Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste
Abstract
:1. Introduction
1.1. Deep Horizontal Borehole Repository
1.2. Sealing Requirements for Different Repository Types
1.3. Sealing of Waste Deposition and Access Structures
1.4. Sealing Integrity and Risks from Sealing Imperfections
1.5. Modeling of Borehole Leakage in Repository Settings
1.6. Study Objectives
2. Model Development
2.1. System Description and Conceptual Model
2.2. Integrated Modeling Approach
2.3. Scenario Description
2.3.1. Reference Scenario
2.3.2. Disruptive Scenarios
2.3.3. Performance Measures
- Reference or Nominal Scenario (Section 3.1)
- Two-Fault Scenario with Well-Sealing Backfill (Section 3.2)
- Two-Fault Scenario with Poorly-Sealing Backfill (Section 3.3)
- One-Fault Scenario with Well-Sealing Backfill (Section 3.4)
- One-Fault Scenario with Poorly-Sealing Backfill (Section 3.5)
3. Results and Discussion
3.1. Reference Scenario
3.2. Two-Fault Scenario with Well-Sealing Backfill
3.3. Two-Fault Scenario with Poorly-Sealing Backfill
3.4. One-Fault Scenario with Well-Sealing Backfill
3.5. One-Fault Scenario with Poorly-Sealing Backfill
3.6. Performance Comparison
4. Summary and Concluding Remarks
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, R.A.; Finsterle, S.; Grimsich, J.; Baltzer, R.; Muller, E.A.; Rector, J.W.; Payer, J.; Apps, J. Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes. Energies 2019, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Sievänen, U.; Karvonen, T.H.; Dixon, D.; Hansen, J.; Jalonen, T. Design, Production and Initial State of the Underground Disposal Facility Closure; Posiva Oy: Eurajoki, Finland, 2012; p. 112. [Google Scholar]
- Keto, P.; Dixon, D.; Jonsson, E.; Gunnarsson, D.; Börgesson, L.; Hansen, J. Assessment of Backfill Design for KBS-3V Repository; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2009; p. 119. [Google Scholar]
- Muller, H.R.; Garitte, B.; Vogt, T.; Kohler, S.; Sakaki, T.; Weber, H.; Spillmann, T.; Hertrich, M.; Becker, J.K.; Giroud, N.; et al. Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory. Swiss J. Geosci. 2017, 110, 287–306. [Google Scholar] [CrossRef] [Green Version]
- Bosgiraud, J.-M.; Foin, R.; Bethmont, S. Full Scale Demonstration of Plugs and Seals-Report on FSS Shotcrete Plug Construction; Andra: Paris, France, 2016; p. 22. [Google Scholar]
- Hansen, J.; Holt, E.; Palmu, M. DOPAS: Full-Scale Demonstration of Plugs and Seal. In Proceedings of the Euradwaste′13: 8th EC Conference on the Management of Radioactive Waste, Community Policy and Research on Disposal, Vilnius, Lithuania, 14–16 October 2013; p. 8. [Google Scholar]
- Dixon, D.; Priyanto, D.; Hansen, J.; Farhoud, R.; Živkovic, A. The Enhanced Sealing Project (ESP): 2009–17 monitoring of a full-scale shaft seal installed in granitic rock. Geol. Soc. Lond. Spec. Publ. 2018, 482, 347–359. [Google Scholar] [CrossRef]
- Arnold, B.W.; Brady, P.V.; Bauer, S.J.; Herrick, C.; Pye, S.; Finger, J. Reference Design and Operations for Deep Borehole Disposal of High-Level Radioactive Waste; Sandia National Laboratories: Albuquerque, NM, USA, 2011; p. 67. [Google Scholar]
- Arnold, B.W.; Brady, P.; Sutton, M.; Travis, K.; MacKinnon, R.; Gibb, F.; Greenberg, H. Deep Borehole Disposal Research: Geological Data Evaluation; Alternative Waste Forms and Borehole Seals; Sandia National Laboratories: Albuquerque, NM, USA, 2014; p. 116. [Google Scholar]
- Arnold, B.W.; Brady, P.; Altman, S.; Vaughn, P.; Nielson, D.; Lee, J.; Gibb, F.; Mariner, P.; Travis, K.; Halsey, W.; et al. Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs; Sandia National Laboratories: Albuquerque, NM, USA, 2013; p. 221. [Google Scholar]
