Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Plastic Pyrolysis FO and Non-Ideal Explosives
2.2.2. Measurements of Low-Temperature Properties
2.2.3. Instrumental Analysis
2.2.4. Measurements of Blasting Properties
3. Results and Discussion
3.1. The Low-Temperature Properties of the Tested Fuel Oils
3.2. Morphology Properties
3.3. Blasting Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maranda, B.; Gołąbek, J.; Kasperski, J. Materiały Wybuchowe Emulsyjne; Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 2015. [Google Scholar]
- Borowik, M.; Biskupski, A.; Dawidowicz, M.; Buczkowski, D. Rules of safe storage of the ammonium nitrate ferlitizers. Przem. Chem. 2013, 92, 2148–2152. [Google Scholar]
- Biessikirski, A.; Kuterasiński, Ł.; Dworzak, M.; Pyra, J.; Twardosz, M. Comparison of structure, morphology and topography of fertilizer-based explosives applied in the mining industry. Microchem. J. 2019, 144, 39–44. [Google Scholar] [CrossRef]
- Landucci, G.; Reniers, G.; Cozzani, V.; Salzano, E. Vulnerability of industrial facilities to attacks with imporivised devices aimed at triggering domino scenarios. Reliab. Eng. Syst. Saf. 2015, 143, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Biessikirski, A.; Kuterasiński, Ł. Research on Morphology and Topology of ANFO Based on Various Types of Oxygen Component; Wydawnictwa AGH: Krakow, Poland, 2018. [Google Scholar]
- Miyake, A.; Takahara, K.; Ogawa, T.; Ogata, Y.; Wada, Y.; Arai, H. Influence of physical properties of ammonium nitrate on the detonation behavior of ANFO. J. Loss Prev. Process Ind. 2001, 14, 533–538. [Google Scholar] [CrossRef]
- Maranda, A. Badanie procesu detonacji sypkich górniczych amonowo-saletrzanych mieszanin wybuchowych zawierających pył aluminiowy. Przegląd Górniczy 1998, 54, 43–49. [Google Scholar]
- Nazarian, A.; Presser, C. Forensic methodology for the thermochemical characterization of ANNM and ANFO homemade explosives. Thermochim. Acta 2015, 608, 65–75. [Google Scholar] [CrossRef]
- Paszula, J.; Kowalewski, E. Study of the detonation development of non-ideal explosive. Mater. Wysokoenergetyczne 2015, 7, 95–105. [Google Scholar]
- Trzciński, W.; Haque-Pawlik, H. Application of the cylinder test in determining the characteristics of non-ideal explosives. Mater. Wysokoenergetyczne 2016, 8, 13–26. [Google Scholar]
- Zhang, Q.; Chang, Y. A predictive method for the heat of explosion of non-ideal aluminized explosives. Cent. Eur. J. Energ. Mater. 2013, 10, 541–554. [Google Scholar]
- Sałaciński, T.; Florczak, B.; Maranda, A. Use of ammonium nitrate(V) as component of high-energy materials in Poland. Przem. Chem. 2013, 92, 2225–2228. [Google Scholar]
- Zygmunt, B.; Buczkowski, D. Influence of ammonium nitrate prills properties on detonation velocity of ANFO. Propellants Explos. Pyrotech. 2007, 32, 411–414. [Google Scholar] [CrossRef]
- Viktorov, S.D.; Frantov, A.E.; Lapikov, I.N.; Andreev, V.V.; Starshinov, A.V. Effect of the microstructure of ammonium nitrate granules on the detonability of composite propellants based on it. Combust. Explos. Shock Waves 2016, 52, 727–731. [Google Scholar] [CrossRef]
- Lotspeich, E.; Petr, V. The characterization of ammonium nitrate mini-prills. In Dynamic Behavior of Materials 319–325, Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics, Lombard, IL, USA, 3–5 June 2014; Song, B., Casem, D., Kimberley, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 1. [Google Scholar]
- Sinditskii, V.P.; Egorshev, V.Y.; Levshenkov, A.I.; Serushkin, V.V. Ammonium nitrate: Combustion mechanism and the role of additives. Propellants Explos. Pyrotech. 2005, 30, 269–280. [Google Scholar] [CrossRef]
