Dynamics of Heaving Buoy Wave Energy Converters with a Stiffness Reactive Controller
Abstract
:1. Introduction
2. Modelling
2.1. Governing Equations
2.2. Energy Frequency
2.3. Available and Absorbed Power
3. Stiffness Reactive Controller
3.1. CVT Controller
3.2. Inertia Effect of Cvt Mechanism
3.3. Controller Operating Bandwidth
3.4. PTO Damping
3.5. Experimental Validation
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WEC | Wave energy converter |
SDOF | Single-degree-of-freedom |
PTO | Power take-off system |
CVT | Continuous variable transmission |
Appendix A
Appendix B
References
- Pecher, A.; Peter Kofoed, J. Handbook of Ocean Wave Energy; Springer Nature: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Antonio, F.D.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- De Backer, G. Hydrodynamic Design Optimization of Wave Energy Converters Consisting of Heaving Point Absorbers. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2013. [Google Scholar] [CrossRef]
- Korde, U.A.; Ertekin, R.C. Wave energy conversion by controlled floating and submerged cylindrical buoys. J. Ocean Eng. Mar. Energy 2015, 1, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Isberg, J.; Tedeschi, E. Review of control strategies for wave energy conversion systems and their validation: The wave-to-wire approach. Renew. Sustain. Energy Rev. 2018, 81, 366–379. [Google Scholar] [CrossRef]
- Coe, R.G.; Bacelli, G.; Wilson, D.G.; Abdelkhalik, O.; Korde, U.A.; Robinett, R.D., III. A comparison of control strategies for wave energy converters. Int. J. Mar. Energy 2017, 20, 45–63. [Google Scholar] [CrossRef]
- Faedo, N.; Olaya, S.; Ringwood, J.V. Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview. IFAC J. Syst. Control 2017, 1, 37–56. [Google Scholar] [CrossRef] [Green Version]
- Hals, J.; Falnes, J.; Moan, T. A comparison of selected strategies for adaptive control of wave energy converters. J. Offshore Mech. Arct. Eng. 2011, 133, 031101–031113. [Google Scholar] [CrossRef]
- Lynn, P.A. Electricity from Wave and Tide: An Introduction to Marine Energy, 1st ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013; pp. 1–266. [Google Scholar] [CrossRef]
- Lucas, J.; Salter, S.; Cruz, J.; Taylor, J.; Bryden, I. Performance Optimisation of a Modified Duck Through Optimal Mass Distribution. In Proceedings of the 8th European Wave and Tidal Energy Conference (EWTEC), Uppsala, Sweden, 7–10 September 2009; pp. 270–279. [Google Scholar]
- Piscopo, V.; Benassai, G.; Cozzolino, L.; Della Morte, R.; Scamardella, A. A new optimization procedure of heaving point absorber hydrodynamic performances. Ocean Eng. 2016, 116, 242–259. [Google Scholar] [CrossRef]
- Costa, P.R.; Garcia-Rosa, P.B.; Estefen, S.F. Phase control strategy for a wave energy hyperbaric converter. Ocean Eng. 2010, 37, 1483–1490. [Google Scholar] [CrossRef]
- Flocard, F.; Finnigan, T. Increasing power capture of a wave energy device by inertia adjustment. Appl. Ocean Res. 2012, 34, 126–134. [Google Scholar] [CrossRef]
- Yavuz, H.; Stallard, T.J.; McCabe, A.P.; Aggidis, G.A. Time series analysis-based adaptive tuning techniques for a heaving wave energy converter in irregular seas. Proc. Inst. Mech. Eng. Part A J. Power Energy 2007, 221, 77–90. [Google Scholar] [CrossRef]
