Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Quantitative Analysis Results
3.2. The Results of Qualitative—Thematic Analysis
4. Discussion
- -
- Torrefaction process (Figure 10, Appendix A: Table A1)—The authors mainly discussed topics such as the impact of torrefaction on the hydrophobic properties of fuel, analysis of chemical, energy, physico-mechanical parameters of biochar, kinetics of the torrefaction process, influence of torrefaction process parameters on the energy properties of fuel, the impact of biogas on the efficiency of anaerobic digestion, the impact of raw material/mixtures of raw materials on the effectiveness of the torrefaction process, the effect of addition of biochar on the agglomeration process, mass and energy balance analysis in a continuous torrefaction installation, optimization of torrefaction process parameters, comparison of different technologies used in the torrefaction process, comparison of selected properties of biochar to coal. The process temperatures ranged from 200–400 °C. The materials used in torrefying were biomass of various origins. The main sources of biomass were: energy crops, wood from fast growing and exotic trees with varying degrees of processing, mixtures of torrefaction and biomass, agricultural waste, food industry waste, sewage sludge and microalgae.
- -
- HTC process (Figure 11, Appendix A: Table A2)—The authors mainly discussed topics such as the impact of HTC on improving fuel energy properties, the impact of raw material and parameters on process efficiency, modeling and optimization of the HTC process, the impact of HTC on reactivity and combustion kinetics. The process temperatures were in the range of 120–500 °C. The materials used in the hydrothermal carbonization process were biomass of various origins. The main sources of biomass were energy crops, wood with various degrees of processing, agricultural waste, food industry waste and sewage sludge.
- -
- Pyrolysis process (Figure 12, Appendix A: Table A3)—The authors mainly discussed topics such as the impact of process parameters (temperature, time) on the chemical, energy and physical-mechanical properties of fuels, kinetic analysis of the pyrolysis process, production and characterization of bio-oil and biochar, activated carbon from the pyrolysis, biochar characteristics from biomass carbonization, process optimization. Process temperatures were in the range: 200–650 °C. Materials used in torrefaction were biomass of various origin. The main sources of biomass were energy crops, wood with varying degrees of processing from fast-growing, fruit and exotic trees, agricultural waste, food industry waste and sewage sludge.
- -
- Gasification and co-combustion process (Figure 13, Appendix A: Table A4)—The authors mainly discussed topics such as analysis of the kinetic process, process efficiency (proliferation, gasification, combustion), analysis of the co-combustion process of mixtures, e.g., sewage sludge, coal with biomass (biochar, raw), the impact of material changes (torrefaction, mixing of various raw materials) on the chemical, energy and physico-mechanical properties of fuels, process optimization. Process temperatures were in the range: 350–1600 °C. Materials used in torrefaction were biomass of various origins. The main sources of biomass were energy crops, wood with varying degrees of processing from fast-growing, fruit and exotic trees, agricultural waste, food industry waste and sewage sludge. Blends of biomass with coal were also used.
5. Conclusions
- (1)
- Thermal biomass processing is a current research topic. A clear upward trend in the number of publications after 2010 can be noticed. Quantitative analysis also showed that the most important categories of WoS-CC in the selected topic are: Energy Fuels, Engineering Chemical, Agricultural Engineering, Biotechnology Applied Microbiology and Thermodynamics and Scopus Subject area: Energy, Chemical Engineering, Environmental Science, Engineering and Chemistry.
- (2)
- In 2015–2019, current research topics were: new torrefaction technologies (e.g., HTC), improvement of the physico-mechanical, chemical and energy properties of the fuel produced and the use of torrefied biomass in the processes of pyrolysis, gasification and co-combustion.
- (3)
- The raw materials used in all types of heat treatment processes were energy crops, wood from fast-growing and exotic trees, waste from the agri-food industry, waste from agricultural production, sewage sludge and microalgae.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Ref. | Year | Application | Process Temp. (°C) | Material |
---|---|---|---|---|
[70] | 2019 | - influence of the temperature of the torrefaction on the hydrophobic properties of waste biomass | 200, 220, 240, 260, 280, 300 | apple pomace, currant pomace, orange peel, walnut shell, pumpkin seeds |
[71] | 2019 | - fuel characteristics of biochars from torrefaction (a.k.a., roasting or low-temperature pyrolysis) of elephant dung (manure) | 200, 220, 240, 260, 280, 300 | elephant dung (manure) |
[72] | 2019 | - fuel characteristics of biochars from torrefied wood sawdust in normal and vacuum environments | 200, 220, 240, 260, 280, 300 | wood sawdust |
[73] | 2019 | - production of wood pellets mixed with torrefied rice straw | 220, 280 | wood pellets mixed with torrefied rice straw |
[74] | 2019 | - production of hybrid sewage sludge fuel for the effective management of sewage sludge | 250 | sewage sludge |
[75] | 2019 | - concept of spent mushrooms compost torrefaction-studying the process kinetics and the influence of temperature and duration on the calorific value | 200–300 | mushroom spent compost |
[76] | 2019 | - physical and chemical properties, true density, grindability and hydrophobicity of Thar coal along with raw and torrefied corn cob were investigated | 200, 225, 250, 275, 300 | corn cobs |
[77] | 2019 | - effects of automatic temperature control in torrefaction and the use of additives in pelletization | 250–320 | wood chips from Japanese cedar |
[78] | 2019 | - the effect of biochar addition on the biogas production kinetics from the anaerobic digestion of brewers’ spent grain | 200–300 | Brewer’s spent grain |
[79] | 2019 | - kinetics of torrefaction and determine the effects of process temperature on fuel properties of torrefied products (biochars) | 200–300 | Sewage sludge |
[80] | 2019 | - a fundamental research on synchronized torrefaction and pelleting of biomass | 200 | Corn stover, big bluestem |
[81] | 2019 | - the concept of carbonized refuse-derived fuel (CRDF) by refuse-derived fuel (RDF) torrefaction | 200–300 | RDF |
[82] | 2018 | - impact fo biomass diversity on torrefaction process | 200–300 | ash-wood, beech, poplar, willow, pine, pine forest residues, scot pine bark, miscanthus, reed canary grass, corn cob, grape seed cake, sunflower seed shells, wheat straw (French), wheat straw (Swedish) |
[83] | 2018 | - ultrasonic pelleting of torrefied biomass for bioenergy production | 200–300 | wheat straw |
[84] | 2018 | - energetic properties of torrefied and raw wheat straw, rapeseed, and willow | 220, 260, 300 | willow, rapeseed straw, wheat straw |
[85] | 2018 | - densification of torrefied refuse-derived fuel | 260 | municipal solid waste |
[86] | 2018 | - correlations to predict elemental compositions and heating value of torrefied biomass | 200–300 | birch, spruce, willlow, beech wood, lauan, wood mixture, black locust, pine, eucalyptus, poplar, leaucaena, sawdust, cedar wood, ash, aspen |
[87] | 2018 | - torrefaction of manually pressed and liquid nitrogen treated of microalgae for bioenergy utilisation | 200, 300 | microalgae |
[88] | 2018 | - production upgraded wood fuel by torrefaction | 200–300 | raw Japanese cedar chips |
[89] | 2018 | - properties of product biomass torrefaction based on three major components: hemicellulose, cellulose, lignin | 210, 240, 270, 300 | microcrystalline cellulose, beechwood xylan (representative of hemicellulose), alkali lignin |
[90] | 2018 | - properties of torrefied waste blends | 300 | paper fiber, plastic waste |
[91] | 2018 | - investigate the optimal temperature range for waste Wood and the effect torrefaction residence time had on torrefied biomass feedstock | 200–400 | wood waste |
[92] | 2018 | - analyses of torrefied biomass of tropical plantation species | 200, 225, 250 | cupressus lusitanica, dipteryx panamensis, gmelina arborea, tectona grandis and vochysia ferruginea |
[93] | 2018 | - concept an installation for sustainable thermal utilization of sewage sludge | 300 | sewage sludge |
[94] | 2018 | - the impact of residence time, temperature, and particle size on torrefied rice husk, using a bench-scale batch reactor | 240–295 | rice husk |
[95] | 2018 | - the effect of different parameters were investigated on two abundant sources of biomass in South Africa | 200–300 | marula seeds, blue gum wood |
[96] | 2018 | - Solid fuel characterization of torrefied coconut shells in an oxidative environment | 250–300 | Local coconut Shell chips |
[97] | 2018 | - effects of torrefaction on fuel properties of solid and condensate products | 200–300 | Cogon grass |
[98] | 2017 | - comparative study on the thermal behavior of raw and torrefied bark, stem wood, stump of Norway spruce. | 225, 275, 300 | Norway spruce (stem wood, bark, stump) |
[99] | 2017 | - physical and compression properties of pellets manufactured with the torrefied biomass of woody tropical species | 200, 225, 250 | cupressus lusitanica, dipterix panamensis, gmelina arborea, tectona grandis, vochysia ferruginea |
