assessment of Power Transformers. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020. [Google Scholar]
- Benhmed, K.; Shaban, K.B.; El-Hag, A. Cost Effective Assessment of Transformers Using Machine Learning Approach. In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies Conference—Asia (ISGT ASIA), Kuala Lumpur, Malaysia, 20–23 May 2014. [Google Scholar]
Really Is | Classified As | ||
Yes | No | ||
Yes | TF | FN | |
No | FP | TN |
Classical Machine Learning Algorithm | Accuracy | F1-Score (F1) | Precison (P) | Recall (R) |
---|---|---|---|---|
Naïve Bayes | 0.833 | 0.892 | 0.806 | 1.0 |
K-Nearest Neighbors | 0.777 | 0.826 | 0.904 | 0.760 |
Logistic Regression | 0.833 | 0.874 | 0.913 | 0.84 |
Support Vector Machine | 0.75 | 0.809 | 0.863 | 0.76 |
Ensembling Method | Accuracy | F1-Score (F1) | Precison (P) | Recall (R) |
---|---|---|---|---|
Bagging with Decision trees | 0.75 | 0.791 | 0.944 | 0.68 |
Random Forests | 0.833 | 0.870 | 0.952 | 0.80 |
AdaBoost | 0.861 | 0.875 | 0.952 | 0.81 |
Gradient Boosting | 0.857 | 0.873 | 0.934 | 0.82 |
Ensembling Method Blocks | Accuracy | F1-Score (F1) | Precison (P) | Recall (R) |
---|---|---|---|---|
Ensemble with classical ML models | 0.861 | 0.898 | 0.917 | 0.88 |
Ensemble with tree based models | 0.833 | 0.870 | 0.952 | 0.80 |
Two layer ensemble-based | 0.871 | 0.894 | 0.955 | 0.84 |
Feature Extraction/Selection Technique | Accuracy | F1-Score (F1) | Precison (P) | Recall (R) |
---|---|---|---|---|
PCA | 0.604 | 0.683 | 0.722 | 0.587 |
LDA | 0.75 | 0.809 | 0.863 | 0.76 |
Extra tree classifier | 0.833 | 0.875 | 0.913 | 0.84 |
Input Data Balancing Technique | Accuracy | F1-Score (F1) | Precison (P) | Recall (R) |
---|---|---|---|---|
Up Sampling | 0.805 | 0.844 | 0.95 | 0.76 |
Down Sampling | 0.72 | 0.773 | 0.894 | 0.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayyar Hassan, A.; El-Hag, A. Two-Layer Ensemble-Based Soft Voting Classifier for Transformer Oil Interfacial Tension Prediction. Energies 2020, 13, 1735. https://doi.org/10.3390/en13071735
Nayyar Hassan A, El-Hag A. Two-Layer Ensemble-Based Soft Voting Classifier for Transformer Oil Interfacial Tension Prediction. Energies. 2020; 13(7):1735. https://doi.org/10.3390/en13071735
Chicago/Turabian StyleNayyar Hassan, Ahmad, and Ayman El-Hag. 2020. "Two-Layer Ensemble-Based Soft Voting Classifier for Transformer Oil Interfacial Tension Prediction" Energies 13, no. 7: 1735. https://doi.org/10.3390/en13071735
APA StyleNayyar Hassan, A., & El-Hag, A. (2020). Two-Layer Ensemble-Based Soft Voting Classifier for Transformer Oil Interfacial Tension Prediction. Energies, 13(7), 1735. https://doi.org/10.3390/en13071735