Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression
Abstract
:1. Introduction
2. Description of Models
2.1. GARCH-Type Models
2.2. SVR Model
- -
- Linear (dot product): ,
- -
- Radial basis function (RBF): ,
- -
- Polynomial: ;
2.3. Ex-Post Volatility Measures
3. Forecasting Volatility of Energy Commodities
3.1. Data
3.2. Forecasting Procedure
- (1)
- SVR with the linear kernel and (hereafter SVR-lin-1),
- (2)
- SVR with the linear kernel and (SVR-lin-15),
- (3)
- SVR with the RBF kernel and (SVR-rbf-1),
- (4)
- SVR with the RBF kernel and (SVR-rbf-15).
3.3. Results for the Squared Daily Return Used as a Proxy of Volatility
3.4. Results for the Parkinson Estimator Used as a Proxy of Volatility
3.5. Discussion of the Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halkos, G.E.; Tsirivis, A.S. Effective energy commodity risk management: Econometric modeling of price volatility. Econ. Anal. Policy 2019, 63, 234–250. [Google Scholar] [CrossRef]
- Nomikos, N.K.; Pouliasis, P.K. Forecasting petroleum futures markets volatility: The role of regimes and market conditions. Energy Econ. 2011, 33, 321–337. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C. Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models? Energy Econ. 2012, 34, 2167–2181. [Google Scholar] [CrossRef]
- Chkili, W.; Hammoudeh, S.; Nguyen, D.K. Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory. Energy Econ. 2014, 41, 1–18. [Google Scholar] [CrossRef]
- Klein, T.; Walther, T. Oil price volatility forecast with mixture memory GARCH. Energy Econ. 2016, 58, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D. Forecasting energy futures volatility based on the unbiased extreme value volatility estimator. IIMB Manag. Rev. 2017, 29, 294–310. [Google Scholar] [CrossRef]
- Herrera, A.M.; Hu, L.; Pastor, D. Forecasting crude oil price volatility. Int. J. Forecast. 2018, 34, 622–635. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Zhang, J.-L. Volatility forecasting of crude oil market: A new hybrid method. J. Forecast. 2018, 37, 781–789. [Google Scholar] [CrossRef]
- Bildirici, M.; Bayazit, N.G.; Ucan, Y. Analyzing crude oil prices under the impact of COVID-19 by using LSTARGARCHLSTM. Energies 2020, 13, 2980. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, Y.; Xiao, H.; Zhou, Z. Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model. Phys. A 2020, 543, 123532. [Google Scholar] [CrossRef]
- Lin, Y.; Xiao, Y.; Li, F. Forecasting crude oil price volatility via a HM-EGARCH model. Energy Econ. 2020, 87, 104693. [Google Scholar] [CrossRef]
- Lv, X.; Shan, X. Modeling natural gas market volatility using GARCH with different distributions. Phys. A 2013, 392, 5685–5699. [Google Scholar] [CrossRef]
- Xie, W.; Yu, L.; Xu, S.; Wang, S. A New Method for Crude Oil Price Forecasting Based on Support Vector Machines. In Proceedings of the Computational Science–ICCS 2006, Reading, UK, 28–31 May 2006; Lecture Notes in Computer Science, 3994. Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Li, S.; Ge, Y. Crude Oil Price Prediction Based on a Dynamic Correcting Support Vector Regression Machine. Abstr. Appl. Anal. 2013, 2013, 528678. [Google Scholar]