- Arnold, B.W.; Vaughn, P.; MacKinnon, R.; Tillman, J.; Nielson, D.; Brady, P.; Halsey, W.; Altman, S. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal; Sandia National Laboratories: Albuquerque, NM, USA, 2012; p. 151. [Google Scholar]
- NWTRB. Technical Evaluation of the U.S. Department of Energy Deep Borehole Disposal Research and Development Program; U.S. Nuclear Waste Technical Review Board: Arlington, VA, USA, 2016; p. 72. [Google Scholar]
- Pusch, R.; Ramqvist, G.; Knutsson, S.; Mohammed, H.M. Medium-deep or very deep disposal of highly radioactive waste? J. Civ. Eng. Archit. 2013, 7, 1548–1565. [Google Scholar]
- Sellin, P.; Leupin, O.X. The use of clay as an engineered barrier in radioactive-waste management-a review. Clays Clay Miner. 2013, 61, 477–498. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R. Distinguishing between more and less suitable bentonites for storage of high-level radioactive waste. Clay Miner. 2016, 51, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Nuclear Decommissioning Authority (NDA). A Review of the Development of Bentonite Barriers in the KBS-3V Disposal Concept; Nuclear Decommissioning Authority (NDA): Didcot, Oxford, UK, 2014; p. 84. [Google Scholar]
- Svensk Kärnbränslehantering AB (SKB). Long-Term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark-Main Report of the SR-Site Project, Volume II; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2011; p. 278. [Google Scholar]
- Svensk Kärnbränslehantering AB (SKB). Long-Term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark-Main Report of the SR-Site Project, Volume I; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2011; p. 271. [Google Scholar]
- Teodori, S.-P.; Rüedi, J.; Reinhold, M.; Manca, D. Design, Testing and Emplacement of Sand-Bentonite for the Construction of a Gas-Permeable Seal Test (GAST). In Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1: Low/Intermediate-Level Radioactive Waste Management; Spent Fuel, Fissile Material, Transuranic and High-Level Radioactive Waste Management. Brussels, Belgium, 8–12 September 2013. [Google Scholar]
- Pusch, R.; Ramqvist, G.; Bockgård, N.; Ekman, L. Sealing of Investigation Boreholes, Phase 4; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2011; p. 51. [Google Scholar]
- Liu, X.D.; Prikryl, R.; Pusch, R. THMC testing of three expandable clays of potential use in HLW repositories. Appl. Clay Sci. 2011, 52, 419–427. [Google Scholar] [CrossRef]
- Rod, K.A.; Nguyen, M.T.; Elbakhshwan, M.; Gills, S.; Kutchko, B.; Varga, T.; McKinney, A.M.; Roosendaal, T.J.; Childers, M.I.; Zhao, C.H.; et al. Insights into the physical and chemical properties of a cement-polymer composite developed for geothermal wellbore applications. Cem. Concr. Compos. 2019, 97, 279–287. [Google Scholar] [CrossRef]
- Lavrov, A.; Torsæter, M. Physics and Mechanics of Primary Well Cementing; Springer: Berlin/Heidelberg, Germany, 2016; p. 111. [Google Scholar]
- Pusch, R.; Ramqvist, G.; Knutsson, S. Modern method for sealing deep boreholes. Eng. Geol. 2016, 202, 132–142. [Google Scholar] [CrossRef]
- Beswick, J. Borehole construction and operation for disposal in crystalline rocks. Radwaste Solut. 2017, 24, 28–32. [Google Scholar]
- Gibb, F.G.F.; McTaggart, N.A.; Travis, K.P.; Burley, D.; Hesketh, K.W. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel. J. Nucl. Mater. 2008, 374, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Gibb, F.G.F.; Travis, K.P.; Hesketh, K.W. Deep borehole disposal of higher burn up spent nuclear fuels. Mineral. Mag. 2012, 76, 3003–3017. [Google Scholar] [CrossRef]
- Mohammed, M.H.; Pusch, R.; Knutsson, S.; Warr, L.N. Hydrothermal alteration of clay and low pH concrete applicable to deep borehole disposal of high-level radioactive waste-A pilot study. Constr. Build. Mater. 2016, 104, 1–8. [Google Scholar] [CrossRef]