- Gunawan, R.; Zhang, D. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite. J. Hazard. Mater. 2009, 165, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Deribas, A.A.; Kudinov, V.M.; Matveenkov, F.I.; Simonov, V.A. Effect of initial parameters on the process of wave formation in explosive welding. Combust. Explos. Shock Waves 1967, 3, 344–348. [Google Scholar] [CrossRef]
- Miyake, Y.; Ohtagaki, T.; Abe, Y.; Wada, Y.; Nakayama, Y.; Ogawa, T. Experimental determination of the detonation front curvature of non-ideal explosive ANFO. Mater. Sci. Forums 2004, 465–466, 181–184. [Google Scholar] [CrossRef]
- Zygmunt, B. Detonation parameters of mixtures containing ammonium nitrate and aluminium. Cent. Eur. J. Energ. Mater. 2009, 6, 57–66. [Google Scholar]
- Maranda, A.; Gałęzowski, D.; Papliński, A. Investigations on detonation and thermochemical parameters of aluminized ANFO. J. Energ. Mater. 2003, 21, 1–14. [Google Scholar] [CrossRef]
- Maranda, A.; Paszula, J.; Zawadzka-Małota, I.; Kuczyńska, B.; Witkowski, W.; Nikolczuk, K.; Wilk, Z. Aluminum powder influence on ANFO detonation parameters. Cent. Eur. J. Energ. Mater. 2011, 8, 279–293. [Google Scholar]
- Stramquist, D.M.; Wathen, B.J. Waste Products in Distillation for Glycol Products in ANFO Explosives as Replacement for Fuel Oils. U.S. Patent 5531843A, 2 July 1996. [Google Scholar]
- Biessikirski, A.; Wądrzyk, M.; Janus, R.; Biegańska, J.; Jodłowski, G.; Kuterasiński, Ł. Study on fuel oils used in ammonium nitrate-based explosives. Przem. Chem. 2018, 97, 457–462. [Google Scholar]
- Uçar, S.; Özkan, A.R.; Karagöz, S. Co-pyrolysis of waste polyolefins with waste motor oil. J. Anal. Appl. Pyrolysis 2016, 119, 233–241. [Google Scholar] [CrossRef]
- Sipra, A.S.; Gao, N.; Sarwar, H. Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Process. Technol. 2018, 175, 131–147. [Google Scholar] [CrossRef]
- Shie, J.; Lin, J.; Chang, C.; Shih, S.; Lee, D.; Wu, C. Pyrolysis of oil sludge with additives of catalytic solid wastes. J. Anal. Appl. Pyrolysis 2004, 71, 695–707. [Google Scholar] [CrossRef]
- Lam, S.S.; Russell, A.D.; Lee, C.L.; Chase, H.A. Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel 2012, 92, 327–339. [Google Scholar] [CrossRef]
- Gómez-Rico, M.F.; Marty´ın-Gullón, I.; Fullana, A.; Conesa, J.A.; Font, R. Pyrolysis and combustion kinetics and emissions of waste lube oils. J. Anal. Appl. Pyrolysis 2003, 68–69, 527–546. [Google Scholar] [CrossRef]
- Hakki Metecan, I.; Ozkan, A.R.; Isler, R.; Yanik, J.; Saglam, M.; Yuksel, M. Naphtha derived from polyolefins. Fuel 2005, 84, 619–628. [Google Scholar] [CrossRef]
- Sriningsih, W.; Garby Saerodji, M.; Trisunaryanti, W.; Triyono; Armunanto, R.; Falah, I.I. Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo metals. Procedia Environ. Sci. 2014, 20, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- Opatokun, S.A.; Strezov, V.; Kan, T. Product based evaluation of pyrolysis of food waste and its digestate. Energy 2015, 92, 349–354. [Google Scholar] [CrossRef]
- Kabir, G.; Hameed, B.H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sustain. Energy Rev. 2017, 70, 945–967. [Google Scholar] [CrossRef]
- He, X.; Liu, Z.; Niu, W.; Yang, L.; Zhou, T.; Qin, D.; Niu, Z.; Yuan, Q. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 2018, 143, 746–756. [Google Scholar] [CrossRef]
- Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Efficient disposal of waste polyolefins through microwave assisted pyrolysis. Fuel 2014, 116, 662–671. [Google Scholar] [CrossRef]
- Kalargaris, I.; Tian, G.; Gu, S. The utilization of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy 2017, 131, 179–185. [Google Scholar] [CrossRef]
- Kalargaris, I.; Tian, G.; Gu, S. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process. Technol. 2017, 157, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Kalargaris, I.; Tian, G.; Gu, S. Experimental evaluation of a diesel engine fueled by pyrolysis oils produced from low-density polyethylene and ethylene–vinyl acetate plastics. Fuel Process. Technol. 2017, 161, 125–131. [Google Scholar] [CrossRef]
