Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Unfold-PCA Background
2.2. Implementation as a Web Application
2.3. Modelling Interface
2.4. Monitoring Interface
3. Results
3.1. Modelled System Description
- User adjustable temperature set points.
- Dehumidification procedure to maintain higher relative humidity levels at 60%.
- Air quality control CO2 should not exceed 1500 ppm, when CO2 reaches 1500 ppm return duct and impulsion fan speeds are set to max.
- Frost protection will activate heating if room temperature is 3 °C or lower.
3.2. Non-Working Days
3.3. Modelling Working Days
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ndiaye, D.; Gabriel, K. Principal component analysis of the electricity consumption in residential dwellings. Energy Build. 2011, 43, 446–453. [Google Scholar] [CrossRef]
- Mahmoud, S.; Lotfi, A.; Langensiepen, C. User activities outliers detection; Integration of statistical and computational intelligence techniques. Comput. Intell. 2016, 32, 49–71. [Google Scholar] [CrossRef] [Green Version]
- Gaitani, N.; Lehmann, C.; Santamouris, M.; Mihalakakou, G.; Patargias, P. Using principal component and cluster analysis in the heating evaluation of the school building sector. Appl. Energy 2010, 87, 2079–2086. [Google Scholar] [CrossRef]
- Lam, J.C.; Wan, K.K.W.; Cheung, K.L.; Yang, L. Principal component analysis of electricity use in office buildings. Energy Build. 2008, 40, 828–836. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, F. Detection and diagnosis of AHU sensor faults using principal component analysis method. Energy Convers. Manag. 2004, 45, 2667–2686. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, F. AHU sensor fault diagnosis using principal component analysis method. Energy Build. 2004, 36, 147–160. [Google Scholar] [CrossRef]
- Jin, X.; Du, Z. Fault tolerant control of outdoor air and AHU supply air temperature in VAV air conditioning systems using PCA method. Appl. Therm. Eng. 2006, 26, 1226–1237. [Google Scholar] [CrossRef]
- Du, Z.-M.; Jin, X.-Q.; Wu, L.-Z.; Chen, D.-D. Fault detection and diagnosis for AHU sensors with fixed or drift bias. Xitong Fangzhen Xuebao J. Syst. Simul. 2006, 18, 1653–1656. [Google Scholar]
- Madhikermi, M.; Yousefnezhad, N.; Främling, K. Heat Recovery Unit Failure Detection in Air Handling Unit. In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0; Moon, I., Lee, G., Park, J., Kiritsis, D., von Cieminski, G., Eds.; APMS 2018. IFIP Advances in Information and Communication Technology; Springer: New York, NY, USA, 2018; Volume 536, ISBN 9783319997063. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wen, J. A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform. Energy Build. 2014, 68, 63–71. [Google Scholar] [CrossRef]
- Shang, J.; Chen, M.; Zhang, H. Fault detection based on augmented kernel Mahalanobis distance for nonlinear dynamic processes. Comput. Chem. Eng. 2018, 109, 311–321. [Google Scholar] [CrossRef]
- Ji, H.; Huang, K.; Zhou, D. Incipient sensor fault isolation based on augmented Mahalanobis distance. Control. Eng. Pract. 2019, 86, 144–154. [Google Scholar] [CrossRef]
- Shang, J.; Chen, M.; Ji, H.; Zhou, D. Recursive transformed component statistical analysis for incipient fault detection. Automatica 2017, 80, 313–327. [Google Scholar] [CrossRef]
- Lv, F.; Wen, C.; Bao, Z.; Liu, M. Fault diagnosis based on deep learning. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 6851–6856. [Google Scholar] [CrossRef]
- Westerhuis, J.A.; Kourti, T.; Macgregor, J.F. Comparing alternative approaches for multivariate statistical analysis of batch process data. J. Chemom. 1999, 13, 397–413. [Google Scholar] [CrossRef]
- Aguado, D.; Rosen, C. Multivariate statistical monitoring of continuous wastewater treatment plants. Eng. Appl. Artif. Intell. 2008, 21, 1080–1091. [Google Scholar] [CrossRef]
- Villez, K.; Steppe, K.; De Pauw, D.J.W. Use of Unfold PCA for on-line plant stress monitoring and sensor failure detection. Biosyst. Eng. 2009, 103, 23–34. [Google Scholar] [CrossRef]
- Burgas, L.; Melendez, J.; Colomer, J.; Massana, J.; Pous, C. Multivariate statistical monitoring of buildings. Case study: Energy monitoring of a social housing building. Energy Build. 2015, 103, 338–351. [Google Scholar] [CrossRef]
- Burgas, L.; Melendez, J.; Colomer, J.; Massana, J.; Pous, C. N-dimensional extension of unfold-PCA for granular systems monitoring. Eng. Appl. Artif. Intell. 2018, 71. [Google Scholar] [CrossRef]
- Nomikos, P.; MacGregor, J.F. Monitoring batch processes using multiway principal component analysis. AIChE 1994, 40, 1361–1375. [Google Scholar] [CrossRef]
- Kourti, T. Application of latent variable methods to process control and multivariate statistical process control in industry. Int. J. Adapt. Control. Signal. Process. 2005, 19, 213–246. [Google Scholar] [CrossRef]
- Alcala, C.F.; Qin, S.J. Reconstruction-based contribution for process monitoring. Automatica 2009, 45, 1593–1600. [Google Scholar] [CrossRef]
Name | Units |
---|---|
AHU101 Calc Supply Setpt | % |
AHU101 EAF VSD Speed | % |
AHU101 SAF VSD Speed | % |
CO.147.1 Lecture Theatre 3 CO2 | ppm |
CO.147.2 Lecture Theatre 3 CO2 | ppm |
HE.101.1 Return Duct Humidity | % |
HE.147.1 Lecture Theatre 3 Humidity | % |
HE.147.2 Lecture Theatre 3 Humidity | % |
HS.101.1 SAF Enable | binary |
HS.101.2 EAF Enable | binary |
Lecture Theatre 3 Avg Temp | °C |
LPHW 2-GFC4 Riser 3 IFM | % |
TCV.101.1 Main HValve | % |
TCV.101.2 Main CValve | % |
TCV.101.3 Frost Coil HValve | % |
TE 2-GFC4.1 Riser 3 Flow Temp | °C |
TE 2-GFC4.2 Riser 3 Return Temp | °C |
TE.101.1 Frost Coil Temp | °C |
TE.101.2 Supply Duct Temp | °C |
TE.101.3 Cooling Off Coil Temp | °C |
TE.101.4 Return Duct Temp | °C |
TE.102.2 Cooling Off Coil Temp | °C |
TE.147.1 Lecture Theatre 3 Temp | °C |
TE.147.2 Lecture Theatre 3 Temp | °C |
Weather Current Temperature | °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgas, L.; Colomer, J.; Melendez, J.; Gamero, F.I.; Herraiz, S. Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example. Energies 2021, 14, 235. https://doi.org/10.3390/en14010235
Burgas L, Colomer J, Melendez J, Gamero FI, Herraiz S. Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example. Energies. 2021; 14(1):235. https://doi.org/10.3390/en14010235
Chicago/Turabian StyleBurgas, Llorenç, Joan Colomer, Joaquim Melendez, Francisco Ignacio Gamero, and Sergio Herraiz. 2021. "Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example" Energies 14, no. 1: 235. https://doi.org/10.3390/en14010235
APA StyleBurgas, L., Colomer, J., Melendez, J., Gamero, F. I., & Herraiz, S. (2021). Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example. Energies, 14(1), 235. https://doi.org/10.3390/en14010235