[100] | 2017 | - Preliminary production test of torrefied woody biomass fuel in a small scale plant. | 215 | Japanese cedar |
[101] | 2017 | - production of torrefied solid biofuel from pulp industry waste | 260, 280, 300, 320 | wood waste with pulp sludge |
[102] | 2017 | - fuel properties of torrefied sorghum biomass | 250, 275, 300 | sorghum, sweet sorghum bagasse |
[103] | 2017 | - energy densification of animal waste, corn cob and pine wood | 200, 250, 300 | Cow dung, corn cob, pine wood |
[104] | 2016 | - production of solid fuel from torrefied coconut leaves | 245–295 | coconut leaves |
[105] | 2016 | - comparing grindability of different torrefied biomass pellets in different laboratory mills | 260, 308 | forest residues, willow, pine, poplar, spruce, beech, straw |
[106] | 2016 | - compositional study of torrefied wood and herbaceous materials by chemical analysis and thermoanalytical methods | 200, 225, 250, 270, 300 | black locust wood, wheat and rape straw |
[107] | 2016 | - thermal desorption of wood railroad ties | 250, 275, 300, 325, 350 | creosote-treated wood |
[108] | 2016 | - detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant | 250–265 | spruce, ash, willow |
[109] | 2016 | - thermochemical and structural changes in Jatropha curcas seed cake during torrefaction for its use as coal co-firing feedstock | 200–300 | jatropha curcas |
[110] | 2016 | - biochemical conversion of torrefied norway spruce after pretreatment with acid or ionic liquid | 260–310 | Norway spruce |
[111] | 2015 | - identification and quantification of the condensable species released during torrefaction of lignocellulosic biomass | 250, 280, 300 | pine, ash wood, miscanthus, wheat straw |
[112] | 2015 | - evaluation of solvent for pressurized liquid extraction in torrefied woody biomass | 270, 300 | eucalyptus wood chips |
[113] | 2015 | - study on dry torrefaction of beech wood and miscanthus | 240, 260, 280, 300 | beech wood, miscnathus (sinensis) |
[114] | 2015 | - composition, utilization and economic assessment of torrefaction condensates | 200–300 | spruce, bamboo |
[115] | 2015 | - analysis on storage off-gas emissions from woody, herbaceous and torrefied biomass | 250 | Switchgrass (Panicum virgatum) |
[116] | 2015 | - qualitative and kinetic analysis of torrefaction of lignocellulosic biomass | 200, 275, 300 | miscanthus, wheat straw |
[117] | 2015 | - comparison of chemical composition and energy Property of Torrefied switchgrass and corn stover | 180–270 | switchgrass, corn stover |
[118] | 2014 | - the effects of torrefaction on the basic characteristics of corn stalks | 150–400 | corn stalks |
[119] | 2014 | - decomposition kinetics of torrefaction of some nigerial lignocellulosic biomass | 240, 270, 300 | albizia pedicellaris, tectona grandis, terminalia ivorensis, sorghum bicolour glume, sorghum bicolour stalk |
[120] | 2014 | - process simulation of co-firing torrefied biomas in a 220 Mwe coal-fired power plant | 200, 250, 270, 300 | palm kernel shell |
[121] | 2014 | - process evaluation for torrefaction of empty fruit bunch from palm oil mill | 300 | empty fruit bunch (EFB) from Malaysian palm oil mill |
[122] | 2014 | - investigates the product yields and the solid product characteristics from corncob waste torrefaction | 250, 300 | corncob waste |
[123] | 2013 | - analysis of efficiency simultaneous torrefaction and grinding of biomass. | 240–330 | Danish wheat straw, Danish spruce chips, Spanish pine chips |
[124] | 2013 | - the influence of the chemical properties (lignocellulose composition and alkali content) on the torrefaction behavior with respect to mass loss and grindability | 270, 300 | Danish wheat straw, miscanthus, spruce wood chips, beech wood chips, pine wood chips, spruce bark |
[125] | 2013 | - thermal decomposition kinetics of woods | 200, 225, 250, 275, 300 | Norwegian spruce, birch wood |
[126] | 2013 | - comparison of energy properties torrefaction by microwave and conventional slow pyrolysis | 200, 230, 250, 300, 350 | willow |
[127] | 2013 | - kinetic behavior of torrefied biomass in oxidative environment | 225, 275 | birch, spruce |
[128] | 2012 | - chemical compositional changes during torrefaction miscanthus and white oak sawdust | 220–350 | miscanthus, white oak |
[129] | 2012 | - impact biomass torrefaction under different oxygen concetration on composition of the solid by-product | 240. 280 | eucalyptus grandis |
[130] | 2012 | - the effects of particle size, different corn stover components, and gas residence time on torrefaction of corn stover | 250, 280 | corn stover (Zea mays) |
[131] | 2012 | - effect of torrefaction on water vapor adsorption properties and resistance to microbial degradation of corn stover | 200, 250, 300 | corn stover |
Ref. | Year | Application | Process Temp. (°C) | Material |
---|---|---|---|---|
[132] | 2019 | - improvement of corn stover fuel properties via hydrothermal carbonization | 120–280 | corn stover |
[39] | 2018 | - hydrothermal carbonization of peat moss and herbaceous biomass (miscanthus) | 240 | peat moss; miscanthus |
[133] | 2018 | - hydrothermal carbonization of biosolids from waste water treatment plant | 180, 200, 220 | sewage sludge |
[134] | 2018 | - hydrothermal carbonization of fruit wastes | 190, 225, 260 | rotten apple, apple chip pomace, apple juice pomace, grape pomace |
[135] | 2018 | - the impact of hydrothermal carbonisation on the char reactivity of biomass | 200, 225 | wood, olive cake |
[136] | 2018 | - impact feedstock, reaction conditions and post-treatment on properties of hydrochar | 180, 220, 250 | wheat straw, beech wood |
[137] | 2017 | - evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization | 250, 300, 330–500 | the pine kraft lignin |
[138] | 2017 | - hydrothermal carbonization of loblolly pine using a continuous, reactive twin-screw extruder | 200, 215, 235, 255, 260, 275, 290, 295 | loblolly pine, slash pine |
[139] | 2017 | - process design, modeling, energy efficiency and cost analysis hydrothermal carbonization of waste biomass | 180, 220, 250 | off-specification compost, grape marc |
[140] | 2014 | - effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions | 175, 200, 225 | Norway spruce, birch |
Ref. | Year | Application | Process Temp. (°C) | Material |
---|---|---|---|---|
[141] | 2019 | - effects of pyrolysis temperature and retention time on fuel characteristics of food waste feedstuff and compost for co-firing in coal power plants | 300–500 | food waste, compost, feed |
[142] | 2019 | - combined organic acid leaching and torrefaction as pine wood pretreatment before fast pyrolysis | 530 | pine wood |
[143] | 2018 | - expedient prediction of the fuel properties of carbonized woody biomass based on hue angle | 300–410 | rubber tree, softwood bark, softwood lumber waste |
[144] | 2018 | - energy and exergy analyses of sewage sludge thermochemical treatment | 250, 275, 480, 530 | sewage sludge |
[145] | 2018 | - impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties and microstructure | 220, 260, 300, 350, 450, 550 | cherry wood |
[146] | 2017 | - compared fast pyrolysis experiments of raw and torreried woody biomass feedstocks. | 250–300, 500 | ash, spruce, mixed waste wood |
[147] | 2017 | - staged thermal fractionation for segregation of lignin and cellulose pyrolysis products | 250. 275, 300–400, 500–600 | red oak |
[148] | 2017 | - thermal decomposition kinetics of wood and bark and their torrefied products | 225–450 | Norway spruce |
[149] | 2017 | - combined heat and power from the intermediate pyrolysis of biomass materials | 450–550 | wood feedstock—pine sawdust or ground pine chips |
[150] | 2017 | - evolution of chars during slow pyrolysis of citrus waste | 200–650 | citrus waste |
[151] | 2016 | - the effect of torrefaction temperature and time on pyrolysis of centimeter-scale pine wood particles | 225, 250, 275, 300, 520 | pine wood cuboid |
[152] | 2016 | - mild hydrothermmal conditioning prior to torrefaction and slow pyrolysis of low-value biomass | 300, 600 | willow, rye grass |
[153] | 2016 | - thermal desorption of creosote remaining in used railroad ties | 200, 250, 280, 300, 450 | red oak, quercus rubra |
[154] | 2016 | - Effect of torrefaction temperature on lignin macromolecule and product distribution from catalytic pyrolysis | 500 | The southern pine, switchgrass |
[155] | 2015 | - unified kinetic model for torrefaction-pyrolysis | 260, 280, 300, 315, 330, 375, 400, 425 | aspen wood |
[156] | 2015 | - production and characterization of bio-oil and biochar from the pyrolysis of fesidual bacterial biomass from a polyhydroxyalkanoate production process | 550 | residual bacterial biomass |
[157] | 2014 | - characterization of biochar from switchgrass carbonization | 300, 350, 400 | switchgrass |
[158] | 2013 | - a comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass | 350–750 | lumber, debarked logs, bark, foliage, douglas-fir, lodgepole pine |
[159] | 2009 | - kinetic study on thermal decomposition of woods in oxidative environment | 220–590 | aspens, birch, oak, pine |
Ref. | Year | Application | Process Temp. (°C) | Material |
---|---|---|---|---|
[160] | 2019 | - combustion improvements of upgraded biomass by washing and torrefaction | 1400–1600 | road side grass, miscanthus, wheat straw, spruce bark |