- Fan, L.; Pan, S.; Li, Z.; Li, H. An ICA-based support vector regression scheme for forecasting crude oil prices. Technol. Forecast. Soc. Chang. 2016, 112, 245–253. [Google Scholar] [CrossRef]
- Li, T.; Zhou, M.; Guo, C.; Luo, M.; Wu, J.; Pan, F.; Tao, Q.; He, T. Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels. Energies 2016, 9, 1014. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhang, X.; Wang, S. Assessing Potentiality of Support Vector Machine Method in Crude Oil Price Forecasting. EURASIA J. Math. Sci. Technol. Educ. 2017, 13, 7893–7904. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Y.; Li, X.; Wu, J.; He, T. Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors. Energies 2019, 12, 3603. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Trafalis, T.B. New kernel methods for asset pricing: Application to natural gas price prediction. Int. J. Financ. Mark. Deriv. 2011, 2, 106–120. [Google Scholar] [CrossRef]
- Su, M.; Zhang, Z.; Zhu, Y.; Zha, D. Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm. Energies 2019, 12, 1094. [Google Scholar] [CrossRef] [Green Version]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Gavrishchaka, V.V.; Ganguli, S.B. Volatility forecasting from multiscale and high-dimensional market data. Neurocomputing 2003, 55, 285–305. [Google Scholar] [CrossRef]
- Perez-Cruz, F.; Afonso-Rodriguez, J.; Giner, J. Estimating GARCH Models Using Support Vector Machines. Quant. Financ. 2003, 3, 163–172. [Google Scholar] [CrossRef]
- Gavrishchaka, V.V.; Banerjee, S. Support vector machine as an efficient framework for stock market volatility forecasting. Comput. Manag. Sci. 2006, 3, 147–160. [Google Scholar] [CrossRef]
- Chen, S.; Härdle, W.K.; Jeong, K. Forecasting volatility with support vector machine-based GARCH model. J. Forecast. 2010, 29, 406–433. [Google Scholar] [CrossRef]
- Ou, P.; Wang, H. Financial Volatility Forecasting by Least Square Support Vector Machine Based on GARCH, EGARCH and GJR Models: Evidence from ASEAN Stock Markets. Int. J. Econ. Financ. 2010, 2, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Bildirici, M.; Ersin, O.O. Support Vector Machine GARCH and Neural Network GARCH Models in Modeling Conditional Volatility: An Application to Turkish Financial Markets. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2227747 (accessed on 15 October 2020).
- Geng, L.-Y.; Yu, F. Forecasting Stock Volatility using LSSVR-based GARCH Model Optimized by Siwpso Algorithm. J. Appl. Sci. 2013, 13, 5132–5137. [Google Scholar] [CrossRef] [Green Version]
- Santamaría-Bonfil, G.; Frausto-Solís, J.; Vázquez-Rodarte, I. Volatility forecasting using support vector regression and a hybrid genetic algorithm. Comput. Econ. 2015, 45, 111–133. [Google Scholar] [CrossRef]
- Bezerra, P.C.S.; Albuquerque, P.H.M. Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels. Comput. Manag. Sci. 2017, 14, 179–196. [Google Scholar] [CrossRef]
