Numerical and Experimental Analysis of the Effect of a Swirler with a High Swirl Number in a Biogas Combustor
Abstract
:1. Introduction
1.1. Biogas
1.2. Types of Flames
1.3. Effect of Swirling Flows in Flames
2. Experimental Setup
3. Numerical Model
3.1. Fuel Composition
3.2. Mesh Characteristics
3.3. Turbulence Model
3.4. Laminar Flamelet Model
4. Numerical Modeling Results
4.1. Velocity Profile
4.2. Combustion Profiles
5. Experimental Testing
Validation of Numerical Modeling
6. Conclusions
- The k-ε RNG model in conjunction with the chemical kinetics mechanism predicted with good acceptable accuracy the behavior of the experimental testing. Temperatures measured at both peepholes of the CC have similar behavior to those obtained in the experimental testing.
- Non-premixed flame is highly influenced by a strong swirl because it generates recirculation at the center of the primary zone of the CC. Recirculation centers the flame inside the CC, and there are no hot spots near the flame tube. Biogas injection at the primary zone reduces the flame temperature in this region. The highest temperatures are located at the intermediate and dilution zones caused by a decrement in the mole fraction of CO2 compared to the primary zone.
- A strong swirl in biogas combustion had a positive effect, given that it centers the flame in the combustion chamber and causes recirculation to promote a constant re-ignition of air–fuel mixture; this effect avoids the presence of noncombustion zones all along the biogas flame.
- Regarding emissions, experimental results indicated an average mole fraction of CO at the combustion chamber outlet of 1.45 × 10−4. This value is below limits allowed by national legislation.
- Experimental testing resulted in a mole fraction of CO2 at the combustion chamber outlet of 0.0127. This is far lower than the original biogas mole fraction of CO2 of 0.25. A phenomenon inside the combustion chamber is considered to produce CO2, which was verified with the distribution profile of CO at the dilution zone where this gas is combined with O2 to generate CO2. A strong swirl improved the combustion process to reduce the mole fraction of CO2 at the combustion chamber outlet. The average mole fraction of CO2 from the numerical model lies within 6% uncertainty with respect to experimental data.
- Formation of NO according to numerical model is observed to begin in between primary and intermediate zones. It increased gradually until reaching an average mole fraction of 2.3 × 10−6 at the outlet. The sensitivity of the gas analyzer measured a mole fraction of 0; therefore, as the mole fraction from the numerical model is close to zero, both models are similar.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banjaa, M.; Jégardb, M.; Motola, V.; Sikkema, R. Support for biogas in the EU electricity sector—A comparative analysis. Biomass Bioenergy 2019, 128, 105313. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Q.; Guo, T.; Mei, Z.; Long, E.; Wen, Q.; Huang, W. A review on CFD simulating method for biogas fermentation material fluid. Renew. Sustain. Energy Rev. 2018, 97, 64–73. [Google Scholar] [CrossRef]
- Kan, X.; Zhou, D.; Yang, W.; Zhai, X.; Wang, C.H. An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine. Appl. Energy 2018, 212, 210–222. [Google Scholar] [CrossRef]
- Yilmaz, I.T.; Gumus, M. Investigation of the effect of biogas on combustion and emissions of TBC. Fuel 2017, 188, 69–78. [Google Scholar] [CrossRef]
- Ramírez-Arpide, F.R.; Espinosa-Solares, T.; Gallegos-Vázquez, C.; Santoyo-Cortés, V.H. Bioenergy production from nopal cladodes and dairy cow manure on a farm-scale level: Challenges for its economic feasibility in Mexico. Renew. Energy 2019, 142, 383–392. [Google Scholar] [CrossRef]