[161] | 2019 | - thermal analysis of olive tree pruning and the by-products obtained by its gasification and pyrolysis | 550, 900 | olive tree pruning |
[162] | 2019 | - theoretical and experimental analysis on co-gasification of sewage sludge with energetic crops | 950 | sewage sludge, virginia mallow |
[163] | 2019 | - torrefaction as a valorization method used prior to the gasification of sewage sludge | 350–900 | sewage sludge |
[164] | 2019 | - Influence of microwave pre-treated Palm Kernel Shell and Mukah Balingian coal on co-gasification | 50.2–470.4 | palm kernel shell |
[165] | 2018 | - high temperature gasification of high heating-rate chars using a flat-flame reactor. | 1300 | Norway spruce |
[166] | 2018 | - analyzed the possibility of co-firing a series of avocado biomass samples carbonized with coal. | 400, 500, 600 | avocado pit |
[167] | 2018 | - torrefaction of healthy and beetle kill pine and co-combustion with sub-bituminous coal | 500 | healthy pine, beetle kill pine |
[168] | 2018 | - coupled effect of torrefaction and blending on chemical and energy properties for combustion | 900 | napier grass, rice straw, cassava stalks, corn cob |
[169] | 2018 | - co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide | 833, 900, 975 | pine biochar, oak biochar, coal, pine biochar-coal blend, oak biochar-coal blend |
[170] | 2017 | - effect of torrefaction on the process performance of gasification of hardwood and softwood | 850 | spruce, ash |
[171] | 2017 | - CFB gasification of commercial torrefied wood pellets | 800–850 | wood, |
[172] | 2017 | - Organic carbon emissions from the co-firing of coal and Wood in a fixe Bed combustor | 400 | pine wood, pine sawdust |
[173] | 2017 | - optimization of a bubbling fluidized bed plant for low-temperature gasification of biomass | 900 | pine, chestnut, shell, olive stone, grape, olive pomaces, cocoa shell |
[174] | 2017 | - The effect of torrefaction on syngas quality metrics from fluidized bed gasification of SRC willow | 900 | willow |
[175] | 2016 | - characterization and the effect of lignocellulosic biomass value addition on gasification efficiency | 900 | sugarcane bagasse |
[176] | 2016 | - torrefied pine as a gasification fuel using a bubbling fluidized bed gasifier | 790, 935, 1000 | pine |
[177] | 2015 | - the commbustion characteristics of high-heating-rate chars from untreated and torrefied biomass fuels | 1100 | willow, eucalyptus |
[178] | 2015 | - characterizes the oxidation properties biomass char and compare with that of raw biomass char | 900, 1200 | palm kernel shell |
[179] | 2015 | - design, optimization and energetic efficiency of producing hydrogen-rich gas from biomass steam gasification | 700 | oil palm |
[180] | 2014 | - gasification of torrefied wood: a kinetic study | 750 | birch, spruce |
[181] | 2014 | - lab-scale co-firing of virgin and torrefied bamboo as a fuel substitute in coal fired power plants | 1400–1600 | bamboo species guadua angustifolia kunth, willow |
[182] | 2014 | - gasification of torrefied Miscanthus x giganteus in an air-blown bubbling fluidized bed gasifier | 600, 700, 750, 800, 850 | miscanthus x giganteus |
[183] | 2014 | - high-temperature rapid devolatilization of biomasses with varying degrees of torrefaction | 500, 700, 900, 1200 | palm kernel shell |
[184] | 2013 | - flame characteristics of pulverized torrefied-biomass combusted with high-temperature air | 1150 | palm kernel shells |
Ref. | Year | Application |
---|---|---|
[185] | 2019 | - Boosting carbon efficiency of the biomass to liquid process with hydrogen from power |
[186] | 2019 | - Influence of structural modification on VOC emission kinetics from stored carbonized refuse-derived fuel |
[187] | 2019 | - Process simulation of an integrated biomass torrefaction and pelletization (iBTP) |
[188] | 2019 | - Evaluating integration of biomass gasification process with solid oxide fuel cell and torrefaction process |
[189] | 2018 | - Improving carbon efficiency and profitability of the biomass to liquid process with hydrogen from renewable power |
[190] | 2018 | - Integrated systems analysis of electricity, heat, road transport, aviation, and chemicals: a case study for the Netherlands |
[191] | 2018 | - International vs. domestic bioenergy supply chains for co-firing plants: The role of pre-treatment technologies |
[192] | 2018 | - Use of biomass in integrated steelmaking—Status quo, future needs and comparison to other low-CO2 steel production technologies |
[193] | 2018 | - climate impact and energy efficiency of internationally traded non-torrefied and torrefied wood pellets from logging residues |
[194] | 2018 | - Coupling of an acoustic emissions system to a laboratory torrefaction reactor |
[195] | 2017 | - Technical assessment of the Biomass Integrated Gasification/Gas Turbine Combined Cycle incorporation in the sugarcane industry |
[196] | 2017 | - An LCA-based evaluation of biomass to transportation fuel production and utilization pathways in a large port’s context |
[197] | 2017 | - The role of bioenergy and biochemicals in CO2 mitigation through the energy system—a scenario analysis for the Netherlands |
[198] | 2017 | - a whole-systems analysis of the value chain associated with cultivation, harvesting, transport and conversion in dedicated biomass power stations |
[199] | 2017 | - Economic impact of combined torrefaction and pelletization processes on forestry biomass supply |
[200] | 2017 | - thermoliquefaction of palm oil fiber using supercritical ethanol. |
[201] | 2017 | - The climate contribution of biomass co-combustion in a coal-fired power plant |
[202] | 2017 | - the influence of pre-treatment of biomass on products distribution and characteristics of torrefaction products |
[203] | 2016 | - Influence of mill type on densified biomass comminution. |
[204] | 2016 | - Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing |
[205] | 2016 | - An energy analysis comparing biomass torrefaction in depots to wind with natural gas combustion for electricity generation |
[206] | 2016 | - Processing and sorting forest residues: Cost, productivity and managerial impacts |
[207] | 2016 | - Fast hydrothermal liquefaction for production of chemicals and biofuels from wet biomass—The need to develop a plug-flow reactor |
[208] | 2016 | - Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project |
[209] | 2016 | - an assessment of the torrefaction of north american pine and life cycle greenhouse gase emission |
[210] | 2016 | - Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation |
[211] | 2016 | - optimization the minimum production cost for the production of woody biofuels |
[212] | 2016 | - Prediction of high-temperature rapid combustion behaviour of woody biomass particles |
[213] | 2016 | - Environmental and Energy Performance of the Biomass to Synthetic Natural Gas Supply Chain |
[214] | 2016 | - Modeling of biofuel pellets torrefaction in a realistic geometry |
[215] | 2015 | - regionalized techno-economic assessment and policy analysis for biomass molded fuel in China |
[216] | 2015 | - Investigation into the applicability of Bond Work Index (BWI) and Hardgrove Grindability Index (HGI) tests for several biomasses compared to Colombian La Loma coal |
[217] | 2015 | - Explosion characteristics of pulverised torrefied and raw Norway spruce (Picea abies) and Southern pine (Pinus palustris) in comparison to bituminous coal |
[218] | 2015 | - high moisture corn stover pelleting in a flat die pellet mill fitted—physical properties and specific energy consumption |
[219] | 2015 | - comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction |
[220] | 2011 | - to achieve a first understanding of the possibility to combine torrefaction and hydrolysis for lignocellulosic bioethanol processes, and to evaluate it in terms of sugar and ethanol yields |
References
- Ioannou, K.; Tsantopoulos, G.; Arabatzis, G.; Andreopoulou, Z.; Zafeiriou, E. A spatial decision support system framework for the evaluation of biomass energy production locations: Case study in the regional unit of drama, Greece. Sustainability 2018, 10, 531. [Google Scholar] [CrossRef] [Green Version]
- Brunerová, A.; Roubík, H.; Brožek, M. Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel. Energies 2018, 11, 2186. [Google Scholar] [CrossRef] [Green Version]
- Kozina, T.; Ovcharuk, O.; Trach, I.; Levytska, V.; Ovcharuk, O.; Hutsol, T.; Mudryk, K.; Jewiarz, M.; Wrobel, M.; Dziedzic, K. Spread Mustard and Prospects for Biofuels. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 791–799. [Google Scholar]
- Santos-Clotas, E.; Cabrera-Codony, A.; Castillo, A.; Martín, M.J.; Poch, M.; Monclús, H. Environmental decision support system for biogas upgrading to feasible fuel. Energies 2019, 12, 1546. [Google Scholar] [CrossRef] [Green Version]
- Mudryk, K.; Wróbel, M.; Jewiarz, M.; Pelczar, G.; Dyjakon, A. Innovative Production Technology of High Quality Pellets for Power Plants. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 701–712. [Google Scholar]
- Wójcik, A.; Krupa, K.; Łapczyńska-Kondon, B.; Francik, S.; Kwaśniewski, D. The Dynamic Model of Willow Biomass Production. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 631–638. [Google Scholar]
- Gentil, L.V.; Vale, A.T. Energy balance and efficiency in wood sawdust briquettes production. Floresta 2015, 45, 281–288. [Google Scholar]
- Brunerová, A.; Roubík, H.; Brožek, M.; Herák, D.; Šleger, V.; Mazancová, J. Potential of tropical fruit waste biomass for production of bio-briquette fuel: Using Indonesia as an example. Energies 2017, 10, 2119. [Google Scholar] [CrossRef] [Green Version]
