Environmental Assessment of the Vehicle Operation Process
Abstract
:1. Introduction
2. Modeling the Car Operation Phase
2.1. Purpose and Scope of the Research
2.2. Model Inventory Data
2.3. Assumptions Used in Identification Research
3. Characteristics of Changes in Material and Energy Inputs and Environmental Loads in the Vehicle Operation Phase
3.1. Assumptions for the Annual Vehicle Operation
- Annual mileage of motor vehicles: 15,000 km;
- The scope of activities involving the replacement of operating fluids and car parts and subassemblies subject to normal wear and tear was determined on the basis of periodic inspection schedules established by the manufacturers of the tested brands and models of motor vehicles.
- Tire change: every four years (summer and winter);
- Brake pad replacement: every two years;
- Changing the windscreen washer fluid: twice a year (summer and winter);
- Replacement of wiper blades: twice a year.
3.2. Energy Inputs
3.3. CO2 Emissions
3.4. SO2 Emissions
3.5. Changes in Energy Input Related to Vehicle Failure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Parliament. CO2 Emissions from Cars: Facts and Figures. Strasbourg. 2019. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics (accessed on 12 December 2020).
- FIA. Global Reduction in CO2 Emissions from Cars: A Consumer’s Perspective—Policy Recommendations for Decision Makers. Paris. 2015. Available online: https://www.fia.com/sites/default/files/global_reduction_in_co2_emissions_from_cars-_a_consumers_perspective_0.pdf (accessed on 12 December 2020).
- CO2 Emissions from Cars: The Facts. A Report by Transport & Environment, European Federation for Transport and Environment AISBL. Brussels. 2018. Available online: https://www.transportenvironment.org/publications/co2-emissions-cars-facts (accessed on 16 December 2020).
- Environmental Management. Life Cycle Assessment; Principles and Framework: Geneva, Switzerland, 2006; ISO 14040. [Google Scholar]
- Environmental Management. Life Cycle Assessment; Requirements and Guidelines: Geneva, Switzerland, 2006; ISO 14044. [Google Scholar]
- Braess, H.-H.; Finkenauer, W.; Hamm, L.; Rotberg, B.V.; Weber, R.; Willeke, R.; Bellmann, K. Lebensdauer, recycling, ressourcenschonung, entwicklungstrends—Grundlagen und probleme bei der konzipierung gesamtwirtschaftlich optimaler personenkraftwagen, entwicklungslinien in der kraftfahrzeugtechnik. In Proceedings of the 4. Statusseminar Kraftfahrzeug- und Straßenverkehrstechnik, Bundesministeriums für Forschung und Technologie, Verlag TÜV Rheinland, Cologne, Germany, 12 November 1976. [Google Scholar]
- Mayyas, A.; Qattawi, A.; Omara, M.; Shan, D. Design for sustainability in automotive industry: A comprehensive review. Renew. Sustain. Energy Rev. 2012, 16, 1845–1862. [Google Scholar] [CrossRef]
- Suzuki, T.; Odai, T.; Hukui, R.; Takahashi, J. LCA of passenger vehicles lightened by recyclable carbon fiber reinforced plastics. In Proceedings of the International Conference on Life Cycle Assessment, San Jose, Costa Rica, 25–28 April 2008. [Google Scholar]
- Ballester, F. Air pollution and health: An overview with some case studies. In Environmental Health Impacts of Transport and Mobility; Nicolopoulou-Stamati, P., Hens, L., Howard, C.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 21, pp. 53–77. [Google Scholar]