- Panesso, A.; Cadena, J.; Mora Flórez, J.J.; Ordoñez, M.C. Análisis del biogás captado en un relleno sanitario como combustible primario para la generación de energía eléctrica. Sci. Tech. 2011, XVII-47, 23–28. [Google Scholar]
- Liu, A.; Yang, Y.; Chen, L.; Zeng, W.; Wang, C. Experimental study of biogas combustion and emissions for a micro gas turbine. Fuel 2020, 267, 117312. [Google Scholar] [CrossRef]
- Rosas-Mendoza, E.S.; Méndez-Contreras, J.M.; Martínez-Sibaja, A.; Vallejo-Cantu, N.A.; Lassman-Alvarado, A. Anaerobic digestion of citrus industry effluents using an Anaerobic Hybrid Reactor. Clean Technol. Environ. Policy 2017, 20, 1387–1397. [Google Scholar] [CrossRef]
- Mosayeb Nezhad, M.; Mehr, A.S.; Lanzini, A.; Misul, D.; Santarelli, M. Technology review and thermodynamic performance study of a biogas-fed micro humid air turbine. Renew. Energy 2019, 140, 407–418. [Google Scholar] [CrossRef]
- Ehsan Hosseini, S.; Abdul Wahid, M. Development of biogas combustion in combined heat and power generation. Renew. Sustain. Energy Rev. 2014, 40, 868–874. [Google Scholar] [CrossRef]
- Soares, J.; Oliveira, A.C. Numerical simulation of a hybrid concentrated solar power/biomass mini power plant. Appl. Termical Eng. 2017, 111, 1378–1386. [Google Scholar] [CrossRef]
- Al-Rashed, A.A.A.A.; Afrand, M. Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion. Energy 2021, 223, 119997. [Google Scholar] [CrossRef]
- Movahed, P.; Akram, A. Techno-Economic optimization of biogas-fueled micro gas turbine cogeneration systems in sewage treatment plant. Energy Convers. Manag. 2020, 218, 112965. [Google Scholar] [CrossRef]
- Liu, F.; Guo, H.; Smallwood, G.J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames. Combust. Flame 2003, 133, 495–497. [Google Scholar] [CrossRef]
- Lafay, Y.; Taupin, B.; Martins, G.; Cabot, G.; Renou, B.; Boukhalfa, A. Experimental study of biogas combustion using a gas turbine configuration. Exp. Fluids 2007, 43, 395–410. [Google Scholar] [CrossRef]
- Gómez Montoya, J.P.; Olsen, D.B.; Amell, A.A. Engine operation just above and below the knocking threshold, using a blend of biogas and natural gas. Energy 2018, 153, 719–725. [Google Scholar] [CrossRef]
- Colorado, A.; McDonell, V. Emissions and stability performance of a low-swirl burner operated on simulated biogas fuel in a boiler environment. Appl. Therm. Eng. 2020, 130, 1507–1519. [Google Scholar] [CrossRef]
- Vera-Romero, I.; Martínez-Reyes, J.; Estrada-Jaramillo, M.; Ortiz-Soriano, A. Biogas and Power Generation Potential Part I: Bovine and Pig Manure. Ing. Investig. Y Tecnol. 2013, 15, 429–436. [Google Scholar]
- Salzano, E.; Basco, A.; Cammarota, F.; Di Sarli, V.; Di Benedetto, A. Explosions of Syngas/CO2 mixtures in oxygen-enriched air. Ind. Eng. Chem. Res. 2012, 51, 7671–7678. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Di Sarli, A.; Salzano, E.; Cammarota, F.; Russo, G. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures. Int. J. Hydrog. Energy 2009, 34, 6970–6978. [Google Scholar] [CrossRef]
- Bulat, G.; Liu, K.; Brickwood, G.; Sanderson, V. Intelligent operation of Siemens (SGT-300) DLE gas turbine combustion system over an extended fuel range with low emissions. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, 6–10 June 2011; Volume 2, pp. 917–925. [Google Scholar]
- Asti, A.; Stewart, J.; Forte, A.; Yilmaz, E.; D’Ercole, M. Enlarging the Fuel Flexibility Boundaries: Theoretical and Experimental Application to a New Heavy-Duty Gas Turbine (MS5002E). In Proceedings of the ASME Turbo Expo 2008: Power Land Sea Air, Berlin, Germany, 9–13 June 2008; Volume 3, pp. 553–563. [Google Scholar]
- Peters, N. Fifteen Lectures on Laminar and Turbulent Combustion. Ercoftac Summer Sch. 1992, 1428, 245. [Google Scholar]
- Bilger, R.W.; Pope, S.B.; Bray, K.C.; Driscoll, J.F. Paradigms in turbulent combustion research. Proc. Combust. Inst. 2005, 30, 21–42. [Google Scholar] [CrossRef]