- Bezerra, P.C.S.; Albuquerque, P.H.M. Volatility Forecasting: The Support Vector Regression Can Beat the Random Walk. Econ. Comput. Econ. Cybern. Stud. Res. 2019, 4, 115–126. [Google Scholar]
- Peng, Y.; Albuquerque, P.H.; de Sá, J.M.C.; Padula, A.J.A.; Montenegro, M.R. The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression. Expert Syst. Appl. 2018, 97, 177–192. [Google Scholar] [CrossRef]
- Gong, X.-L.; Liu, X.-H.; Xiong, X.; Zhuang, X.-T. Forecasting stock volatility process using improved least square support vector machine approach. Soft Comput. 2019, 23, 11867–11881. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalised Autoregressive Conditional Heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.B.; Cao, C.Q. Inequality Constraints in the Univariate GARCH Model. J. Bus. Econ. Stat. 1992, 10, 229–235. [Google Scholar]
- Bollerslev, T. A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. Rev. Econ. Stat. 1987, 69, 542–547. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.B. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 1991, 59, 347–370. [Google Scholar] [CrossRef]
- Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. J. Financ. 1993, 48, 1779–1801. [Google Scholar] [CrossRef]
- Ding, Z.; Granger, C.W.J.; Engle, R.F. A Long Memory Property of Stock Market Returns and a New Model. J. Empir. Financ. 1993, 1, 83–106. [Google Scholar] [CrossRef]
- Zakoian, J.M. Threshold heteroskedastic models. J. Econ. Dyn. Control 1994, 18, 931–955. [Google Scholar] [CrossRef]
- Taylor, S.J. Modelling Financial Time Series; Wiley: Chichester, UK, 1986. [Google Scholar]
- Schwert, W. Stock volatility and the crash of ’87. Rev. Financ. Stud. 1990, 3, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.; Bera, A. A class of nonlinear arch models. Int. Econ. Rev. 1992, 33, 137–158. [Google Scholar] [CrossRef]
- Geweke, J. Modelling the Persistence of Conditional Variances: A Comment. Econom. Rev. 1986, 5, 57–61. [Google Scholar] [CrossRef]
- Pentula, S. Modelling the Persistence of Conditional Variances: A Comment. Econom. Rev. 1986, 5, 71–74. [Google Scholar]
- Engle, R.F.; Bollerslev, T. Modelling the Persistence of Conditional Variances. Econom. Rev. 1986, 5, 1–50. [Google Scholar] [CrossRef]
- Engle, R.F.; Lilien, D.M.; Robins, R.P. Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model. Econometrica 1987, 55, 391–407. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, C.K.; Lee, S. Hybrid CUSUM Change Point Test for Time Series with Time-Varying Volatilities Based on Support Vector Regression. Entropy 2020, 22, 578. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Martínez-Álvarez, F.; Troncoso, A.; Asencio-Cortés, G.; Riquelme, J.C. A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting. Energies 2015, 8, 13162–13193. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.-L.; Fan, G.-F.; Huang, M.-L.; Hong, W.-C. Hybridizing DEMD and Quantum PSO with SVR in Electric Load Forecasting. Energies 2016, 9, 221. [Google Scholar] [CrossRef]
