Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)
Abstract
:1. Introduction
2. Literature Review
2.1. Renewable Energy Development
2.2. Renewable Energy Policy in Indonesia
3. Materials and Methods
3.1. Meta-Analysis
3.2. System Boundaries
3.2.1. EROI Calculations
3.2.2. Biofuel System Boundaries
- Cradle-to-grave: for studies that include all steps (1–5) of biofuel processing
- Cradle-to-gate: for studies that begin in step 1 but do not end in step 5
- Gate-to-grave: for studies that do not start in step 1 but end in step 5
- Gate-to-gate: for other studies that do not fulfil the above criteria
4. Results
5. Discussion
5.1. Net Energy of Biofuel
5.1.1. Biofuel EROIst
5.1.2. Unaccounted Externalities in Biofuel EROIsoc
5.1.3. Other Environmental and Social Impacts Associated with Oil Palm Industry
5.2. Comparison to Other Renewable Energy Sources
5.3. Minimum EROI for Renewable Energy to Support Society
5.4. Policy Implications
5.4.1. Barriers to Invest in Other Renewable Energies in Indonesia
5.4.2. Renewable Energy Policy for the Future
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stavrakas, V.; Spyridaki, N.-A.; Flamos, A. Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs. Sustainability 2018, 10, 2206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Pan, S.-Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent Advances in Carbon Dioxide Utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, H.; Bartocci, P.; Fantozzi, F.; Mašek, O.; Agblevor, F.A.; Wei, Z.; Yang, H.; Chen, H.; Lu, X.; et al. Prospective Contributions of Biomass Pyrolysis to China’s 2050 Carbon Reduction and Renewable Energy Goals. Nat. Commun. 2021, 12, 1698. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, S.; Osman, A.I.; Yang, H.; Doran, J.; Rooney, D.W. Industrial Biochar Systems for Atmospheric Carbon Removal: A Review. Environ. Chem. Lett. 2021. [Google Scholar] [CrossRef]
- Lau, H.C.; Ramakrishna, S.; Zhang, K.; Radhamani, A.V. The Role of Carbon Capture and Storage in the Energy Transition. Energy Fuels 2021, 35, 7364–7386. [Google Scholar] [CrossRef]
- Oh, K.-Y.; Nam, W.; Ryu, M.S.; Kim, J.-Y.; Epureanu, B.I. A Review of Foundations of Offshore Wind Energy Convertors: Current Status and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 88, 16–36. [Google Scholar] [CrossRef]
- International Energy Agency. Global Energy Review 2019: The Latest Trends in Energy and Emissions in 2019; OECD: Paris, France, 2020; ISBN 9-7892-6449-5852. [Google Scholar]
- International Energy Agency. Global Energy Review 2020: The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emissions; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Wijaya, A.; Chrysolite, H.; Ge, M.; Wibowo, C.K.; Pradana, A.; Utami, A.F.; Austin, K. How Can Indonesia Achieve Its Climate Change Mitigation Goal? An Analysis of Potential Emissions Reductions from Energy and Land-Use Policies; Working Paper; World Resources Institute Indonesia: Jakarta, Indonesia, 2017. [Google Scholar]
- International Renewable Energy Agency. Renewable Energy Prospects: Indonesia; International Renewable Energy Agency: Abu Dhabi, Unites Arab Emirates, 2017; ISBN 9-7892-9511-1196. [Google Scholar]
- Republic of Indonesia. First Nationally Determined Contribution: Republic of Indonesia; Republic of Indonesia: Jakarta, Indonesia, 2016.
- Ritchie, H. Palm Oil. Our World in Data. 2019. Available online: https://ourworldindata.org/palm-oil (accessed on 1 May 2021).
- FAO. Food Balance Sheets (FBS); Food and Agricultural Organization of the United Nations: 2020. Available online: http://www.fao.org/faostat/en/?data (accessed on 1 May 2021).
- Ministry of Energy and Mineral Resources of the Republic of Indonesia. Ministerial Regulation No. 12 Year 2015 Concerning the Third Amendment on Ministerial Decree No 32 Year 2008 Concerning the Supply, Utilisation, and Trade System of Biofuels as Other Fuels; Ministry of Energy and Mineral Resources of the Republic of Indonesia: Jakarta, Indonesia, 2021.
- Ministry of Energy and Mineral Resources of the Republic of Indonesia. Bioenergy, The Most Complete Renewable Energy. Available online: http://ebtke.esdm.go.id/post/2020/03/06/2497/bioenergi.energi.terbarukan.paling.komplitlangen (accessed on 9 June 2020).