- Veynante, D.; Vervisch, L. Turbulent combustion modeling. Prog. Energy Combust. Sci. 2002, 28, 193–266. [Google Scholar] [CrossRef]
- Tangirala, V.; Driscoll, J.F. Temperatures within Non-premixed Flames: Effects of Rapid Mixing Due to Swirl. Combust. Sci. Technol. 1988, 60, 143–162. [Google Scholar] [CrossRef]
- Roubík, H.; Mazancová, J. Suitability of small-scale biogas systems based on livestock manure for the rural areas of Sumatra. Environ. Dev. 2020, 33, 100505. [Google Scholar] [CrossRef]
- Dalpaz, R.; Konrad, O.; Silva Cyrne, C.C.; Panis Barzotto, H.; Hasan, C.; Guerini Filho, M. Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustain. Energy Technol. Assess. 2020, 40, 100774. [Google Scholar] [CrossRef]
- Zavaleta Luna, D.A.; Vigueras Zúñiga, M.O.; Herrera May, A.L.; Zamora Castro, S.A.; Tejeda del Cueto, M.E. Optimized design of a Swirler for a combustion chamber of non-premixed flame using genetic algorithms. Energies 2020, 13, 2240. [Google Scholar] [CrossRef]
- Khodabandeh, E.; Moghadasi, H.; Pour, M.S.; Ersson, M.; Jönsson, P.G.; Rosen, M.A.; Rahbari, A. CFD study of non-premixed swirling burners: Effect of turbulence models. Chin. J. Chem. Eng. 2020, 28, 1029–1038. [Google Scholar] [CrossRef]
- Beer, M.; Syred, N. Combustion in Swirling Flows: A Review. Combust. Flame 1974, 23, 143–201. [Google Scholar]
- Yuasa, S. Effects of swirl on the stability of jet diffusion flames. Combust. Flame 1986, 66, 181–192. [Google Scholar] [CrossRef]
- Coghe, A.; Solero, G.; Schribano, G. Recirculation phenomena in a natural gas swirl combustor. Experimental Thermal and Fluid. Science 2004, 28, 709–714. [Google Scholar]
- Jerzak, W.; Kuznia, M. Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off. J. Nat. Gas Sci. Eng. 2016, 29, 46–54. [Google Scholar] [CrossRef]
- Mordaunt, C.J.; Pierce, W.C. Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion. Fuel 2014, 124, 258–268. [Google Scholar] [CrossRef]
- Tejeda del Cueto, M.E.; Vigueras Zúñiga, M.O.; Welsh Rodríguez, C.M.; Marín Urías, L.F.; Herrera May, A.L.; Ordoñez Romer, C.L. Alineamiento de flama usando placas perforadas Tándem en una cámara de combustión de gas LP. Rev. La Soc. Mex. Ing. Mecánica 2015, 5, 293–302. [Google Scholar]
- Slefarski, R.; Sacha, J.; Grzymislawski, P. Combustion of mixtures of biogas and syngases with methane in strong swirl flow. In Proceedings of the 6th European Combustion Meeting, Lund, Sweden, 25–28 June 2013; pp. 117–128. [Google Scholar]
- Zhao, Y.; McDonell, V.; Samuelsen, S. Assessment of the combustion performance of a room furnace operating on pipeline natural gas mixed with simulated biogas or hydrogen. Int. J. Hydrog. Energy 2020, 45, 11368–11379. [Google Scholar] [CrossRef]
- Dai, W.; Qin, C.; Chen, Z.; Tong, C.; Liu, P. Experimental studies of flame stability limits of biogas flame. Energy Convers. Manag. 2012, 63, 157–161. [Google Scholar] [CrossRef]
- Benato, A.; Macor, A.; Rossetti, A. Biogas engine emissions: Standards and on-site measurements. Energy Procedia 2017, 126, 398–405. [Google Scholar] [CrossRef]
- Sahin, M.; Ilbas, M. Analysis of the effect of H2O content on combustion behaviours of a biogas fuel. Int. J. Hydrog. Energy 2020, 45, 3651–3659. [Google Scholar] [CrossRef]
- Fischer, M.; Jiang, X. Numerical studies of CO formation during biogas combustion. Energy Procedia 2017, 142, 426–431. [Google Scholar] [CrossRef]
- Wu, B. Advances in the use of CFD to characterize, design and optimize bioenergy systems. Comput. Electron. Agric. 2013, 93, 195–208. [Google Scholar] [CrossRef]
- Granell Ruiz, R. Análisis del Flujo Ambiental y Propuesta Metodológica Para Simulaciones CFD Aplicadas a la Ventilación Natural de Invernaderos; Universidad Politécnica de Valencia: Valencia, Spain, 2014. [Google Scholar]