- Berner, U.; Kulik, D.A.; Kosakowski, G. Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste. Phys. Chem. Earth 2013, 64, 46–56. [Google Scholar] [CrossRef]
- Savage, D. A review of analogues of alkaline alteration with regard to long-term barrier performance. Mineral. Mag. 2011, 75, 2401–2418. [Google Scholar] [CrossRef]
- Clayton, D.; Freeze, G.; Hadgu, T.; Hardin, E.; Lee, J.; Prouty, J.; Rogers, R.; Nutt, W.M.; Birkholzer, J.; Liu, H.H.; et al. Generic System Modeling—Fiscal Year 2011 Progress Report; Sandia National Laboratories: Washington, DC, USA, 2011; p. 466. [Google Scholar]
- Ansolabehere, S.; Deutch, J.; Driscoll, M.; Holdren, J.P.; Joskow, P.L.; Lester, R.K.; Moniz, E.J.; Todreas, N.E. The Future of Nuclear Power: An Interdisciplinary MIT Study; Massachusetts Institute of Technology: Cambridge, MA, USA, 2003; p. 180. [Google Scholar]
- Pusch, R.; Knutsson, S.; Ramqvist, G.; Mohammed, M.H.; Pourbakjtiar, A. Can sealing of rock hosting a repository for highly radioactive waste be relied on? Nat. Sci. 2012, 4, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Pusch, R.; Knutsson, S.; Al-Taie, L. The impact of hydraulic gradients and boundary conditions on the microstructural stability of clayey backfills with special respect to the risk of piping and erosion. J. Earth Sci. Geotech. Eng. 2012, 12, 89–112. [Google Scholar]
- Da Silva, D.V.A.; Jansen, J.D. A review of coupled dynamic well-reservoir simulation. In ISAPP (Integrated Systems Approach to Petroleum Production); IFAC-PapersOnLine: Amsterdam, the Netherlands, 2015; pp. 236–241. [Google Scholar]
- Ajayi, T.; Gupta, I. A review of reactive transport modeling in wellbore integrity problems. J. Pet. Sci. Eng. 2019, 175, 785–803. [Google Scholar] [CrossRef]
- Choi, Y.S.; Young, D.; Nesic, S.; Gray, L.G.S. Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: A literature review. Int. J. Greenh. Gas Control 2013, 16, S70–S77. [Google Scholar] [CrossRef]
- Bachu, S.; Bennion, D.B. Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions. Int. J. Greenhouse Gas Control 2009, 3, 494–501. [Google Scholar] [CrossRef]
- Ebigbo, A.; Class, H.; Helmig, R. CO2 leakage through an abandoned well: Problem-oriented benchmarks. Comput. Geosci. 2007, 11, 103–115. [Google Scholar] [CrossRef]
- Joyce, S.; Simpson, T.; Hartley, L.; Applegate, D.; Hoek, J.; Jackson, P.; Swan, D.; Marsic, N.; Follin, S. Groundwater Flow Modelling of Periods with Temperate Climate Conditions–Forsmark; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2010; p. 315. [Google Scholar]
- Bockgård, N. Hydraulic Effects of Unsealed Boreholes-Numerical Groundwater Flow Modelling of the Forsmark and Laxemar Sites; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2011; p. 63. [Google Scholar]
- Hadgu, T.; Arnold, B.; Lee, J.; Freeze, G.; Vaughn, P. Sensitivity analysis of seals permeability and performance assessment of deep borehole disposal of radioactive waste. In Proceedings of the Eleventh Probabilistic Safety Assessment and Management Conference (PSAM11) and the Annual European Safety and Reliability Conference (ESREL 2012), Helsinki, Finland, 25–29 June 2012; p. 10. [Google Scholar]
- Swift, P.N.; Arnold, B.W.; Brady, P.V.; Freeze, G.; Hadgu, T.; Lee, J.; Wang, Y. Preliminary performance assessment for deep borehole disposal of high-level radioactive waste. In Proceedings of the International High-Level Radioactive Waste Management Conference, Albuquerque, NM, USA, 10–14 April 2011; pp. 32–37. [Google Scholar]