- Owusu, P.A.; Banadda, N.E.; Zziwa, A.; Seay, J.; Kiggundu, N. Reverse engineering of plastic waste into useful fuel products. J. Anal. Appl. Pyrolysis 2018, 130, 285–293. [Google Scholar] [CrossRef]
- Phung, T.K.; Casazza, A.A.; Perego, P.; Capranica, P.; Busca, G. Catalytic pyrolysis of vegetable oils to biofuels: Catalyst functionalities and the role of ketonization on the oxygenate paths. Fuel Process Technol. 2015, 140, 119–124. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Ma, W.; Yan, B.; Li, Y. Co-pyrolysis of corn-cob and waste cooking-oil in a fixed bed reactor with HY upgrading process. Energy Procedia 2014, 61, 2363–2366. [Google Scholar] [CrossRef] [Green Version]
- Mahari, W.A.W.; Chong, C.T.; Lam, W.H.; Nyuk, T.N.S.T.A.; Moh, L.M.; Ibrahim, D.; Lama, S.S. Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Convers. Manag. 2018, 171, 1292–1301. [Google Scholar] [CrossRef]
- PN-EN ISO 3675:2004. Ropa Naftowa i Ciekłe Przetwory Naftowe. Laboratoryjne Oznaczanie Gęstości; PKN: Warszawa, Poland, 2004. [Google Scholar]
- PN-EN ISO 3104:2004. Przetwory Naftowe. Ciecze Przezroczyste i Nieprzezroczyste. Oznaczanie Lepkości Kinematycznej i Obliczanie Lepkości; PKN: Warszawa, Poland, 2004. [Google Scholar]
- ASTM D5773-20. Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels (Constant Cooling Rate Method); ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- PN-ISO 3016:2019-06. Przetwory Naftowe i Produkty Podobne Pochodzenia Naturalnego lub Syntetycznego. Oznaczanie Temperatury Płynięcia; PKN: Warszawa, Poland, 2019. [Google Scholar]
- ASTM D7094-17. Standard Test Method for Flash Point by Modified Continuously Closed Cup (MCCCFP) Tester; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM D93-20. Standard Test Method of Flash Point by Pensky-Martens Closed Cup Tester; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Trzciński., W.; Paszula, J. On some methods of determination of the detonation energy of explosives. In Proceedings of the 9th International Seminar—New Trends in Research of Energetic Materials, Pardubice, Czech Republic, 19–21 April 2006; pp. 748–755. [Google Scholar]
- EN 13631-14. Explosives for Civil Uses. High Explosives. Part 14: Determination of Velocity of Detonation; CEN: Brussels, Belgium, 2004. [Google Scholar]
- Biessikirski, A.; Kuterasiński, Ł. Effect of the alcohol type added to ammonium nitrate on the structure and morphology of ammonium nitrate-based explosives. Przem. Chem. 2018, 97, 1718–1721. [Google Scholar]
- Theoret, A.; Sandorfy, C. Infrared spectra and crystalline phase transitions of ammonium nitrate. Can. J. Chem. 1964, 42, 57–62. [Google Scholar] [CrossRef]
- Biessikirski, A.; Kuterasiński, Ł.; Pyra, J.; Dworzak, M. Comparison of properties of ammonium nitrates used for production of fertilizers and explosive materials. Przem. Chem. 2016, 95, 1381–1384. [Google Scholar]
- Wu, H.B.; Chan, M.N.; Chan, K. FTIR characterization of polymorphic transformation of ammonium nitrate. Aerosol Sci. Technol. 2007, 41, 581–588. [Google Scholar] [CrossRef]
- Biessikirski, A.; Kuterasiński, Ł. Morphological properties of ANFO explosives obtained with the use of liquid combustibles. Przem. Chem. 2018, 97, 587–590. [Google Scholar]
- Hendricks, S.B.; Posnjak, E.; Kracek, F.C. Molecular rotation in the solid state. The variation of the crystal structure of ammonium nitrate with temperature. J. Am. Chem. Soc. 1932, 54, 2766–2786. [Google Scholar] [CrossRef]
- Biessikirski, A. Research the Physiochemical Properties of Non-Ideal Explosives Based on Various Types of Ammonium Nitrate(V) and Fuel Oils; Wydawnictwa AGH: Krakow, Poland, 2020. [Google Scholar]