- Adžić, M.M.; Savić, R.A. Cooling of wood briquettes. Therm. Sci. 2013, 17, 833–838. [Google Scholar] [CrossRef]
- Chaloupková, V.; Ivanova, T.; Ekrt, O.; Kabutey, A.; Herák, D. Determination of particle size and distribution through image-based macroscopic analysis of the structure of biomass briquettes. Energies 2018, 11, 331. [Google Scholar] [CrossRef] [Green Version]
- Moiceanu, G.; Paraschiv, G.; Voicu, G.; Dinca, M.; Negoita, O.; Chitoiu, M.; Tudor, P. Energy consumption at size reduction of lignocellulose biomass for bioenergy. Sustainability 2019, 11, 2477. [Google Scholar] [CrossRef] [Green Version]
- Knapczyk, A.; Francik, S.; Fraczek, J.; Slipek, Z. Analysis of research trends in production of solid biofuels. In Proceedings of the Engineering for Rural Development, Latvia University of Life Sciences and Technologies, Jelgava, Latvia, 22–24 May 2019; Volume 18, pp. 1503–1509. [Google Scholar]
- Ivanyshyn, V.; Nedilska, U.; Khomina, V.; Klymyshena, R.; Hryhoriev, V.; Ovcharuk, O.; Hutsol, T.; Mudryk, K.; Jewiarz, M.; Wróbel, M.; et al. Prospects of Growing Miscanthus as Alternative Source of Biofuel. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 801–812. [Google Scholar]
- Brunerová, A.; Müller, M.; Šleger, V.; Ambarita, H.; Valášek, P. Bio-Pellet Fuel from Oil Palm Empty Fruit Bunches (EFB): Using European Standards for Quality Testing. Sustainability 2018, 10, 4443. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhai, Y.; Zhu, Y.; Gan, X.; Zheng, L.; Peng, C.; Wang, B.; Li, C.; Zeng, G. Evaluation of the clean characteristics and combustion behavior of hydrochar derived from food waste towards solid biofuel production. Bioresour. Technol. 2018, 266, 275–283. [Google Scholar] [CrossRef]
- Perea-Moreno, M.-A.; Manzano-Agugliaro, F.; Hernandez-Escobedo, Q.; Perea-Moreno, A.-J. Peanut Shell for Energy: Properties and Its Potential to Respect the Environment. Sustainability 2018, 10, 3254. [Google Scholar] [CrossRef] [Green Version]
- Wrobel, M.; Fraczek, J.; Francik, S.; Slipek, Z.; Krzysztof, M. Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. In Proceedings of the International Scientific Conference: Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013. [Google Scholar]
- Mudryk, K.; Fraczek, J.; Slipek, Z.; Francik, S.; Wrobel, M. Chosen physico-mechanical properties of cutleaf coneflower (Rudbeckia laciniata L.) shoots. In Proceedings of the International Scientific Conference: Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013. [Google Scholar]
- Gebresenbet, G.; Bosona, T.; Olsson, S.-O.; Garcia, D. Smart System for the Optimization of Logistics Performance of the Pruning Biomass Value Chain. Appl. Sci. 2018, 8, 1162. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M.; Greco, R.; Costa, C.; Cavalli, R. Changes of particle size classification of wood chips according to the new standard rules for domestic use. Eur. J. Wood Wood Prod. 2018, 76, 805–807. [Google Scholar] [CrossRef]
- Chin, K.L.; H’ng, P.S.; Maminski, M.; Go, W.Z.; Lee, C.L.; Raja-Nazrin, R.A.; Khoo, P.S.; Ashikin, S.N.; Halimatun, I. Additional additives to reduce ash related operation problems of solid biofuel from oil palm biomass upon combustion. Ind. Crops Prod. 2018, 123, 285–295. [Google Scholar] [CrossRef]
- Musule, R.; Acuña, E.; Romero-Hermoso Osorio, L.S.; Domínguez, Z.; Bárcenas-Pazos, G.M.; Pineda-López, M.R.; Teixeira Mendonça, R.; González, M.E.; Sánchez-Velásquez, L.R. Growing up at Different Altitudes: Changes in Energy Content of the Abies religiosa Wood. BioEnergy Res. 2018, 11, 209–218. [Google Scholar] [CrossRef]
- Vasiliki, K.; Charalampos, L.; Panagiotis, B. Utilization of wood and bark of fast-growing hardwood species in energy production. J. For. Sci. 2018, 64, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Vitázek, I.; Majdan, R.; Mojžiš, M. Volatile combustible release in biofuels. Agron. Res. 2018, 16, 2229–2241. [Google Scholar]
- Karbowniczak, A.; Hamerska, J.; Wróbel, M.; Jewiarz, M.; Nęcka, K. Evaluation of Selected Species of Woody Plants in Terms of Suitability for Energy Production. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 735–742. [Google Scholar]
- Niemczyk, M.; Kaliszewski, A.; Jewiarz, M.; Wróbel, M.; Mudryk, K. Productivity and biomass characteristics of selected poplar (Populus spp.) cultivars under the climatic conditions of northern Poland. Biomass Bioenergy 2018, 111, 46–51. [Google Scholar] [CrossRef]
- Wróbel, M.; Mudryk, K.; Jewiarz, M.; Głowacki, S.; Tulej, W. Characterization of Selected Plant Species in Terms of Energetic Use; Springer: Cham, Switzerland, 2018; pp. 671–681. [Google Scholar]
- Brunerová, A.; Brožek, M.; Šleger, V.; Nováková, A. Energy Balance of Briquette Production from Various Waste Biomass. Sci. Agric. Bohem. 2018, 49, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Zhu, M.; Sun, G.; Qiu, L.; Guo, X.; Meda, V.; Sun, R. Codensification of Eucommia ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study. Appl. Energy 2018, 223, 347–357. [Google Scholar] [CrossRef]
- Matúš, M.; Križan, P.; Šooš, Ľ.; Beniak, J. The effect of papermaking sludge as an additive to biomass pellets on the final quality of the fuel. Fuel 2018, 219, 196–204. [Google Scholar] [CrossRef]
- Styks, J.; Wróbel, M.; Frączek, J.; Knapczyk, A. Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets. Energies 2020, 13, 1859. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, M.; Jewiarz, M.; Mudryk, K.; Knapczyk, A. Influence of Raw Material Drying Temperature on the Scots Pine (Pinus sylvestris L.) Biomass Agglomeration Process—A Preliminary Study. Energies 2020, 13, 1809. [Google Scholar] [CrossRef] [Green Version]
- Grottola, C.M.; Giudicianni, P.; Michel, J.B.; Ragucci, R. Torrefaction of Woody Waste for Use as Biofuel. Energy Fuels 2018, 32, 10266–10271. [Google Scholar]
- Ramos-Carmona, S.; Martínez, J.D.; Pérez, J.F. Torrefaction of patula pine under air conditions: A chemical and structural characterization. Ind. Crops Prod. 2018, 118, 302–310. [Google Scholar] [CrossRef]
- Viotto, R.S.; Maia, A.A.D.; Yamaji, F.M.; de Morais, L.C. Thermogravimetric investigation of spent shiitake substrate to solid biofuel. Can. J. Chem. Eng. 2018, 96, 845–854. [Google Scholar] [CrossRef]
- Gultekin, S.Y.; Olgun, H.; Celiktas, M.S. Comparison of solid biofuels produced from olive pomace with two different conversion methods: Torrefaction and hydrothermal carbonization. Int. J. Eng. Technol. 2018, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.P.; Caraschi, J.C.; Ventorim, G.; Vieira, F.H.A.; Protásio, T.D.P. Comparative Energy Properties of Torrefied Pellets in Relation to Pine and Elephant Grass Pellets. BioResources 2018, 13, 2898. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, M.; Hamerska, J.; Jewiarz, M.; Mudryk, K.; Niemczyk, M. Influence of Parameters of the Torrefaction Process on the Selected Parameters of Torrefied Woody Biomass; Springer: Cham, Switzerland, 2018; pp. 691–700. [Google Scholar]
- Roy, P.; Dutta, A.; Gallant, J. Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy. Energies 2018, 11, 2794. [Google Scholar] [CrossRef] [Green Version]
- Volpe, M.; Goldfarb, J.L.; Fiori, L. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. Bioresour. Technol. 2018, 247, 310–318. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Klimkowicz-Pawlas, A.; Chmiel, M.J.; Dziedzic, K.; Taras, H. Assessment of soil quality after biochar application based on enzymatic activity and microbial composition. Int. Agrophys. 2019, 33, 331–336. [Google Scholar] [CrossRef]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa-Hersztek, M.; Tabor, S.; Stanek-Tarkowska, J. Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical properties. Soil Tillage Res. 2020, 197, 104493. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. J. Mater. Cycles Waste Manag. 2019, 21, 786–800. [Google Scholar] [CrossRef]
- Jewiarz, M.; Mudryk, K.; Wróbel, M.; Fraczek, J.; Dziedzic, K. Parameters affecting RDF-based pellet quality. Energies 2020, 13, 910. [Google Scholar] [CrossRef] [Green Version]
- Łapczyńska-Kordon, B.; Krzysztofik, B.; Sobol, Z. Quality of dried cauliflower according to the methods and drying parameters. BIO Web Conf. 2018, 10, 02017. [Google Scholar] [CrossRef] [Green Version]
- Francik, S.; Łapczyńska-Kordon, B.; Francik, R.; Wójcik, A. Modeling and Simulation of Biomass Drying Using Artificial Neural Networks. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 571–581. [Google Scholar]
- Gent, S.; Twedt, M.; Gerometta, C.; Almberg, E. Fundamental Theories of Torrefaction by Thermochemical Conversion. In Theoretical and Applied Aspects of Biomass Torrefaction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 41–75. [Google Scholar]
- Barik, D. Energy extraction from toxic waste originating from food processing industries. In Energy from Toxic Organic Waste for Heat and Power Generation; Elsevier: Tamil Nadu, India, 2018; pp. 17–42. ISBN 9780081025284. [Google Scholar]