- Mallants, D. The use of numerical models in support of site characterization and performance assessment studies of geologic repositories-Examples from the Boom Clay in Mol. In Proceedings of the Belgian higher Nuclear Education Network, Mol, Belgium, 20 November 2007; p. 80. [Google Scholar]
- Finsterle, S.; Muller, R.A.; Grimsich, J.; Apps, J.; Baltzer, R. Post-Closure Safety Calculations for the Disposal of Spent Nuclear Fuel in a Generic Horizontal Drillhole Repository. Energies 2020, 13, 31. [Google Scholar] [CrossRef]
- Isolation, D. Spent Nuclear Fuel Disposal in a Deep Horizontal Drillhole Repository Sited in Shale: Numerical Simulations in Support of a Generic Post-Closure Safety Analysis; Deep Isolation, Inc.: Berkeley, CA, USA, 2020; p. 149. [Google Scholar]
- IAEA. “Reference Biospheres” for Solid Radioactive Waste Disposal; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- Finsterle, S.; Commer, M.; Edmiston, J.K.; Jung, Y.; Kowalsky, M.B.; Pau, G.S.H.; Wainwright, H.M.; Zhang, Y. iTOUGH2: A multiphysics simulation-optimization framework for analyzing subsurface systems. Comput. Geosci. 2017, 108, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Finsterle, S.; Sonnenthal, E.L.; Spycher, N. Advances in subsurface modeling using the TOUGH suite of simulators. Comput. Geosci. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Pruess, K. The TOUGH codes-A family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J. 2004, 3, 738–746. [Google Scholar]
- Osborne, M.J.; Swarbrick, R.E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bull. 1997, 81, 1023–1041. [Google Scholar]
- Hart, B.S.; Flemings, P.B.; Deshpande, A. Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin. Geology 1995, 23, 45–48. [Google Scholar] [CrossRef]
- Guo, X.W.; Liu, K.Y.; He, S.; Yang, Z.; Dong, T.T. Quantitative estimation of overpressure caused by gas generation and application to the Baiyun Depression in the Pearl River Mouth Basin, South China Sea. Geofluids 2016, 16, 129–148. [Google Scholar] [CrossRef]
- Vinard, P.; Bobet, A.; Einstein, H.H. Generation and evolution of hydraulic underpressures at Wellenberg, Switzerland. J. Geophys. Res. Solid Earth 2001, 106, 30593–30605. [Google Scholar] [CrossRef]
- Neuzil, C.E.; Provost, A.M. Ice sheet load cycling and fluid underpressures in the Eastern Michigan Basin, Ontario, Canada. J. Geophys. Res. Solid Earth 2014, 119, 8748–8769. [Google Scholar] [CrossRef]
- Neuzil, C.E. Hydromechanical effects of continental glaciation on groundwater systems. Geofluids 2012, 12. [Google Scholar] [CrossRef]
- Birchall, T.; Senger, K.; Hornum, M.T.; Olaussen, S.; Braathen, A. Underpressure in the northern Barents shelf: Causes and implications for hydrocarbon exploration. AAPG Bull. 2020, 104, 2267–2295. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Weingarten, M.B.; Murray, K.E.; Reedy, R.C. Managing Basin-Scale Fluid Budgets to Reduce Injection-Induced Seismicity from the Recent US Shale Oil Revolution. Seismol. Res. Lett. 2019, 90, 171–182. [Google Scholar] [CrossRef]
- Pusch, R.; Knutsson, S.; Al-Taie, L.; Mohammed, M.H. Optimal ways of disposal of highly radioactive waste. Nat. Sci. 2012, 4, 906–918. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.F.; Senger, R.; Finsterle, S. Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository. Nucl. Technol. 2011, 174, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Gibb, F.G.F.; Travis, K.P. Sealing Deep Borehole Disposals of Radioactive Waste by ‘Rock Welding’. In Proceedings of the 15th International High-Level Radioactive Waste Management Conference, Charleston, SC, USA, 12–16 April 2015; pp. 401–406. [Google Scholar]
- Mohammed, M.H.; Pusch, R.; Knutsson, S. Study of cement-grout penetration into fractures under static and oscillatory conditions. Tunn. Undergr. Space Technol. 2015, 45, 10–19. [Google Scholar] [CrossRef]