- Lux, M.; Härdle, W.K.; Lessmann, S. Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid. Comput. Stat. 2020, 35, 947–981. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T. Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts. Int. Econ. Rev. 1998, 39, 885–905. [Google Scholar] [CrossRef]
- Mapa, D. A Range-Based GARCH Model for Forecasting Volatility. Philipp. Rev. Econ. 2003, 60, 73–90. [Google Scholar]
- Chou, R.Y. Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model. J. Money Credit Bank. 2005, 37, 561–582. [Google Scholar] [CrossRef]
- Liu, H.C.; Hung, J.C. Forecasting Volatility and Capturing Downside Risk of the Taiwanese Futures Markets under the Financial Tsunami. Manag. Financ. 2010, 36, 860–875. [Google Scholar] [CrossRef]
- Patton, A.J. Volatility Forecast Comparison using Imperfect Volatility Proxies. J. Econom. 2011, 160, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Molnár, P. High-low range in GARCH models of stock return volatility. Appl. Econ. 2016, 48, 4977–4991. [Google Scholar] [CrossRef]
- Fiszeder, P. Low and high prices can improve covariance forecasts: The evidence based on currency rates. J. Forecast. 2018, 37, 641–649. [Google Scholar] [CrossRef]
- Fiszeder, P.; Fałdziński, M. Improving Forecasts with the Co-Range Dynamic Conditional Correlation Model. J. Econ. Dyn. Control 2019, 108, 103736. [Google Scholar] [CrossRef]
- Fiszeder, P.; Fałdziński, M.; Molnár, P. Range-Based DCC Models for Covariance and Value-at-Risk Forecasting. J. Empir. Financ. 2019, 54, 58–76. [Google Scholar] [CrossRef]
- Wu, X.; Hou, X. Forecasting volatility with component conditional autoregressive range model. N. Am. J. Econ. Financ. 2020, 51, 101078. [Google Scholar] [CrossRef]
- Parkinson, M. The Extreme Value Method for Estimating the Variance of the Rate of Return. J. Bus. 1980, 53, 61–65. [Google Scholar] [CrossRef]
- Degiannakis, S.; Livada, A. Realized Volatility or Price Range: Evidence from a Discrete Simulation of the Continuous Time Diffusion Process. Econ. Model. 2013, 30, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Garman, M.B.; Klass, M.J. On the Estimation of Security Price Volatilities from Historical Data. J. Bus. 1980, 53, 67–78. [Google Scholar] [CrossRef]
- Rogers, L.C.G.; Satchell, S.E. Estimating Variance From High, Low and Closing Prices. Ann. Appl. Probab. 1991, 1, 504–512. [Google Scholar] [CrossRef]
- Shu, J.; Zhang, J.E. Testing Range Estimators of Historical Volatility. J. Futures Mark. 2006, 26, 297–313. [Google Scholar] [CrossRef]
- Alizadeh, S.; Brandt, M.; Diebold, F.X. Range-Based Estimation of Stochastic Volatility Models. J. Financ. 2002, 57, 1047–1091. [Google Scholar] [CrossRef] [Green Version]
- Alterman, S. Natural Gas Price Volatility in the UK and North America; NG 60; Oxford Institute for Energy Studies: Oxford, UK, 2012. [Google Scholar]