- Tursunov, O.; Dobrowolski, J.; Zubek, K.; Czerski, G.; Grzywacz, P.; Dubert, F.; Lapczynska-Kordon, B.; Klima, K.; Handke, B. Kinetic study of the pyrolysis and gasification of Rosa multiflora and Miscanthus giganteus biomasses via thermogravimetric analysis. Therm. Sci. 2018, 22, 3057–3071. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical Bibliography or Bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Badassa, B.B.; Sun, B.; Qiao, L. Sustainable Transport Infrastructure and Economic Returns: A Bibliometric and Visualization Analysis. Sustainability 2020, 12, 2033. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Jiang, Y.; Zheng, S. Research on Ecological Infrastructure from 1990 to 2018: A Bibliometric Analysis. Sustainability 2020, 12, 2304. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, J.L.; Segura-Robles, A.; Moreno-Guerrero, A.-J.; Parra-González, M.E. Machine Learning and Big Data in the Impact Literature. A Bibliometric Review with Scientific Mapping in Web of Science. Symmetry 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Knapczyk, A.; Francik, S.; Pedryc, N.; Hebda, T. Bibliometric analysis of research trends in engineering for rural development. In Proceedings of the 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018. [Google Scholar]
- Francik, S.; Ślipek, Z.; Frączek, J.; Knapczyk, A. Present Trends in Research on Application of Artificial Neural Networks in Agricultural Engineering. Agric. Eng. 2016, 20, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Zyoud, S.H.; Waring, W.S.; Sweileh, W.M.; Al-Jabi, S.W. Global Research Trends in Lithium Toxicity from 1913 to 2015: A Bibliometric Analysis. Basic Clin. Pharmacol. Toxicol. 2017, 121, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Gizzi, F.T. Worldwide trends in research on the San Andreas Fault System. Arab. J. Geosci. 2015, 8, 10893–10909. [Google Scholar] [CrossRef]
- Knapczyk, A.; Francik, S.; Wrobel, M.; Mudryk, K. Comparision of selected agriculture universities in Europe on basis of analysis of academic output. In Proceedings of the 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018. [Google Scholar]
- Knapczyk, A.; Francik, S.; Wróbel, M.; Jewiarz, M.; Mudryk, K. Decision support systems for scheduling tasks in biosystems engineering. E3S Web Conf. 2019, 132, 01008. [Google Scholar] [CrossRef] [Green Version]
- Francik, S.; Knapczyk, A.; Wójcik, A.; Ślipek, Z. Optimisation Methods in Renewable Energy Sources Systems—Current Research Trends. In Renewable Energy Sources: Engineering, Technology, Innovation; Wróbel, M., Jewiarz, M., Szlęk, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 841–852. [Google Scholar]
- Hohn, E. Article on the theory of drying and torrefaction. Zeitschrift Des Vereines Dtsch. Ingenieure 1919, 63, 821–826. [Google Scholar]
- Bridgeman, T.G.; Jones, J.M.; Shield, I.; Williams, P.T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008, 87, 844–856. [Google Scholar] [CrossRef]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef] [Green Version]
- van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Chen, W.H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, B.J.; Huang, M.Y.; Chang, J.S. Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresour. Technol. 2015, 184, 314–327. [Google Scholar] [CrossRef]
- Sukiran, M.A.; Abnisa, F.; Wan Daud, W.M.A.; Abu Bakar, N.; Loh, S.K. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers. Manag. 2017, 149, 101–120. [Google Scholar] [CrossRef]
- Agbor, E.; Zhang, X.; Kumar, A. A review of biomass co-firing in North America. Renew. Sustain. Energy Rev. 2014, 40, 930–943. [Google Scholar] [CrossRef]
- Dyjakon, A.; Noszczyk, T.; Smędzik, M. The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass from Food Processing. Energies 2019, 12, 4609. [Google Scholar] [CrossRef] [Green Version]
- Stępień, P.; Świechowski, K.; Hnat, M.; Kugler, S.; Stegenta-Dąbrowska, S.; Koziel, J.A.; Manczarski, P.; Białowiec, A. Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel. Energies 2019, 12, 4344. [Google Scholar]
- Chih, Y.-K.; Chen, W.-H.; Ong, H.C.; Show, P.L. Product Characteristics of Torrefied Wood Sawdust in Normal and Vacuum Environments. Energies 2019, 12, 3844. [Google Scholar] [CrossRef] [Green Version]
- Kizuka, R.; Ishii, K.; Sato, M.; Fujiyama, A. Characteristics of wood pellets mixed with torrefied rice straw as a biomass fuel. Int. J. Energy Environ. Eng. 2019, 10, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Jin, M.-H.; Lee, Y.-J.; Song, G.-S.; Choi, J.W.; Lee, D.-W.; Choi, Y.-C.; Park, S.-J.; Song, K.H.; Kim, J.-G. Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects. Energies 2019, 12, 3072. [Google Scholar] [CrossRef] [Green Version]
- Syguła, E.; Koziel, J.A.; Białowiec, A. Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal. Energies 2019, 12, 3060. [Google Scholar]
- Kanwal, S.; Munir, S.; Chaudhry, N.; Sana, H. Physicochemical characterization of Thar coal and torrefied corn cob. Energy Explor. Exploit. 2019, 37, 1286–1305. [Google Scholar] [CrossRef]
- Yoshida, T.; Kubojima, Y.; Kamikawa, D.; Kiguchi, M.; Tanaka, K.; Miyago, M.; Masui, M.; Ohyabu, Y.; Kobayashi, A.; Igarashi, H. Production Test of Torrefied Woody Biomass Solid Fuel in an Original Small Scale Plant: (2) Effects of Automatic Temperature Control in Torrefaction and the Use of Additives in Pelletization. J. Japan Inst. Energy 2019, 98, 90–94. [Google Scholar] [CrossRef]
- Dudek, M.; Świechowski, K.; Manczarski, P.; Koziel, J.; Białowiec, A. The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain. Energies 2019, 12, 1518. [Google Scholar] [CrossRef] [Green Version]
- Pulka, J.; Manczarski, P.; Koziel, J.; Białowiec, A. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies 2019, 12, 565. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Sun, M.; Zhang, M.; Zhang, K.; Wang, D.; Lei, C. A fundamental research on synchronized torrefaction and pelleting of biomass. Renew. Energy 2019, 142, 668–676. [Google Scholar] [CrossRef]
- Stȩpień, P.; Serowik, M.; Koziel, J.A.; Białowiec, A. Waste to carbon: Estimating the energy demand for production of carbonized refuse-derived fuel. Sustainability 2019, 11, 5685. [Google Scholar] [CrossRef] [Green Version]
- González Martínez, M.; Dupont, C.; Thiéry, S.; Meyer, X.-M.; Gourdon, C. Impact of biomass diversity on torrefaction: Study of solid conversion and volatile species formation through an innovative TGA-GC/MS apparatus. Biomass Bioenergy 2018, 119, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Yang, Y.; Zhang, M.; Zhang, K.; Wang, D. Ultrasonic pelleting of torrefied lignocellulosic biomass for bioenergy production. Renew. Energy 2018, 129, 56–62. [Google Scholar] [CrossRef]
- Bajcar, M.; Zaguła, G.; Saletnik, B.; Tarapatskyy, M.; Puchalski, C. Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass. Energies 2018, 11, 2919. [Google Scholar] [CrossRef] [Green Version]
- Białowiec, A.; Micuda, M.; Koziel, J. Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel. Energies 2018, 11, 3233. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Haseli, Y.; Karadogan, E. Correlations to Predict Elemental Compositions and Heating Value of Torrefied Biomass. Energies 2018, 11, 2443. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Watson, I.A. Mild Pyrolysis of Manually Pressed and Liquid Nitrogen Treated De-Lipid Cake of Nannochloropsis Oculata for Bioenergy Utilisation. Energy Technol. 2018, 6, 1642–1648. [Google Scholar] [CrossRef]
- Yoshida, T.; Kubojima, Y.; Kamikawa, D.; Kiguchi, M.; Tanaka, K.; Miyago, M.; Masui, M.; Ohyabu, Y.; Kobayashi, A.; Igarashi, H. Production Test of Torrefied Woody Biomass Solid Fuel in an Original Small-scale Plant. J. Jpn. Inst. Energy 2018, 97, 231–235. [Google Scholar] [CrossRef]
- Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Xu, Z.; Zinchik, S.; Kolapkar, S.S.; Bar-Ziv, E.; Hansen, T.; Conn, D.; McDonald, A.G. Properties of Torrefied U.S. Waste Blends. Front. Energy Res. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Poudel, J.; Karki, S.; Oh, S. Valorization of Waste Wood as a Solid Fuel by Torrefaction. Energies 2018, 11, 1641. [Google Scholar] [CrossRef] [Green Version]
- Gaitán-Álvarez, J.; Moya, R.; Puente-Urbina, A.; Rodriguez-Zúñiga, A. Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times. Energies 2018, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Tic, W.; Guziałowska-Tic, J.; Pawlak-Kruczek, H.; Woźnikowski, E.; Zadorożny, A.; Niedźwiecki, Ł.; Wnukowski, M.; Krochmalny, K.; Czerep, M.; Ostrycharczyk, M.; et al. Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge. Energies 2018, 11, 748. [Google Scholar] [CrossRef] [Green Version]
- Banta, M.T.A.; De Leon, R.L. Parametric study of rice husk torrefaction for the development of sustainable solid fuel. Int. J. Smart Grid Clean Energy 2018, 7, 207–217. [Google Scholar] [CrossRef]
- Mamvura, T.A.; Pahla, G.; Muzenda, E. Torrefaction of waste biomass for application in energy production in South Africa. S. Afr. J. Chem. Eng. 2018, 25, 1–12. [Google Scholar] [CrossRef]
- Tanchuling, J.; De Leon, R. Solid fuel characterization of torrefied coconut shells in an oxidative environment. Int. J. Smart Grid Clean Energy 2018, 7, 145–151. [Google Scholar] [CrossRef]