- Lowry, T.S.; James, S.C.; Jensen, R.M.; Lee, M.Y.; Lappin, A.R.; Arnold, B.W.; Gettemy, G.L.; Meier, D.K. Preliminary Study on Hydrogeology in Tectonically Active Areas; Sandia National Laboratories: Albuquerque, NM, USA, 2006; p. 150. [Google Scholar]
- Rhén, I.; Forsmark, T.; Hartley, L.; Joyce, S.; Roberts, D.; Gylling, B.; Marsic, N. Hydrogeology Model Testing and Synthesis-Site Description Modelling SDM-Site Laxemar; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2009; p. 403. [Google Scholar]
- Leonard, M. Self-Consistent Earthquake Fault-Scaling Relations: Update and Extension to Stable Continental Strike-Slip Faults. Bull. Seismol. Soc. Am. 2014, 104, 2953–2965. [Google Scholar] [CrossRef]
- Trippetta, F.; Petricca, P.; Billi, A.; Collettini, C.; Cuffaro, M.; Lombardi, A.M.; Scrocca, D.; Ventura, G.; Morgante, A.; Doglioni, C. From mapped faults to fault-length earthquake magnitude (FLEM): A test on Italy with methodological implications. Solid Earth 2019, 10, 1555–1579. [Google Scholar] [CrossRef] [Green Version]
- Hennings, P.; Allwardt, P.; Paul, P.; Zahm, C.; Reid, R.; Alley, H.; Kirschner, R.; Lee, B.; Hough, E. Relationship between fractures, fault zones, stress, and reservoir productivity in the Suban gas field, Sumatra, Indonesia. AAPG Bull. 2012, 96, 753–772. [Google Scholar] [CrossRef]
- Achtziger-Zupancic, P.; Loew, S.; Hiller, A. Factors controlling the permeability distribution in fault vein zones surrounding granitic intrusions (Ore Mountains/Germany). J. Geophys. Res. Solid Earth 2017, 122, 1876–1899. [Google Scholar] [CrossRef]
- Beck, M.; Class, H. Modelling fault reactivation with characteristic stress-drop terms. Adv. Geosci. 2017, 47, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Andra. Dossier 2005 Argile: Synthesis—Evaluation of the Feasibility of a Geological Repository in an Argillaceous Formation—Meuse/Haute-Marne Site; Andra (Agence nationale pour la gestion des déchets radioactifs): Paris, France, 2005; p. 241. [Google Scholar]
- Nagra. Project Opalinus Clay: Models, Codes and Data for Safety Assessment. Demonstration of Disposal Feasibility for Spent Fuel, Vitrified High-Level Waste and Long-Lived Intermediate-Level Waste (Entsorgungsnachweis); Nagra (National Cooperative for the Disposal of Radioactive Waste): Wettingen, Switzerland, 2002; p. 504. [Google Scholar]
- NWMO. Postclosure Safety Assessment of a Used Fuel Repository in Sedimentary Rock; NWMO (Nuclear Waste Management Organization): Toronto, ON, Canada, 2013; p. 610. [Google Scholar]
- Freeze, G.; Voegele, M.; Vaughn, P.; Prouty, J.; Nutt, W.M.; Hardin, E.; Sevougian, S.D. Generic Deep Disposal Safety Case; Sandia National Laboratories: Albuquerque, NM, USA, 2013; p. 372. [Google Scholar]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 17, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Millington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. [Google Scholar] [CrossRef]
- Finsterle, S.; Muller, R.A.; Baltzer, R.; Payer, J.; Rector, J.W. Thermal Evolution near Heat-Generating Nuclear Waste Canisters Disposed in Horizontal Drillholes. Energies 2019, 12, 23. [Google Scholar] [CrossRef] [Green Version]
Parameter | Reference Scenario | Fault Reactivation Scenario | |
---|---|---|---|
Well-Sealing Backfill | Poorly-Sealing Backfill | ||
horizontal/axial 1 permeability (m2) 2 | |||
Aquifer | 1 × 10−12 | 1 × 10−12 | 1 × 10−12 |
Host rock | 1 × 10−17 | 1 × 10−17 | 1 × 10−17 |
Overburden | 1 × 10−14 | 1 × 10−14 | 1 × 10−14 |
Underburden | 3 × 10−16 | 3 × 10−16 | 3 × 10−16 |
Buffer 3 | 1 × 10−16 | 1 × 10−16 | 1 × 10−13 |
Plug | 1 × 10−16 | 1 × 10−16 | 1 × 10−13 |