- Shek, J.; Macpherson, D.; Mueller, M.; Xiang, J. Reaction force control of a linear electrical generator for direct drive wave energy conversion. IET Renew. Power Gener. 2007, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Schoen, M.P.; Hals, J.; Moan, T. Wave prediction and fuzzy logic control of wave energy converters in irregular waves. In Proceedings of the 2008 Mediterranean Conference on Control and Automation, MED’08, Ajaccio, France, 25–27 June 2008; pp. 767–772. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 288–306. [Google Scholar] [CrossRef]
- Li, M.; Jing, X. Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting. Appl. Energy 2019, 255, 113829. [Google Scholar] [CrossRef]
- Budal, K.; Falnes, J. Interacting point absorbers with controlled motion. In Power from Sea Wave; Academic Press: London, UK, 1980; pp. 381–399. [Google Scholar]
- Salter, S.H.; Taylor, J.R.; Caldwell, N.J. Power conversion mechanisms for wave energy. J. Eng. Marit. Environ. 2002, 216, 1–27. [Google Scholar] [CrossRef]
- Sakr, A.H.; Anis, Y.H.; Metwalli, S.M. System frequency tuning for heaving buoy wave energy converters. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Busan, Korea, 7–11 July 2015; pp. 1367–1372. [Google Scholar] [CrossRef]
- Hals, J. Modelling and Phase Control of Wave-Energy Converters. Ph.D. Thesis, Department of Marine Technology, Norwegian University of Science and Technology, Trondheim, Norway, 2010. [Google Scholar]
- Bhatta, D.D. Computation of added mass and damping coefficients due to a heaving cylinder. J. Appl. Math. Comput. 2007, 23, 127–140. [Google Scholar] [CrossRef]
- Finnegan, W.; Meere, M.; Goggins, J. The Wave Excitation Forces on a Floating Vertical Cylinder in Water of Infinite Depth. In Proceedings of the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011; pp. 2175–2182. [Google Scholar] [CrossRef] [Green Version]
- Finnegan, W.; Goggins, J. Numerical simulation of linear water waves and wavestructure interaction. Ocean Eng. 2012, 43, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Falnes, J. State-space modelling of a vertical cylinder in heave. Appl. Ocean Res. 1995, 17, 265–275. [Google Scholar] [CrossRef]
- Pierson, W.J., Jr.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Carter, D.J. Estimation of Wave Spectra from Wave Height and Period; Technical Report; Institute of Oceanographic Siences: London, UK, 1982. [Google Scholar] [CrossRef]
- Borgman, L.E. Ocean Wave Simulation for Engineering Design; Technical Report; University of California: Berkeley, CA, USA, 1967. [Google Scholar]
- Falnes, J.; Kurniawan, A. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction; Cambridge University Press: Cambridge, UK, 2020; Volume 8. [Google Scholar]
Parameters | r | ||||
---|---|---|---|---|---|
[kg] | [m] | [kN/m] | [kg.m] | [mm] | |
Value | 8000 | 0.4 | 8 | 2.63 | 75 |
Parameters | r | ||||
---|---|---|---|---|---|
[kg] | [N/m] | [N/m] | [kg.m] | [mm] | |
Value | 4.75 | 200 | 330 | 0.0019 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakr, A.H.; Metwalli, S.M.; Anis, Y.H. Dynamics of Heaving Buoy Wave Energy Converters with a Stiffness Reactive Controller. Energies 2021, 14, 44. https://doi.org/10.3390/en14010044
Sakr AH, Metwalli SM, Anis YH. Dynamics of Heaving Buoy Wave Energy Converters with a Stiffness Reactive Controller. Energies. 2021; 14(1):44. https://doi.org/10.3390/en14010044
Chicago/Turabian StyleSakr, Ahmed H., Sayed M. Metwalli, and Yasser H. Anis. 2021. "Dynamics of Heaving Buoy Wave Energy Converters with a Stiffness Reactive Controller" Energies 14, no. 1: 44. https://doi.org/10.3390/en14010044
APA StyleSakr, A. H., Metwalli, S. M., & Anis, Y. H. (2021). Dynamics of Heaving Buoy Wave Energy Converters with a Stiffness Reactive Controller. Energies, 14(1), 44. https://doi.org/10.3390/en14010044