- Palanca, A.G.; de Leon, R.L.; Jose, W.I. Torrefied cogon grass: Effects of torrefaction on fuel properties of solid and condensate products. Int. J. Smart Grid Clean Energy 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Barta-Rajnai, E.; Wang, L.; Sebestyén, Z.; Barta, Z.; Khalil, R.; Skreiberg, Ø.; Grønli, M.; Jakab, E.; Czégény, Z. Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce. Appl. Energy 2017, 204, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Gaitán-Alvarez, J.; Moya, R.; Puente-Urbina, A.; Rodriguez-Zuñiga, A. Physical and Compression Properties of Pellets Manufactured with the Biomass of Five Woody Tropical Species of Costa Rica Torrefied at Different Temperatures and Times. Energies 2017, 10, 1205. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Kubojima, Y.; Kamikawa, D.; Inoue, M.; Kiguchi, M.; Tanaka, K.; Murata, Y.; Masui, M.; Ohyabu, Y.; Tsuru, T.; et al. Preliminary Production Test of Torrefied Woody Biomass Fuel in a Small Scale Plant. J. Jpn. Inst. Energy 2017, 96, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Chang, C.-C.; Yuan, M.-H.; Chang, C.-Y.; Wu, C.-H.; Shie, J.-L.; Chen, Y.-H.; Chen, Y.-H.; Ho, C.; Chang, W.-R.; et al. Production of Torrefied Solid Bio-Fuel from Pulp Industry Waste. Energies 2017, 10, 910. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Singh, H.; Singh, B.; Mani, S. Torrefaction of sorghum biomass to improve fuel properties. Bioresour. Technol. 2017, 232, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Pahla, G.; Mamvura, T.A.; Ntuli, F.; Muzenda, E. Energy densification of animal waste lignocellulose biomass and raw biomass. S. Afr. J. Chem. Eng. 2017, 24, 168–175. [Google Scholar] [CrossRef]
- Pestaño, L.D.B.; Jose, W.I. Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass. Int. J. Renew. Energy Dev. 2016, 5, 187. [Google Scholar] [CrossRef] [Green Version]
- Khalsa, J.; Leistner, D.; Weller, N.; Darvell, L.; Dooley, B. Torrefied Biomass Pellets—Comparing Grindability in Different Laboratory Mills. Energies 2016, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Barta-Rajnai, E.; Jakab, E.; Sebestyén, Z.; May, Z.; Barta, Z.; Wang, L.; Skreiberg, Ø.; Grønli, M.; Bozi, J.; Czégény, Z. Comprehensive Compositional Study of Torrefied Wood and Herbaceous Materials by Chemical Analysis and Thermoanalytical Methods. Energy Fuels 2016, 30, 8019–8030. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Lloyd, J.; Kim, J.-W.; Abdoulmoumine, N.; Labbé, N. Recovery of creosote from used railroad ties by thermal desorption. Energy 2016, 111, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Nanou, P.; Carbo, M.C.; Kiel, J.H.A. Detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant. Biomass Bioenergy 2016, 89, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Madanayake, B.N.; Gan, S.; Eastwick, C.; Ng, H.K. Thermochemical and structural changes in Jatropha curcas seed cake during torrefaction for its use as coal co-firing feedstock. Energy 2016, 100, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Normark, M.; Pommer, L.; Gräsvik, J.; Hedenström, M.; Gorzsás, A.; Winestrand, S.; Jönsson, L.J. Biochemical Conversion of Torrefied Norway Spruce After Pretreatment with Acid or Ionic Liquid. BioEnergy Res. 2016, 9, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Lê Thành, K.; Commandré, J.-M.; Valette, J.; Volle, G.; Meyer, M. Detailed identification and quantification of the condensable species released during torrefaction of lignocellulosic biomasses. Fuel Process. Technol. 2015, 139, 226–235. [Google Scholar] [CrossRef]
- Gao, Q.; Haglund, P.; Pommer, L.; Jansson, S. Evaluation of solvent for pressurized liquid extraction of PCDD, PCDF, PCN, PCBz, PCPh and PAH in torrefied woody biomass. Fuel 2015, 154, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Gucho, E.; Shahzad, K.; Bramer, E.; Akhtar, N.; Brem, G. Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus. Energies 2015, 8, 3903–3923. [Google Scholar] [CrossRef] [Green Version]
- Fagernäs, L.; Kuoppala, E.; Arpiainen, V. Composition, Utilization and Economic Assessment of Torrefaction Condensates. Energy Fuels 2015, 29, 3134–3142. [Google Scholar] [CrossRef]
- Tumuluru, J.; Lim, C.; Bi, X.; Kuang, X.; Melin, S.; Yazdanpanah, F.; Sokhansanj, S. Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass. Energies 2015, 8, 1745–1759. [Google Scholar] [CrossRef] [Green Version]
- Acharya, B.; Pradhan, R.R.; Dutta, A. Qualitative and kinetic analysis of torrefaction of lignocellulosic biomass using DSC-TGA-FTIR. AIMS Energy 2015, 3, 760–773. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Comparison of Chemical Composition and Energy Property of Torrefied Switchgrass and Corn Stover. Front. Energy Res. 2015, 3. [Google Scholar] [CrossRef]
- Poudel, J.; Oh, S. Effect of Torrefaction on the Properties of Corn Stalk to Enhance Solid Fuel Qualities. Energies 2014, 7, 5586–5600. [Google Scholar] [CrossRef] [Green Version]
- Lasode, O.A.; Balogun, A.O.; McDonald, A.G. Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. J. Anal. Appl. Pyrolysis 2014, 109, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, X.; Pawlak-Kruczek, H.; Yang, W.; Kruczek, P.; Blasiak, W. Process simulation of co-firing torrefied biomass in a 220MWe coal-fired power plant. Energy Convers. Manag. 2014, 84, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Kaminaka, K.; Matsumura, Y.; Noaman Omar, W.; Uemura, Y. Process Evaluation for Torrefaction of Empty Fruit Bunch in Malaysia. J. Jpn. Pet. Inst. 2014, 57, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.-J.; Chen, W.-H. Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres. Energies 2013, 7, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.B.; Hansen, B.B.; Jensen, P.A.; Dam-Johansen, K. Efficient Fuel Pretreatment: Simultaneous Torrefaction and Grinding of Biomass. Energy Fuels 2013, 27, 7531–7540. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.B.; Hansen, B.B.; Jensen, P.A.; Dam-Johansen, K. Influence of Biomass Chemical Properties on Torrefaction Characteristics. Energy Fuels 2013, 27, 7541–7548. [Google Scholar] [CrossRef] [Green Version]
- Tapasvi, D.; Khalil, R.; Várhegyi, G.; Tran, K.-Q.; Grønli, M.; Skreiberg, Ø. Thermal Decomposition Kinetics of Woods with an Emphasis on Torrefaction. Energy Fuels 2013, 27, 6134–6145. [Google Scholar] [CrossRef] [Green Version]
- Gronnow, M.J.; Budarin, V.L.; Mašek, O.; Crombie, K.N.; Brownsort, P.A.; Shuttleworth, P.S.; Hurst, P.R.; Clark, J.H. Torrefaction/biochar production by microwave and conventional slow pyrolysis—Comparison of energy properties. GCB Bioenergy 2013, 5, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Tapasvi, D.; Khalil, R.; Várhegyi, G.; Skreiberg, Ø.; Tran, K.-Q.; Grønli, M. Kinetic Behavior of Torrefied Biomass in an Oxidative Environment. Energy Fuels 2013, 27, 1050–1060. [Google Scholar] [CrossRef] [Green Version]
- Tumuluru, J.; Boardman, R.; Wright, C.; Hess, J. Some Chemical Compositional Changes in Miscanthus and White Oak Sawdust Samples during Torrefaction. Energies 2012, 5, 3928–3947. [Google Scholar] [CrossRef] [Green Version]
- Rousset, P.; Macedo, L.; Commandré, J.-M.; Moreira, A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J. Anal. Appl. Pyrolysis 2012, 96, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Medic, D.; Darr, M.; Shah, A.; Rahn, S. The Effects of Particle Size, Different Corn Stover Components, and Gas Residence Time on Torrefaction of Corn Stover. Energies 2012, 5, 1199–1214. [Google Scholar] [CrossRef] [Green Version]
- Medic, D.; Darr, M.; Shah, A.; Rahn, S. Effect of Torrefaction on Water Vapor Adsorption Properties and Resistance to Microbial Degradation of Corn Stover. Energy Fuels 2012, 26, 2386–2393. [Google Scholar] [CrossRef]
- Tu, R.; Sun, Y.; Wu, Y.; Fan, X.; Wang, J.; Cheng, S.; Jia, Z.; Jiang, E.; Xu, X. Improvement of corn stover fuel properties via hydrothermal carbonization combined with surfactant. Biotechnol. Biofuels 2019, 12, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, D.; Shrestha, A.; Dahal, R.; Acharya, B.; Basu, P.; MacEwen, R. Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant. Energies 2018, 11, 2286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Heidari, M.; Regmi, B.; Salaudeen, S.; Arku, P.; Thimmannagari, M.; Dutta, A. Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies 2018, 11, 2022. [Google Scholar] [CrossRef] [Green Version]
- Stirling, R.J.; Snape, C.E.; Meredith, W. The impact of hydrothermal carbonisation on the char reactivity of biomass. Fuel Process. Technol. 2018, 177, 152–158. [Google Scholar] [CrossRef]
- Kruse, A.; Zevaco, T. Properties of Hydrochar as Function of Feedstock, Reaction Conditions and Post-Treatment. Energies 2018, 11, 674. [Google Scholar] [CrossRef] [Green Version]
- Castro-Díaz, M.; Uguna, C.N.; Florentino, L.; Díaz-Faes, E.; Stevens, L.A.; Barriocanal, C.; Snape, C.E. Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization. J. Anal. Appl. Pyrolysis 2017, 124, 742–751. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Felix, L.; Farthing, W. Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin-screw extruder. Energy Convers. Manag. 2017, 134, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Lucian, M.; Fiori, L. Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis. Energies 2017, 10, 211. [Google Scholar] [CrossRef] [Green Version]
- Bach, Q.-V.; Tran, K.-Q.; Skreiberg, Ø.; Khalil, R.A.; Phan, A.N. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions. Fuel 2014, 137, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-E.; Shin, D.-C.; Jeong, Y.; Kim, I.-T.; Yoo, Y.-S. Effects of Pyrolysis Temperature and Retention Time on Fuel Characteristics of Food Waste Feedstuff and Compost for Co-Firing in Coal Power Plants. Energies 2019, 12, 4538. [Google Scholar] [CrossRef] [Green Version]
- Westerhof, R.; Oudenhoven, S.; Hu, X.; van, S.; Kersten, S. Combined organic acid leaching and torrefaction as pine wood pretreatment before fast pyrolysis. Therm. Sci. 2019, 23, 1403–1411. [Google Scholar] [CrossRef]