- Hwang, S.; Valls Pereira, P.L. The effects of structural breaks in ARCH and GARCH parameters on persistence of GARCH models. Commun. Stat.-Simul. Comput. 2006, 37, 571–578. [Google Scholar] [CrossRef]
- Hansen, P.R. A Test for Superior Predictive Ability. J. Bus. Econ. Stat. 2005, 23, 365–380. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.R.; Lunde, A.; Nason, J.M. The Model Confidence Set. Econometrica 2011, 79, 453–497. [Google Scholar] [CrossRef] [Green Version]
Commodities | Mean | Min | Max | SD | Skew | Kurt | LB |
---|---|---|---|---|---|---|---|
Returns | |||||||
Crude oil | −0.053 | −8.624 | 9.742 | 2.190 | −0.042 | 4.509 | 0.187 |
Gasoil | −0.019 | −7.994 | 7.775 | 1.797 | 0.224 | 5.386 | 0.096 |
Gasoline | −0.034 | −8.624 | 9.742 | 2.004 | −0.13 | 4.492 | 0.205 |
Heating oil | −0.022 | −10.226 | 7.776 | 1.852 | 0.182 | 4.994 | 0.103 |
Natural gas | −0.091 | −14.484 | 17.216 | 2.364 | 0.260 | 7.242 | 0.147 |
Squared returns | |||||||
Crude oil | 4.799 | 0.000 | 94.905 | 8.993 | 4.212 | 27.429 | 0.000 |
Gasoil | 3.231 | 0.000 | 95.543 | 6.759 | 5.886 | 57.243 | 0.000 |
Gasoline | 4.018 | 0.000 | 104.575 | 7.517 | 4.751 | 40.042 | 0.000 |
Heating oil | 3.432 | 0.000 | 90.421 | 6.850 | 5.018 | 41.009 | 0.000 |
Natural gas | 5.597 | 0.000 | 296.392 | 13.926 | 11.445 | 197.959 | 0.000 |
Parkinson estimator | |||||||
Crude oil | 4.763 | 0.253 | 54.245 | 5.618 | 3.276 | 17.581 | 0.000 |
Gasoil | 3.432 | 4.245 | 43.255 | 4.245 | 3.848 | 23.695 | 0.000 |
Gasoline | 4.146 | 0.191 | 49.761 | 4.579 | 3.488 | 21.647 | 0.000 |
Heating oil | 3.355 | 0.204 | 36.649 | 3.887 | 3.549 | 20.646 | 0.000 |
Natural gas | 5.581 | 0.262 | 162.507 | 8.354 | 9.635 | 154.035 | 0.000 |
Model | Crude Oil | Gasoil | Gasoline | Heating Oil | Natural Gas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPA | MCS | SPA | MCS | SPA | MCS | SPA | MCS | SPA | MCS | ||||||
GARCH-n | 3.862 | 0.155 | 0.294 * | 0.727 | 0.869 | 0.851 * | 2.854 | 0.589 | 0.614 * | 1.372 | 0.800 | 0.951 * | 24.575 | 0.695 | 0.651 * |
GARCH-t | 3.860 | 0.210 | 0.325 * | 0.727 | 0.843 | 0.851 * | 2.889 | 0.337 | 0.568 * | 1.379 | 0.351 | 0.839 * | 24.306 | 0.681 | 0.651 * |
EGARCH | 3.777 | 0.799 | 0.656 * | 0.726 | 0.723 | 0.851 * | 2.849 | 0.397 | 0.614 * | 1.360 | 0.886 | 1.000 * | 26.036 | 0.206 | 0.651 * |
GJR | 3.754 | 0.945 | 1.000 * | 0.739 | 0.197 | 0.773 * | 2.807 | 0.747 | 0.750 * | 1.379 | 0.334 | 0.893 * | 24.231 | 0.501 | 0.651 * |
APARCH | 3.819 | 0.453 | 0.615 * | 0.720 | 0.960 | 1.000 * | 2.790 | 0.896 | 1.000 * | 1.416 | 0.130 | 0.428 * | 24.428 | 0.221 | 0.651 * |
IGARCH | 3.915 | 0.005 | 0.133 * | 0.731 | 0.519 | 0.851 * | 2.911 | 0.119 | 0.540 * | 1.402 | 0.032 | 0.343 * | 24.708 | 0.422 | 0.651 * |
GARCH-M | 3.896 | 0.171 | 0.133 * | 0.734 | 0.554 | 0.851 * | 2.865 | 0.180 | 0.577 * | 1.381 | 0.048 | 0.789 * | 24.656 | 0.372 | 0.651 * |
SVR_lin_1 | 3.968 | 0.154 | 0.185 * | 0.757 | 0.000 | 0.170 * | 2.884 | 0.450 | 0.600 * | 1.366 | 0.770 | 0.954 * | 26.128 | 0.051 | 0.651 * |
SVR-lin-15 | 3.918 | 0.387 | 0.350 * | 0.729 | 0.629 | 0.851 * | 2.891 | 0.401 | 0.577 * | 1.362 | 0.902 | 0.954 * | 25.680 | 0.844 | 1.000 * |