- Roussou, T.; Behrakis, P. The respiratory effects of air pollution. In Environmental Health Impacts of Transport and Mobility; Nicolopoulou-Stamati, P., Hens, L., Howard, C.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 21, pp. 79–94. [Google Scholar]
- Hensher, D.A.; Button, K.J. Handbook of Transport and the Environment; Publisher Elsevier Science: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Raugei, M.; Morrey, D.; Hutchinson, A.; Winfield, P. A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. J. Clean. Prod. 2015, 108, 1168–1176. [Google Scholar] [CrossRef] [Green Version]
- Regulation No 100 of the Economic Commission for Europe of the United Nations (UNECE). Uniform Provisions Concerning the Approval of Vehicles with Regard to Specific Requirements for the Electric Power Train; Publications Office in European Union: Luxembourg, 2015. [Google Scholar]
- World Business Council for Sustainable Development (WBCSD). Mobility 2030: Meeting the Challenges to Sustainability. World Business Council for Sustainable Development; Conches: Geneva, Switzerland, 2004. [Google Scholar]
- Messagie, M.; Boureima, F.S.; Coosemans, T.; Macharis, C.; Mierlo, J. Van A range-based vehicle life cycle assessment incorporating variability in the environmental assessment of different vehicle technologies and fuels. Energies 2014, 7, 1467–1482. [Google Scholar] [CrossRef]
- Zackrisson, M.; Avellan, L.; Orlenius, J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—Critical issues. J. Clean. Prod. 2010, 18, 1519–1529. [Google Scholar] [CrossRef]
- Gao, L.; Winfield, Z.C. Life cycle assessment of environmental and economic impacts of advanced vehicles. Energies 2012, 5, 605–620. [Google Scholar] [CrossRef]
- Xiong, S.; Ji, J.; Ma, X. Comparative life cycle energy and ghg emission analysis for BEVs and PhEVs: A case study in China. Energies 2019, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles; SAE Technical Paper; Argonne National Laboratories: Lemont, IL, USA, 2009.
- Hekkert, M.P.; Hendriks, F.H.J.F.; Faaij, A.P.C.; Neelis, M.L. Natural Gas as an alternative to crude oil in automotive fuel chains: Well-To-Wheel analysis and transition strategy development. Energy Policy 2005, 33, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Donateo, T.; Ingrosso, F.; Bruno, D.; Laforgia, D. Effect of driving conditions and auxiliaries on mileage and CO2 emissions of a gasoline and an electric city car. SAE Tech. Paper 2014. [Google Scholar] [CrossRef]
- Tagliaferri, C.; Evangelisti, S.; Acconcia, F.; Domenech, P.; Ekins, P.; Barletta, D.; Lettieri, P. Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chem. Eng. Res. Des. 2016, 112, 298–309. [Google Scholar] [CrossRef]
- Van den Bossche, P.; Vergels, F.; VanMierlo, J.; Matheys, J.; Van Autenboer, W. SUBAT: An assessment of sustainable battery technology. J. Power Sources 2006, 162, 913–919. [Google Scholar] [CrossRef]
- Messagie, M.; Boureima, F.S.; Matheys, J. Environmental performance of a battery electric vehicle: A descriptive life cycle assessment approach. World Electr. Veh. J. 2011, 4, 782–786. [Google Scholar] [CrossRef] [Green Version]