- Saito, Y.; Sakuragi, K.; Shoji, T.; Otaka, M. Expedient Prediction of the Fuel Properties of Carbonized Woody Biomass Based on Hue Angle. Energies 2018, 11, 1191. [Google Scholar] [CrossRef] [Green Version]
- Atienza-Martínez, M.; Ábrego, J.; Mastral, J.F.; Ceamanos, J.; Gea, G. Energy and exergy analyses of sewage sludge thermochemical treatment. Energy 2018, 144, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Howard, B.H. Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure. Energies 2017, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Louwes, A.C.; Basile, L.; Yukananto, R.; Bhagwandas, J.C.; Bramer, E.A.; Brem, G. Torrefied biomass as feed for fast pyrolysis: An experimental study and chain analysis. Biomass Bioenergy 2017, 105, 116–126. [Google Scholar] [CrossRef]
- Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 2017, 126, 380–389. [Google Scholar] [CrossRef]
- Barta-Rajnai, E.; Várhegyi, G.; Wang, L.; Skreiberg, Ø.; Grønli, M.; Czégény, Z. Thermal Decomposition Kinetics of Wood and Bark and Their Torrefied Products. Energy Fuels 2017, 31, 4024–4034. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Brammer, J.G.; Wright, D.G.; Scott, J.A.; Serrano, C.; Bridgwater, A.V. Combined heat and power from the intermediate pyrolysis of biomass materials: Performance, economics and environmental impact. Appl. Energy 2017, 191, 639–652. [Google Scholar] [CrossRef] [Green Version]
- Volpe, R.; Menendez, J.M.B.; Reina, T.R.; Messineo, A.; Millan, M. Evolution of chars during slow pyrolysis of citrus waste. Fuel Process. Technol. 2017, 158, 255–263. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, W.; Atreya, A. An experimental study to investigate the effect of torrefaction temperature and time on pyrolysis of centimeter-scale pine wood particles. Fuel Process. Technol. 2016, 153, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Van Poucke, R.; Nachenius, R.W.; Agbo, K.E.; Hensgen, F.; Bühle, L.; Wachendorf, M.; Ok, Y.S.; Tack, F.M.G.; Prins, W.; Ronsse, F.; et al. Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass. Bioresour. Technol. 2016, 217, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Lloyd, J.; Kim, J.-W.; Labbé, N. Thermal desorption of creosote remaining in used railroad ties: Investigation by TGA (thermogravimetric analysis) and Py-GC/MS (pyrolysis-gas chromatography/mass spectrometry). Energy 2016, 96, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, R.; Adhikari, S.; Shakya, R.; Wang, K.; Dayton, D.C.; Li, M.; Pu, Y.; Ragauskas, A.J. Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis. J. Anal. Appl. Pyrolysis 2016, 122, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Klinger, J.; Bar-Ziv, E.; Shonnard, D. Unified kinetic model for torrefaction–pyrolysis. Fuel Process. Technol. 2015, 138, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Liang, S.; Guho, N.M.; Hanson, A.J.; Smith, M.W.; Garcia-Perez, M.; McDonald, A.G. Production and characterization of bio-oil and biochar from the pyrolysis of residual bacterial biomass from a polyhydroxyalkanoate production process. J. Anal. Appl. Pyrolysis 2015, 115, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Sadaka, S.; Sharara, M.; Ashworth, A.; Keyser, P.; Allen, F.; Wright, A. Characterization of Biochar from Switchgrass Carbonization. Energies 2014, 7, 548–567. [Google Scholar] [CrossRef]
- Anderson, N.; Jones, J.; Page-Dumroese, D.; McCollum, D.; Baker, S.; Loeffler, D.; Chung, W. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass. Energies 2013, 6, 164–183. [Google Scholar] [CrossRef]
- Shen, D.K.; Gu, S.; Luo, K.H.; Bridgwater, A.V.; Fang, M.X. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 2009, 88, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Abelha, P.; Mourão Vilela, C.; Nanou, P.; Carbo, M.; Janssen, A.; Leiser, S. Combustion improvements of upgraded biomass by washing and torrefaction. Fuel 2019, 253, 1018–1033. [Google Scholar] [CrossRef]
- Iáñez-Rodríguez, I.; Martín-Lara, M.Á.; Blázquez, G.; Osegueda, Ó.; Calero, M. Thermal analysis of olive tree pruning and the by-products obtained by its gasification and pyrolysis: The effect of some heavy metals on their devolatilization behavior. J. Energy Chem. 2019, 32, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Szwaja, S.; Poskart, A.; Zajemska, M.; Szwaja, M. Theoretical and Experimental Analysis on Co-Gasification of Sewage Sludge with Energetic Crops. Energies 2019, 12, 1750. [Google Scholar] [CrossRef] [Green Version]
- Pawlak-Kruczek, H.; Wnukowski, M.; Niedzwiecki, L.; Czerep, M.; Kowal, M.; Krochmalny, K.; Zgóra, J.; Ostrycharczyk, M.; Baranowski, M.; Tic, W.J.; et al. Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge. Energies 2019, 12, 175. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Ishak, M.A.M.; Ismail, K.; Kasim, N.N. Influence of microwave pre-treated Palm Kernel Shell and Mukah Balingian coal on co-gasification. J. Mech. Eng. Sci. 2019, 13, 5791–5803. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Niu, Y.; Wang, L.; Shaddix, C.; Løvås, T. High temperature gasification of high heating-rate chars using a flat-flame reactor. Appl. Energy 2018, 227, 100–107. [Google Scholar] [CrossRef]
- Xue, J.; Chellappa, T.; Ceylan, S.; Goldfarb, J.L. Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal. Renew. Energy 2018, 122, 152–162. [Google Scholar] [CrossRef]
- Howell, A.; Beagle, E.; Belmont, E. Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion with Sub-Bituminous Coal. J. Energy Resour. Technol. 2018, 140, 042002. [Google Scholar] [CrossRef] [Green Version]
- Kajina, W.; Rousset, P.; Chen, W.-H.; Sornpitak, T.; Commandré, J.M. Coupled effect of torrefaction and blending on chemical and energy properties for combustion of major open burned agriculture residues in Thailand. Renew. Energy 2018, 118, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Beagle, E.; Wang, Y.; Bell, D.; Belmont, E. Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide. Bioresour. Technol. 2018, 251, 31–39. [Google Scholar] [CrossRef]
- Tsalidis, G.A.; Di Marcello, M.; Spinelli, G.; de Jong, W.; Kiel, J.H.A. The effect of torrefaction on the process performance of oxygen-steam blown CFB gasification of hardwood and softwood. Biomass Bioenergy 2017, 106, 155–165. [Google Scholar] [CrossRef]
- Di Marcello, M.; Tsalidis, G.A.; Spinelli, G.; de Jong, W.; Kiel, J.H.A. Pilot scale steam-oxygen CFB gasification of commercial torrefied wood pellets. The effect of torrefaction on the gasification performance. Biomass Bioenergy 2017, 105, 411–420. [Google Scholar] [CrossRef]
- Jones, J.M.; Ross, A.B.; Mitchell, E.J.S.; Lea-Langton, A.R.; Williams, A.; Bartle, K.D. Organic carbon emissions from the co-firing of coal and wood in a fixed bed combustor. Fuel 2017, 195, 226–231. [Google Scholar] [CrossRef]
- González-Vázquez, M.; García, R.; Pevida, C.; Rubiera, F. Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass. Energies 2017, 10, 306. [Google Scholar] [CrossRef] [Green Version]
- Woytiuk, K.; Campbell, W.; Gerspacher, R.; Evitts, R.W.; Phoenix, A. The effect of torrefaction on syngas quality metrics from fluidized bed gasification of SRC willow. Renew. Energy 2017, 101, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Anukam, A.I.; Mamphweli, S.N.; Reddy, P.; Okoh, O.O. Characterization and the effect of lignocellulosic biomass value addition on gasification efficiency. Energy Explor. Exploit. 2016, 34, 865–880. [Google Scholar] [CrossRef]
- Kulkarni, A.; Baker, R.; Abdoulmomine, N.; Adhikari, S.; Bhavnani, S. Experimental study of torrefied pine as a gasification fuel using a bubbling fluidized bed gasifier. Renew. Energy 2016, 93, 460–468. [Google Scholar] [CrossRef] [Green Version]
- McNamee, P.; Darvell, L.I.; Jones, J.M.; Williams, A. The combustion characteristics of high-heating-rate chars from untreated and torrefied biomass fuels. Biomass Bioenergy 2015, 82, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bonvicini, G.; Biagini, E.; Yang, W.; Tognotti, L. Characterization of high-temperature rapid char oxidation of raw and torrefied biomass fuels. Fuel 2015, 143, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Kuo, P.-C.; Wu, W. Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification. Energies 2014, 8, 94–110. [Google Scholar] [CrossRef]
- Wang, L.; Várhegyi, G.; Skreiberg, Ø. CO Gasification of Torrefied Wood: A Kinetic Study. Energy Fuels 2014, 28, 7582–7590. [Google Scholar] [CrossRef]
- Fryda, L.; Daza, C.; Pels, J.; Janssen, A.; Zwart, R. Lab-scale co-firing of virgin and torrefied bamboo species Guadua angustifolia Kunth as a fuel substitute in coal fired power plants. Biomass Bioenergy 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Xue, G.; Kwapinska, M.; Horvat, A.; Kwapinski, W.; Rabou, L.P.L.M.; Dooley, S.; Czajka, K.M.; Leahy, J.J. Gasification of torrefied Miscanthus×giganteus in an air-blown bubbling fluidized bed gasifier. Bioresour. Technol. 2014, 159, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bonvicini, G.; Tognotti, L.; Yang, W.; Blasiak, W. High-temperature rapid devolatilization of biomasses with varying degrees of torrefaction. Fuel 2014, 122, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Biagini, E.; Yang, W.; Tognotti, L.; Blasiak, W. Flame characteristics of pulverized torrefied-biomass combusted with high-temperature air. Combust. Flame 2013, 160, 2585–2594. [Google Scholar] [CrossRef] [Green Version]
- Ostadi, M.; Rytter, E.; Hillestad, M. Boosting carbon efficiency of the biomass to liquid process with hydrogen from power: The effect of H2/CO ratio to the Fischer-Tropsch reactors on the production and power consumption. Biomass Bioenergy 2019, 127, 105282. [Google Scholar] [CrossRef]