SVR-rbf-1 | 3.926 | 0.169 | 0.129 * | 0.762 | 0.065 | 0.577 * | 2.893 | 0.306 | 0.568 * | 1.390 | 0.168 | 0.647 * | 26.073 | 0.064 | 0.651 * |
SVR-rbf-15 | 3.957 | 0.173 | 0.128 * | 0.757 | 0.051 | 0.275 * | 3.013 | 0.007 | 0.444 * | 1.410 | 0.010 | 0.193 * | 25.543 | 0.380 | 0.651 * |
Model | Crude Oil | Gasoil | Gasoline | Heating Oil | Natural Gas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPA | MCS | SPA | MCS | SPA | MCS | SPA | MCS | SPA | MCS | ||||||
GARCH-n | 0.343 | 0.000 | 0.000 | 0.184 | 0.000 | 0.000 | 0.302 | 0.000 | 0.000 | 0.229 | 0.139 | 0.082 | 0.568 | 0.000 | 0.010 |
GARCH-t | 0.341 | 0.000 | 0.000 | 0.185 | 0.000 | 0.000 | 0.300 | 0.000 | 0.001 | 0.229 | 0.163 | 0.083 | 0.554 | 0.001 | 0.004 |
EGARCH | 0.330 | 0.023 | 0.000 | 0.175 | 0.721 | 1.000 * | 0.302 | 0.024 | 0.003 | 0.224 | 0.968 | 1.000 * | 0.590 | 0.000 | 0.000 |
GJR | 0.334 | 0.003 | 0.000 | 0.180 | 0.001 | 0.022 | 0.303 | 0.007 | 0.001 | 0.228 | 0.061 | 0.083 | 0.577 | 0.000 | 0.002 |
APARCH | 0.332 | 0.048 | 0.000 | 0.176 | 0.280 | 0.564 * | 0.301 | 0.018 | 0.003 | 0.227 | 0.338 | 0.326 * | 0.601 | 0.000 | 0.001 |
IGARCH | 0.353 | 0.000 | 0.000 | 0.183 | 0.000 | 0.002 | 0.308 | 0.001 | 0.000 | 0.234 | 0.007 | 0.020 | 0.579 | 0.000 | 0.001 |
GARCH-M | 0.342 | 0.000 | 0.000 | 0.202 | 0.000 | 0.000 | 0.303 | 0.000 | 0.000 | 0.234 | 0.000 | 0.009 | 0.569 | 0.001 | 0.005 |
SVR_lin_1 | 0.326 | 0.000 | 0.000 | 0.198 | 0.000 | 0.000 | 0.290 | 0.096 | 0.197 * | 0.234 | 0.000 | 0.042 | 0.486 | 0.512 | 0.679 * |
SVR-lin-15 | 0.317 | 0.568 | 1.000 * | 0.190 | 0.000 | 0.000 | 0.288 | 0.915 | 1.000 * | 0.229 | 0.184 | 0.142 * | 0.464 | 0.720 | 1.000 * |
SVR-rbf-1 | 0.329 | 0.000 | 0.000 | 0.197 | 0.000 | 0.000 | 0.292 | 0.046 | 0.117 * | 0.236 | 0.001 | 0.010 | 0.488 | 0.279 | 0.679 * |
SVR-rbf-15 | 0.339 | 0.000 | 0.000 | 0.195 | 0.000 | 0.000 | 0.314 | 0.000 | 0.000 | 0.238 | 0.001 | 0.005 | 0.531 | 0.000 | 0.110 * |
Model | Crude Oil | Gasoil | Gasoline | Heating Oil | Natural Gas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPA | MCS | SPA | MCS | SPA | MCS | SPA | MCS | SPA | MCS | ||||||
GARCH-n | 1.231 | 0.015 | 0.047 | 0.587 | 0.017 | 0.104 * | 0.922 | 0.391 | 0.600 * | 0.430 | 0.289 | 0.143 * | 7.568 | 0.923 | 0.939 * |
GARCH-t | 1.244 | 0.025 | 0.031 | 0.582 | 0.128 | 0.116 * | 0.961 | 0.056 | 0.341 * | 0.434 | 0.125 | 0.113 * | 7.428 | 0.906 | 0.948 * |
EGARCH | 1.188 | 0.265 | 0.306 * | 0.618 | 0.030 | 0.063 | 0.943 | 0.183 | 0.449 * | 0.411 | 0.994 | 1.000 * | 8.539 | 0.185 | 0.154 * |
GJR | 1.147 | 0.935 | 1.000 * | 0.621 | 0.034 | 0.029 | 0.910 | 0.543 | 0.668 * | 0.430 | 0.110 | 0.113 * | 7.359 | 0.985 | 1.000 * |
APARCH | 1.197 | 0.364 | 0.306 * | 0.586 | 0.111 | 0.116 * | 0.896 | 0.634 | 0.668 * | 0.451 | 0.118 | 0.074 | 7.691 | 0.404 | 0.703 * |
IGARCH | 1.232 | 0.008 | 0.095 | 0.577 | 0.179 | 0.116 * | 0.879 | 0.882 | 1.000 * | 0.444 | 0.078 | 0.074 | 7.671 | 0.317 | 0.703 * |