- Ellingsen, L.A.-W.; Majeau-Bettez, G.; Singh, B. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 2014, 18, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Faria, R.; Marques, P.; Moura, P.; Freire, F.; Delgado, J.; de Almeida, A.T. Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renew. Sustain. Energy Rev. 2013, 24, 271–287. [Google Scholar] [CrossRef]
- Bartolozzi, I.; Rizzi, F.; Frey, M. Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany. Appl. Energy 2013, 101, 103–111. [Google Scholar] [CrossRef]
- 28. Donateo, T.; Ingrosso, F.; Lacandia, F.; Pagliara, E. Impact of hybrid and electric mobility in a medium sized historic city. SAE Tech. Paper 2013. [Google Scholar] [CrossRef]
- Casals, L.C.; Martinez-Laserna, E.; García, B.A.; Nieto, N. Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. J. Clean. Prod. 2016, 127, 425–437. [Google Scholar] [CrossRef]
- Bauer, C.; Hofer, J.; Althaus, H.-J.; Del Duce, A.; Simons, A. The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl. Energy 2015, 157, 871–883. [Google Scholar] [CrossRef]
- Hawkins, T.R.; Gausen, O.M.; Stromman, A.H. Environmental impacts of hybrid and electric vehicles—a review. Int. J. Life Cycle Assess. 2012, 17, 997–1014. [Google Scholar] [CrossRef]
- Lombardi, L.; Tribioli, L.; Cozzolino, R.; Bell, G. Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrain based on LCA. Int. J. Life Cycle Assess. 2017, 22, 1989–2006. [Google Scholar] [CrossRef]
- Harris, A.; Soban, D.; Smyth, B.M.; Best, R. Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies. Renew. Sustain. Energy Rev. 2018, 97, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Eberle, R. Dissertation zum Thema “Methodik zur ganzheitlichen Bilanzierung im Automobilbau”; Technische Universität Berlin, Fakultät 10: Berlin, Germany, 2000. [Google Scholar]
A Pair of Variables: Mass and Years | n | R Spearman | t(n−2) | p |
---|---|---|---|---|
all | 33 | 0.806 | 7.57 | <0.0001 |
1984–1989 | 4 | −0.632 | −1.15 | 0.3675 |
1990–1995 | 7 | 0.500 | 1.29 | 0.2531 |
1996–2001 | 7 | 0.579 | 1.59 | 0.1735 |
2002–2007 | 7 | 0.624 | 1.79 | 0.1342 |
2008–2013 | 8 | 0.457 | 1.26 | 0.2548 |
Year of Production | n | Average (kg) | Standard Deviation (kg) |
---|---|---|---|
1984–1989 | 4 | 795.0 | 83.0 |
1990–1995 | 7 | 904.3 | 79.4 |
1996–2001 | 7 | 983.7 | 114.2 |
2002–2007 | 7 | 1083.4 | 94.6 |
2008–2013 | 8 | 1135.5 | 120.5 |
Independent Variable: Year of Production | ||||
---|---|---|---|---|
Kruskal–Wallis Test: H (4, n = 33) = 18.71; p = 0.0009 | ||||
Dependent: Vehicle Weight | Code | n | Sum of Ranks | Average Ranks |
1984–1989 | 101 | 4 | 17.5 | 4.4 |
1990–1995 | 102 | 7 | 70.0 | 10.0 |
1996–2001 | 103 | 7 | 114.5 | 16.4 |
2002–2007 | 104 | 7 | 155.0 | 22.1 |
2008–2013 | 105 | 8 | 204.0 | 25.5 |
Model: Mass = b + a × Years Dependent Variable: Mass; Independent Variables: Years R2 = 0.622; R = 0.789 | ||||||
---|---|---|---|---|---|---|
Parameter | Rating | Standard Error | t (df = 31) | p | Lower Confidence Limit | Upper Confidence Limit |
b | −27,545.5 | 3995.0 | −6.90 | p < 0.0001 | −35,693.2 | −19,397.7 |
a | 14.3 | 2.0 | 7.15 | p < 0.0001 | 10.2 | 18.4 |
Replacement of Components (kg/year) | Production Years Periods | ||||
---|---|---|---|---|---|
1984–1989 | 1990–1995 | 1996–2001 | 2002–2007 | 2008–2013 | |
Oil replacement | 2.76 | 2.62 | 2.52 | 1.88 | 1.41 |
Oil filter replacement | 0.65 | 0.64 | 0.55 | 0.37 | 0.30 |
Brake fluid replacement | 0.20 | 0.18 | 0.17 | 0.28 | 0.31 |
Coolant replacement | 1.22 | 0.86 | 1.07 | 0.52 | 0.67 |