- Białowiec, A.; Micuda, M.; Szumny, A.; Łyczko, J.; Koziel, J.A. Waste to carbon: Influence of structural modification on VOC emission kinetics from stored carbonized refuse-derived fuel. Sustainability 2019, 11, 935. [Google Scholar] [CrossRef] [Green Version]
- Manouchehrinejad, M.; Mani, S. Process simulation of an integrated biomass torrefaction and pelletization (iBTP) plant to produce solid biofuels. Energy Convers. Manag. X 2019, 1, 100008. [Google Scholar] [CrossRef]
- Abbasi, H.; Rahimpour, F.; Rahimpour, F.; Kasaeian, A. Evaluating integration of biomass gasification process with solid oxide fuel cell and torrefaction process. J. Therm. Eng. 2019, 5, 230–239. [Google Scholar]
- Hillestad, M.; Ostadi, M.; Alamo Serrano, G.; Rytter, E.; Austbø, B.; Pharoah, J.G.; Burheim, O.S. Improving carbon efficiency and profitability of the biomass to liquid process with hydrogen from renewable power. Fuel 2018, 234, 1431–1451. [Google Scholar] [CrossRef]
- Tsiropoulos, I.; Hoefnagels, R.; de Jong, S.; van den Broek, M.; Patel, M.; Faaij, A. Emerging bioeconomy sectors in energy systems modeling—Integrated systems analysis of electricity, heat, road transport, aviation, and chemicals: A case study for the Netherlands. Biofuels Bioprod. Biorefin. 2018, 12, 665–693. [Google Scholar] [CrossRef]
- Mauro, C.; Rentizelas, A.A.; Chinese, D. International vs. domestic bioenergy supply chains for co-firing plants: The role of pre-treatment technologies. Renew. Energy 2018, 119, 712–730. [Google Scholar] [CrossRef] [Green Version]
- Suopajärvi, H.; Umeki, K.; Mousa, E.; Hedayati, A.; Romar, H.; Kemppainen, A.; Wang, C.; Phounglamcheik, A.; Tuomikoski, S.; Norberg, N.; et al. Use of biomass in integrated steelmaking—Status quo, future needs and comparison to other low-CO2 steel production technologies. Appl. Energy 2018, 213, 384–407. [Google Scholar] [CrossRef] [Green Version]
- Porsö, C.; Hammar, T.; Nilsson, D.; Hansson, P.-A. Time-Dependent Climate Impact and Energy Efficiency of Internationally Traded Non-torrefied and Torrefied Wood Pellets from Logging Residues. BioEnergy Res. 2018, 11, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Silveira, E.A.; de Morais, M.V.G.; Rousset, P.; Caldeira-Pires, A.; Pétrissans, A.; Galvão, L.G.O. Coupling of an acoustic emissions system to a laboratory torrefaction reactor. J. Anal. Appl. Pyrolysis 2018, 129, 29–36. [Google Scholar] [CrossRef]
- Pedroso, D.T.; Machin, E.B.; Proenza Pérez, N.; Braga, L.B.; Silveira, J.L. Technical assessment of the Biomass Integrated Gasification/Gas Turbine Combined Cycle (BIG/GTCC) incorporation in the sugarcane industry. Renew. Energy 2017, 114, 464–479. [Google Scholar] [CrossRef] [Green Version]
- Tsalidis, G.A.; Discha, F.E.; Korevaar, G.; Haije, W.; de Jong, W.; Kiel, J. An LCA-based evaluation of biomass to transportation fuel production and utilization pathways in a large port’s context. Int. J. Energy Environ. Eng. 2017, 8, 175–187. [Google Scholar] [CrossRef]
- Tsiropoulos, I.; Hoefnagels, R.; van den Broek, M.; Patel, M.K.; Faaij, A.P.C. The role of bioenergy and biochemicals in CO mitigation through the energy system—A scenario analysis for the Netherlands. GCB Bioenergy 2017, 9, 1489–1509. [Google Scholar] [CrossRef]
- Fajardy, M.; Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 2017, 10, 1389–1426. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tittmann, P.; Parker, N.; Jenkins, B. Economic impact of combined torrefaction and pelletization processes on forestry biomass supply. GCB Bioenergy 2017, 9, 681–693. [Google Scholar] [CrossRef]
- Oliveira, A.L.P.C.; Almeida, P.S.; Campos, M.C.V.; Franceschi, E.; Dariva, C.; Borges, G.R. Thermoliquefaction of palm oil fiber (Elaeis sp.) using supercritical ethanol. Bioresour. Technol. 2017, 230, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Miedema, J.H.; Benders, R.M.J.; Moll, H.C.; Pierie, F. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant. Appl. Energy 2017, 187, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Jiang, E.; Lan, X. Influence of pre-treatment on torrefaction of Phyllostachys edulis. Bioresour. Technol. 2017, 239, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Williams, O.; Newbolt, G.; Eastwick, C.; Kingman, S.; Giddings, D.; Lormor, S.; Lester, E. Influence of mill type on densified biomass comminution. Appl. Energy 2016, 182, 219–231. [Google Scholar] [CrossRef]
- Rentizelas, A.A.; Li, J. Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing. Energy 2016, 114, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, K.M.; Saffron, C.M.; Miller, R.O. An energy analysis comparing biomass torrefaction in depots to wind with natural gas combustion for electricity generation. Appl. Energy 2016, 179, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Kizha, A.R.; Han, H.-S. Processing and sorting forest residues: Cost, productivity and managerial impacts. Biomass Bioenergy 2016, 93, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.-Q. Fast hydrothermal liquefaction for production of chemicals and biofuels from wet biomass—The need to develop a plug-flow reactor. Bioresour. Technol. 2016, 213, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrän, D.; Witt, J.; Schaubach, K.; Kiel, J.; Carbo, M.; Maier, J.; Ndibe, C.; Koppejan, J.; Alakangas, E.; Majer, S.; et al. Moving torrefaction towards market introduction—Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy 2016, 89, 184–200. [Google Scholar] [CrossRef] [Green Version]
- McNamee, P.; Adams, P.W.R.; McManus, M.C.; Dooley, B.; Darvell, L.I.; Williams, A.; Jones, J.M. An assessment of the torrefaction of North American pine and life cycle greenhouse gas emissions. Energy Convers. Manag. 2016, 113, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Sun, Z.; Yao, X.; Wang, D. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation. Energy 2016, 96, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Chai, L.; Saffron, C.M. Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost. Appl. Energy 2016, 163, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Paul, M.C.; Younger, P.L.; Watson, I.; Hossain, M.; Welch, S. Prediction of high-temperature rapid combustion behaviour of woody biomass particles. Fuel 2016, 165, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Miedema, J.H.; Moll, H.C.; Benders, R.M.J. Environmental and energy performance of the biomass to synthetic natural gas supply chain. J. Sustain. Dev. Energy Water Environ. Syst. 2016, 4, 262–278. [Google Scholar] [CrossRef] [Green Version]
- Artiukhina, E.; Grammelis, P. Modeling of biofuel pellets torrefaction in a realistic geometry. Therm. Sci. 2016, 20, 1223–1231. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Chang, S.; Yuan, Z.; Jiang, Y.; Liu, S.; Li, W.; Ma, L. Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China. Energies 2015, 8, 13846–13863. [Google Scholar] [CrossRef] [Green Version]
- Williams, O.; Eastwick, C.; Kingman, S.; Giddings, D.; Lormor, S.; Lester, E. Investigation into the applicability of Bond Work Index (BWI) and Hardgrove Grindability Index (HGI) tests for several biomasses compared to Colombian La Loma coal. Fuel 2015, 158, 379–387. [Google Scholar] [CrossRef]
- Huéscar Medina, C.; Phylaktou, H.N.; Andrews, G.E.; Gibbs, B.M. Explosion characteristics of pulverised torrefied and raw Norway spruce (Picea abies) and Southern pine (Pinus palustris) in comparison to bituminous coal. Biomass Bioenergy 2015, 79, 116–127. [Google Scholar] [CrossRef]
- Tumuluru, J.S. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: Physical properties and specific energy consumption. Energy Sci. Eng. 2015, 3, 327–341. [Google Scholar] [CrossRef]
- Adams, P.W.R.; Shirley, J.E.J.; McManus, M.C. Comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction. Appl. Energy 2015, 138, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Chiaramonti, D.; Rizzo, A.M.; Prussi, M.; Tedeschi, S.; Zimbardi, F.; Braccio, G.; Viola, E.; Pardelli, P.T. 2nd generation lignocellulosic bioethanol: Is torrefaction a possible approach to biomass pretreatment? Biomass Convers. Biorefinery 2011, 1, 9–15. [Google Scholar] [CrossRef] [Green Version]
WoS-CC | Number of Articles | Scopus | Number of Articles |
---|---|---|---|
China | 318 | China | 221 |
USA | 289 | USA | 207 |
Canada | 116 | South Korea | 84 |
Republic of China | 95 | Canada | 82 |
France | 72 | Republic of China | 75 |
South Korea | 71 | Poland | 62 |
Poland | 69 | France | 57 |
Sweden | 63 | Malaysia | 55 |
Japan | 62 | Brazil | 50 |
Malaysia | 62 | Italy | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapczyk, A.; Francik, S.; Jewiarz, M.; Zawiślak, A.; Francik, R. Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case. Energies 2021, 14, 162. https://doi.org/10.3390/en14010162
Knapczyk A, Francik S, Jewiarz M, Zawiślak A, Francik R. Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case. Energies. 2021; 14(1):162. https://doi.org/10.3390/en14010162
Chicago/Turabian StyleKnapczyk, Adrian, Sławomir Francik, Marcin Jewiarz, Agnieszka Zawiślak, and Renata Francik. 2021. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case" Energies 14, no. 1: 162. https://doi.org/10.3390/en14010162
APA StyleKnapczyk, A., Francik, S., Jewiarz, M., Zawiślak, A., & Francik, R. (2021). Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case. Energies, 14(1), 162. https://doi.org/10.3390/en14010162