- Gotovac Atlagic, S.; Biessikirski, A.; Kuterasiński, Ł.; Dworzak, M.; Twardosz, M.; Sorogas, N.; Arvanitidis, J. On the investigation of microstructured charcoal as an ANFO blasting enhancer. Energies 2020, 13, 4681. [Google Scholar] [CrossRef]
- Byers Brown, W. Critical Review of Theories of Steady Non-Ideal Two-Dimensional Detonation of Condensed Explosives; Confidential Report to HSBM Participants; Mass Action: UK, 2002. [Google Scholar]
Parameters | FO Sample | ||||
---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | |
Aliphatic hydrocarbons, % | 27 | 25.8 | 28.8 | 28 | 25.3 |
Cyclic aliphatic hydrocarbons, % | 4.2 | 5.1 | 4.8 | 5.4 | 4.3 |
Aromatic hydrocarbons, % | 30.9 | 33.2 | 30.7 | 31.8 | 31.9 |
Cyclic aliphatic/aromatic compounds hydrocarbons, % | 9.3 | 8.1 | 10.3 | 9.8 | 8.7 |
Cycloalkene, % | 7.2 | 8.3 | 9.4 | 9 | 12.5 |
Diene, % | 5.2 | 5.4 | 4.2 | 4.5 | 6.1 |
Others, % | 16.2 | 14.1 | 11.8 | 11.5 | 11.2 |
Parameters | FO Sample | |||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |
Density at 20 °C, (d) kg·m−3 | 805.6 | 801.3 | 801.7 | 800.6 | 803.1 | 873.2 |
±1.2 | ||||||
Kinematic density at 40 °C, (ν) mm2·s−1 | 1.99 | 1.95 | 1.93 | 1.93 | 1.98 | 13.6 |
±0.0 | ||||||
Flash point, °C | 62.1 | 61.3 | 59.4 | 62.2 | 62 | 127.3 |
±0.9 | ±0.8 | ±1.2 | ±0.8 | ±1.1 | ±1.2 | |
Cloud point (CP), °C | 3 | 3 | 2 | 2 | 3 | 8.9 |
±2.0 | ±2.0 | ±2.0 | ±2.0 | ±2.0 | ±1.1 | |
Pour point (PP), °C | −8 | −8 | −9 | −9 | −7 | −32 |
±2.0 | ±2.0 | ±2.0 | ±2.0 | ±2.0 | ±2.0 | |
TSI coefficient | 8.27 | 8.83 | 4.09 | 6.62 | 11.05 | 0.56 |
Sample | Band, cm−1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
3240 | 3060 | 2921 | 2854 | 1755 | 1410 | 1290 | 1041 | 827 | 714 | |
AN-PP | + | + | − | − | + | + | + | + | + | + |
AN-PP + FO1 | + | + | + | + | + | + | + | + | + | + |
AN-PP + FO2 | + | + | + | + | + | + | + | + | + | + |
AN-PP + FO3 | + | + | + | + | + | + | + | + | + | + |
AN-PP + FO4 | + | + | + | + | + | + | + | + | + | + |
AN-PP + FO5 | + | + | + | + | + | + | + | + | + | + |
AN-PP + FO6 | + | + | − | − | + | + | − | − | + | − |
Sample | Energy of Explosion, J·g−1 | Average Energy of Explosion, J·g−1 | Maximum Deflection, % | |
---|---|---|---|---|
Test 1 | Test 2 | |||
AN-PP + P1 | 3897 | 4001 | 3950 | 1.3 |
AN-PP + P2 | 3781 | 4010 | 3895 | 2.9 |
AN-PP + P3 | 3906 | 4127 | 4020 | 2.7 |
AN-PP + P4 | 3797 | 4025 | 3910 | 2.9 |
AN-PP + P5 | 4029 | 3998 | 4010 | 0.4 |
AN-PP + P6 | 3923 | 3950 | 3940 | 0.5 |
Sample | Average Density, kg·m−3 | Average VOD, m·s−1 |
---|---|---|
AN-PP + P1 | 835 | 2550 |
AN-PP + P2 | 833 | 2510 |
AN-PP + P3 | 837 | 2590 |
AN-PP + P4 | 834 | 2530 |
AN-PP + P5 | 836 | 2580 |
AN-PP + P6 | 837 | 3140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biessikirski, A.; Czerwonka, D.; Biegańska, J.; Kuterasiński, Ł.; Ziąbka, M.; Dworzak, M.; Twardosz, M. Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing. Energies 2021, 14, 172. https://doi.org/10.3390/en14010172
Biessikirski A, Czerwonka D, Biegańska J, Kuterasiński Ł, Ziąbka M, Dworzak M, Twardosz M. Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing. Energies. 2021; 14(1):172. https://doi.org/10.3390/en14010172
Chicago/Turabian StyleBiessikirski, Andrzej, Dominik Czerwonka, Jolanta Biegańska, Łukasz Kuterasiński, Magdalena Ziąbka, Michał Dworzak, and Michał Twardosz. 2021. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing" Energies 14, no. 1: 172. https://doi.org/10.3390/en14010172
APA StyleBiessikirski, A., Czerwonka, D., Biegańska, J., Kuterasiński, Ł., Ziąbka, M., Dworzak, M., & Twardosz, M. (2021). Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing. Energies, 14(1), 172. https://doi.org/10.3390/en14010172