Air filter element replacement | 0.30 | 0.20 | 0.14 | 0.17 | 0.15 |
Cabin filter (pollen) replacement | 0.25 | 0.23 | 0.26 | 0.28 | 0.27 |
Fuel filter replacement | 0.55 | 0.33 | 0.28 | 0.22 | 0.22 |
Timing belt replacement | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 |
Spark plug replacement | 0.40 | 0.24 | 0.20 | 0.21 | 0.22 |
Tires replacement | 12.42 | 12.56 | 12.64 | 13.52 | 12.84 |
Brake pad replacement | 0.46 | 0.45 | 0.51 | 0.46 | 0.54 |
Windscreen washer fluid replacement | 4.59 | 4.43 | 3.05 | 4.32 | 3.76 |
Wiper blade replacement | 1.14 | 1.22 | 1.17 | 1.31 | 1.30 |
Gasoline (average consumption) | 725.63 | 763.39 | 758.57 | 742.50 | 700.31 |
EI (MJ) | Production Year Periods | ||||
---|---|---|---|---|---|
1984–1989 | 1990–1995 | 1996–2001 | 2002–2007 | 2008–2013 | |
The entire vehicle | 6090 | 6334 | 6286 | 6088 | 5722 |
Gasoline | 5703 | 6000 | 5962 | 5836 | 5505 |
Others | 387 | 334 | 324 | 252 | 218 |
CO2 Emissions (kg) | Production Year Periods | ||||
---|---|---|---|---|---|
1984–1989 | 1990–1995 | 1996–2001 | 2002–2007 | 2008–2013 | |
The entire vehicle | 2913 | 3061 | 3041 | 2975 | 2805 |
Gasoline | 2897 | 3048 | 3029 | 2965 | 2796 |
Others | 16 | 13 | 12 | 10 | 9 |
SO2 Emissions (kg) | Production Year Periods | ||||
---|---|---|---|---|---|
1984–1989 | 1990–1995 | 1996–2001 | 2002–2007 | 2008–2013 | |
The entire vehicle | 8.16 | 8.57 | 8.52 | 8.33 | 7.86 |
Gasoline | 8.12 | 8.54 | 8.49 | 8.31 | 7.84 |
Others | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 |
Production Period | 1996–2001 | 2002–2007 | ||||
---|---|---|---|---|---|---|
Mileage (1000 km) | 0–50 | 50–100 | 100–150 | 0–50 | 50–100 | 100–150 |
Electrics, electronics, lighting | 457 | 1292 | 2134 | 493 | 1245 | 2103 |
Body, chassis, passenger compartment | 289 | 695 | 1195 | 309 | 684 | 1239 |
Engine, exhaust system | 308 | 1053 | 1879 | 546 | 1285 | 1949 |
Braking system | 48 | 132 | 191 | 72 | 160 | 232 |
Driving system, steering system | 327 | 1152 | 1876 | 220 | 702 | 1244 |
In total | 1429 | 4324 | 7275 | 1640 | 4076 | 6767 |
Year of Production | 1996–2001 | 2002–2007 | ||||
---|---|---|---|---|---|---|
Mileage (1000 km) | 0–50 | 50–100 | 100–150 | 0–50 | 50–100 | 100–150 |
Electrics, electronics, lighting | 416 | 1189 | 1984 | 459 | 1145 | 1935 |
Body, chassis, passenger compartment | 225 | 535 | 944 | 235 | 527 | 929 |
Engine, exhaust system | 259 | 874 | 1541 | 464 | 1080 | 1617 |
Braking system | 41 | 115 | 168 | 62 | 139 | 200 |
Driving system, steering system | 271 | 968 | 1539 | 179 | 569 | 1020 |
In total | 1212 | 3681 | 6176 | 1399 | 3460 | 5701 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrozik, M.; Merkisz-Guranowska, A. Environmental Assessment of the Vehicle Operation Process. Energies 2021, 14, 76. https://doi.org/10.3390/en14010076
Mrozik M, Merkisz-Guranowska A. Environmental Assessment of the Vehicle Operation Process. Energies. 2021; 14(1):76. https://doi.org/10.3390/en14010076
Chicago/Turabian StyleMrozik, Małgorzata, and Agnieszka Merkisz-Guranowska. 2021. "Environmental Assessment of the Vehicle Operation Process" Energies 14, no. 1: 76. https://doi.org/10.3390/en14010076
APA StyleMrozik, M., & Merkisz-Guranowska, A. (2021). Environmental Assessment of the Vehicle Operation Process. Energies, 14(1), 76. https://doi.org/10.3390/en14010076