GARCH-M | 1.267 | 0.026 | 0.026 | 0.553 | 0.968 | 1.000 * | 0.929 | 0.158 | 0.490 * | 0.434 | 0.223 | 0.113 * | 7.609 | 0.381 | 0.703 * |
SVR_lin_1 | 1.431 | 0.018 | 0.018 | 0.620 | 0.005 | 0.023 | 1.044 | 0.031 | 0.210 * | 0.449 | 0.078 | 0.068 | 9.924 | 0.004 | 0.012 |
SVR-lin-15 | 1.378 | 0.006 | 0.022 | 0.601 | 0.049 | 0.085 | 1.027 | 0.020 | 0.160 * | 0.441 | 0.148 | 0.113 * | 8.726 | 0.029 | 0.045 |
SVR-rbf-1 | 1.405 | 0.002 | 0.002 | 0.631 | 0.018 | 0.034 | 1.052 | 0.027 | 0.041 | 0.464 | 0.022 | 0.049 | 9.865 | 0.007 | 0.058 |
SVR-rbf-15 | 1.385 | 0.022 | 0.006 | 0.633 | 0.000 | 0.011 | 1.078 | 0.000 | 0.007 | 0.478 | 0.003 | 0.030 | 9.120 | 0.106 | 0.154 * |
Model | Crude Oil | Gasoil | Gasoline | Heating Oil | Natural Gas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPA | MCS | SPA | MCS | SPA | MCS | SPA | MCS | SPA | MCS | ||||||
GARCH-n | 0.212 | 0.003 | 0.021 | 0.135 | 0.012 | 0.001 | 0.186 | 0.978 | 1.000 * | 0.139 | 0.011 | 0.005 | 0.342 | 0.085 | 0.143 * |
GARCH-t | 0.212 | 0.005 | 0.009 | 0.135 | 0.014 | 0.001 | 0.188 | 0.352 | 0.880 * | 0.139 | 0.012 | 0.009 | 0.328 | 0.872 | 1.000 * |
EGARCH | 0.198 | 0.991 | 1.000 * | 0.134 | 0.017 | 0.007 | 0.191 | 0.308 | 0.761 * | 0.131 | 0.791 | 1.000 * | 0.370 | 0.000 | 0.004 |
GJR | 0.201 | 0.321 | 0.271 * | 0.136 | 0.002 | 0.000 | 0.188 | 0.633 | 0.937 * | 0.137 | 0.007 | 0.040 | 0.350 | 0.055 | 0.045 |
APARCH | 0.203 | 0.162 | 0.108* | 0.129 | 0.694 | 1.000 * | 0.186 | 0.865 | 0.998 * | 0.133 | 0.364 | 0.412 * | 0.382 | 0.000 | 0.001 |
IGARCH | 0.216 | 0.000 | 0.004 | 0.135 | 0.006 | 0.001 | 0.186 | 0.792 | 0.998 * | 0.142 | 0.000 | 0.001 | 0.349 | 0.019 | 0.027 |
GARCH-M | 0.213 | 0.004 | 0.001 | 0.143 | 0.000 | 0.000 | 0.187 | 0.259 | 0.974 * | 0.141 | 0.000 | 0.001 | 0.342 | 0.082 | 0.072 |
SVR_lin_1 | 0.217 | 0.000 | 0.001 | 0.149 | 0.000 | 0.000 | 0.193 | 0.023 | 0.534 * | 0.145 | 0.000 | 0.000 | 0.364 | 0.004 | 0.013 |
SVR-lin-15 | 0.204 | 0.237 | 0.108 * | 0.140 | 0.000 | 0.000 | 0.188 | 0.569 | 0.938 * | 0.141 | 0.004 | 0.002 | 0.347 | 0.279 | 0.364 * |
SVR-rbf-1 | 0.219 | 0.000 | 0.000 | 0.149 | 0.000 | 0.000 | 0.195 | 0.003 | 0.330 * | 0.147 | 0.000 | 0.000 | 0.359 | 0.024 | 0.018 |
SVR-rbf-15 | 0.222 | 0.000 | 0.000 | 0.148 | 0.000 | 0.000 | 0.206 | 0.000 | 0.045 | 0.148 | 0.000 | 0.000 | 0.362 | 0.034 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fałdziński, M.; Fiszeder, P.; Orzeszko, W. Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression. Energies 2021, 14, 6. https://doi.org/10.3390/en14010006
Fałdziński M, Fiszeder P, Orzeszko W. Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression. Energies. 2021; 14(1):6. https://doi.org/10.3390/en14010006
Chicago/Turabian StyleFałdziński, Marcin, Piotr Fiszeder, and Witold Orzeszko. 2021. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression" Energies 14, no. 1: 6. https://doi.org/10.3390/en14010006
APA StyleFałdziński, M., Fiszeder, P., & Orzeszko, W. (2021). Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression. Energies, 14(1), 6. https://doi.org/10.3390/en14010006