- Givi, P. Model-free simulations of turbulent reactive flows. Prog. Energy Combust Sci. 1989, 15, 1–107. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Yan, Y.W.; Zhao, J.X.; Zhang, J.Z.; Liu, Y. Large-eddy simulation of two-phase spray combustion for gas turbine combustors. Appl. Therm. Eng. 2008, 28, 1365–1374. [Google Scholar]
- Bulat, G.; Jones, W.P.; Marquis, A.J. Large eddy simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method. Proc. Combust. Institud. 2013, 34, 3155–3164. [Google Scholar] [CrossRef] [Green Version]
- Giacomazzi, E.; Battaglia, V.; Bruno, C. The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES. Combust. Flame 2004, 138, 320–335. [Google Scholar] [CrossRef]
- Jenny, P.; Roekaerts, D.; Beishuizen, N. Modeling of turbulence dilute spray combustion. Prog. Energy Combust. Sci. 2012, 38, 846–887. [Google Scholar] [CrossRef]
- Vondál, J.; Hájek, J. Prediction of flow through swirl generator and validation by measured data. In Proceedings of the 13th European Turbulence Conference, Warsaw, Poland, 12–15 September 2011. [Google Scholar]
- Widmann, J.F.; Charagundla, S.; Presser, C. Aerodynamic study of a vane-cascade swirl generator. Chem. Eng. Sci. 2000, 55, 5311–5320. [Google Scholar] [CrossRef]
- Darmawan, S.; Budiarso, B.; Siswantara, A.I. CFD Investigation of standard k- and RNG k-e turbulence model in compressor discharge of proto x-2 bioenergy micro gas turbine. In Proceedings of the 8th International Conference on Fluid and Thermal Energy Conversion, Semarang, Indonesia, 8–11 November 2013; pp. 8–11. [Google Scholar]
- Khaldi, N.; Mhiri, H.; Bournot, P. A comparative study of turbulence models performance for a 300 MWe tangentially fired pulverized-coal furnace. In Proceedings of the Fifth International Renewable Energy Congress IREC, Hammamet, Tunisia, 25–27 March 2014. [Google Scholar]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, Y.; Qi, X. Biogas from microalgae: Technologies, challenges, and opportunities. Renew. Sustain. Energy Rev. 2020, 117, 109503. [Google Scholar] [CrossRef]
- Ansys. (02 de 05 de 2021). ANSYS FLUENT 12.0/12.1 Documentation–4.4.2 RNG k-e Model. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node59.htm (accessed on 5 May 2021).
- Carrillo Sánchez, J.M.; Castillo Elsitsié, L.G. Consideraciones del mallado aplicadas al cálculo de flujos bifásicos con las técnicas de dinámica de fluidos computacional. IV Jorn. Introd. Investig. UPCT 2011, 4, 33–35. [Google Scholar]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Leonidivna Naidiuk, O.; Torres Jara, P. Introducción al Análisis Térmico y de Fluidos Mediante Ansys; Universidad Politécnica Salesiana: Quito, Ecuador, 2018. [Google Scholar]
- Subiabre Sánchez, P.J. Diseño básico de una Cámara de Combustión Para una Microturbina a Gas; Universidad de Chile: Santiago, Chile, 2017. [Google Scholar]
- Peters, N. Diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combustion. Sci. 1984, 10, 319–339. [Google Scholar] [CrossRef]
- Jahangirian, S.; Engeda, A. Biogas combustion and chemical kinetics for gas turbine applications. In Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, MA, USA, 31 October–6 November 2008; Volume 3, p. 48647. [Google Scholar]
- Peters, N. Multiscale combustion and turbulence. Proc. Combust. Inst. 2009, 32, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Alfaro Anaya, J.A.; Gallegos Muñoz, A.; Riesco-Ávila, J.M.; Flores López, M.; Campos Amezcua, A.; Mani-González, A.G. Analysis of the flow in the combustor-transition piece considering the variation in the fuel combustion. J. Therm. Sci. Eng. Appl. 2011, 3, 021003. [Google Scholar] [CrossRef]
- Combustion Research Group at UC San Diego. Available online: http://web.eng.ucsd.edu/mae/groups/combustion/index.html (accessed on 26 February 2021).