Backfill | 1 × 10−15 | 1 × 10−15 | 1 × 10−13 |
transmissivity (m2 s−1) | |||
Fault core | n/a | 5 × 10−5 | 5 × 10−5 |
Zone | Main Characteristics | Borehole Sealing Issues |
---|---|---|
1 | Near-Surface Critical Zone: Section impacted by the regional hydrologic cycle; contains both fresh and brackish aquifers. Generally isolated from deeper fluids. Water flows tend to be influenced by topography, lateral on a regional scale, driven by gravity, fluid pressures, available pathways, formation characteristics, and water supply. Gas pressure near atmospheric. Contaminants in this zone likely to reach the biosphere, with concentrations strongly influenced by mixing and bio-geochemical reactions. | Operational design, abandonment, and sealing practices of wells penetrating the critical zone are highly regulated to ensure effective isolation from deeper circulation systems. Cemented casing is required; bentonite seals are proven effective for zonal isolation, preventing lateral, upward, and crossflow of contaminated water. Engineering solutions to long-term sealing issues strongly depend on local hydraulic and chemical conditions. |
2 | Overburden: The formations below the critical zone and above the repository host rock. The overburden’s site-specific composition and efficacy as a natural seal varies widely, ranging from highly effective seals (salts, evaporites, shales) to high porosity and high permeability sands, which may function as storage volumes for contaminants if capped by an effective seal. | Wellbore integrity may be compromised by overpressured fluids in this zone. The direct prevention or remediation of undesired flows is the main purpose of well casing systems. Highly pressurized units present drilling and stability challenges when targeting deeper resources; however, a pressurized overburden may effectively prevent upward flow of fluids and contaminants from the host rock. |
3 | Host Rock: The target interval of the repository; a formation, member, unit or layer with rock properties and conditions (pressure, critical stress, geochemistry, flow rates) suitable to meeting repository performance criteria. | Borehole sealing is part of the engineered barrier system, to be implemented and relied upon depending on the efficacy of the host rock and entire repository system to isolate the waste from the accessible environment. |
4 | Underburden: The geological section below the host rock. May affect vertical and regional head gradient and may provide lateral migration pathways. Upward flow from underburden requires a pathway (e.g., fault rupture) and major driving force. | Access and disposal sections of the repository boreholes do not penetrate underburden. Characterization boreholes and exploration or injection/production wells may reach the underburden, potentially creating preferential upward or downward flow paths depending on relative pressure conditions. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finsterle, S.; Cooper, C.; Muller, R.A.; Grimsich, J.; Apps, J. Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste. Energies 2021, 14, 91. https://doi.org/10.3390/en14010091
Finsterle S, Cooper C, Muller RA, Grimsich J, Apps J. Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste. Energies. 2021; 14(1):91. https://doi.org/10.3390/en14010091
Chicago/Turabian StyleFinsterle, Stefan, Cal Cooper, Richard A. Muller, John Grimsich, and John Apps. 2021. "Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste" Energies 14, no. 1: 91. https://doi.org/10.3390/en14010091
APA StyleFinsterle, S., Cooper, C., Muller, R. A., Grimsich, J., & Apps, J. (2021). Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste. Energies, 14(1), 91. https://doi.org/10.3390/en14010091