- Valera Medina, A.; Synred, N.; Abdulsada, M. Flashback analysis in tangential swirl burners. Ing. Investig. Y Tecnol. 2010, 12, 487–497. [Google Scholar]
- Saediamiri, M.; Birouk, M.; Kozinski, J.A. On the stability of a turbulent non-premixed biogas flame: Effect of low swirl strength. Combust. Flame 2014, 161, 1326–1336. [Google Scholar] [CrossRef]
- Maupin, K.A.; Swiler, L.P.; Porter, N.W. Validation metrics for deterministic and probabilistic data. J. Verif. Valid. Uncert. 2018, 3, 031002. [Google Scholar] [CrossRef]
Parameter | Mesh 1 | Mesh 2 | Mesh 3 |
---|---|---|---|
Number of elements | 6,740,626 | 5,229,172 | 4,181,507 |
Number of nodes | 1,208,676 | 943,529 | 755,893 |
Face size | 2 | 2 | 1 |
Edge Sizing number | 40 | 40 | 30 |
Growth rate | 1.2 | 1.2 | 1.2 |
Maximum orthogonality | 0.771 | 0.758 | 0.758 |
Minimum obliquity | 0.229 | 0.242 | 0.242 |
Parameter | Value |
---|---|
Air inlet pressure (Pa) | 2100 |
Mass air flow (kg/s) | 0.04398 |
Air temperature (K) | 305.15 |
Fuel temperature (K) | 301.15 |
Fuel inlet pressure (Pa) | 2100 |
Mass fuel flow (kg/s) | 0.0004996 |
Combustion chamber outlet pressure (Pa) | 375 |
Wall temperature (K) | 300 |
Plane | Distance from Origin (cm) | Plane | Distance from Origin (cm) |
---|---|---|---|
a | 10.4 | d | 23.6 |
b | 14 | e | 26.6 |
c | 17.6 | f | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigueras-Zúñiga, M.O.; Ramírez-Ruíz, C.A.; Herrera-May, A.L.; Tejeda-del-Cueto, M.E. Numerical and Experimental Analysis of the Effect of a Swirler with a High Swirl Number in a Biogas Combustor. Energies 2021, 14, 2768. https://doi.org/10.3390/en14102768
Vigueras-Zúñiga MO, Ramírez-Ruíz CA, Herrera-May AL, Tejeda-del-Cueto ME. Numerical and Experimental Analysis of the Effect of a Swirler with a High Swirl Number in a Biogas Combustor. Energies. 2021; 14(10):2768. https://doi.org/10.3390/en14102768
Chicago/Turabian StyleVigueras-Zúñiga, Marco Osvaldo, Carlos Augusto Ramírez-Ruíz, Agustín L. Herrera-May, and María Elena Tejeda-del-Cueto. 2021. "Numerical and Experimental Analysis of the Effect of a Swirler with a High Swirl Number in a Biogas Combustor" Energies 14, no. 10: 2768. https://doi.org/10.3390/en14102768
APA StyleVigueras-Zúñiga, M. O., Ramírez-Ruíz, C. A., Herrera-May, A. L., & Tejeda-del-Cueto, M. E. (2021). Numerical and Experimental Analysis of the Effect of a Swirler with a High Swirl Number in a Biogas Combustor. Energies, 14(10), 2768. https://doi.org/10.3390/en14102768