- Zahan, K.; Kano, M. Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies 2018, 11, 2132. [Google Scholar] [CrossRef] [Green Version]
- Barcelos, E.; Rios, S.d.A.; Cunha, R.N.V.; Lopes, R.; Motoike, S.Y.; Babiychuk, E.; Skirycz, A.; Kushnir, S. Oil Palm Natural Diversity and the Potential for Yield Improvement. Front. Plant Sci. 2015, 6, 190. [Google Scholar] [CrossRef]
- Rival, A.; Levang, P. Palms of Controversies: Oil Palm and Development Challenges; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2014; ISBN 9-7860-2150-4413. [Google Scholar]
- Pacheco, P.; Gnych, S.; Dermawan, A.; Komarudin, H.; Okarda, B. The Palm Oil Global Value Chain: Implications for Economic Growth and Socialand Environmental Sustainability; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2017. [Google Scholar]
- Barthel, M.; Jennings, S.; Schreiber, W.; Sheane, R.; Royston, S.; Fry, J.; Khor, Y.L.; McGill, J. Study on the Environmental Impact of Palm Oil Consumption and on Existing Sustainability Standards; EU Publications: Luxembourg, 2018. [Google Scholar]
- Comte, I.; Colin, F.; Whalen, J.K.; Grünberger, O.; Caliman, J.-P. Chapter Three: Agricultural Practices in Oil Palm Plantations and Their Impact on Hydrological Changes, Nutrient Fluxes and Water Quality in Indonesia. Adv. Agron. 2012, 116, 71–124. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T. Deforestation Displaced: Trade in Forest-Risk Commodities and the Prospects for a Global Forest Transition. Environ. Res. Lett. 2019, 14, 055003. [Google Scholar] [CrossRef]
- Cooper, H.V.; Evers, S.; Aplin, P.; Crout, N.; Dahalan, M.P.B.; Sjogersten, S. Greenhouse Gas Emissions Resulting from Conversion of Peat Swamp Forest to Oil Palm Plantation. Nat. Commun. 2020, 11, 407. [Google Scholar] [CrossRef] [Green Version]
- Meijide, A.; de la Rua, C.; Guillaume, T.; Röll, A.; Hassler, E.; Stiegler, C.; Tjoa, A.; June, T.; Corre, M.D.; Veldkamp, E.; et al. Measured Greenhouse Gas Budgets Challenge Emission Savings from Palm-Oil Biodiesel. Nat. Commun. 2020, 11, 1089. [Google Scholar] [CrossRef] [Green Version]
- Garza, E.L. Life cycle assessment: The energy return on invested of Biodiesel. In Bioenergy; Dahiya, A., Ed.; Academic Press: Cambridge, UK, 2014; ISBN 9-7801-2408-1208. [Google Scholar]
- Cleveland, C.J.; Costanza, R.; Hall, C.A.S.; Kaufmann, R. Energy and the U.S. Economy: A Biophysical Perspective. Science 1984, 225, 890–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C.; Balogh, S.; Murphy, D. What Is the Minimum EROI That a Sustainable Society Must Have? Energies 2009, 2, 25–47. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Cleveland, C.J.; Endres, P.K. Meta-Analysis of Net Energy Return for Wind Power Systems. Renew. Energy 2010, 35, 218–225. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar Energy: Potential and Future Prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Chala, G.T.; Ma’Arof, M.I.N.; Sharma, R. Trends in an Increased Dependence towards Hydropower Energy Utilization—A Short Review. Cogent Eng. 2019, 6, 1–14. [Google Scholar] [CrossRef]
- Kaunda, C.S.; Kimambo, C.Z.; Nielsen, T.K. Hydropower in the Context of Sustainable Energy Supply: A Review of Technologies and Challenges. ISRN Renew. Energy 2012, 2012, 730631. [Google Scholar] [CrossRef]
- Llamosas, C.; Sovacool, B.K. The Future of Hydropower? A Systematic Review of the Drivers, Benefits and Governance Dynamics of Transboundary Dams. Renew. Sustain. Energy Rev. 2021, 137, 110495. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Paquet, P.; Halimi, S. Hydropower Development in the Lower Mekong Basin: Alternative Approaches to Deal with Uncertainty. Reg. Environ. Chang. 2013, 13, 3–15. [Google Scholar] [CrossRef]
- Sood, A.; Mathukumalli, B.K.P. Managing International River Basins: Reviewing India–Bangladesh Transboundary Water Issues. Int. J. River Basin Manag. 2011, 9, 43–52. [Google Scholar] [CrossRef]
- Schmalensee, R. The Future of Solar Energy: A Personal Assessment. Energy Econ. 2015, 52, 142–148. [Google Scholar] [CrossRef]
- International Energy Agency. Renewables 2019: Analysis and Forecast to 2024; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Fan, K.; Nam, S. Accelerating Geothermal Development in Indonesia: A Case Study in the Underutilization of Geothermal Energy. Consilience 2018, 19, 103–129. [Google Scholar] [CrossRef]
- International Energy Agency. Ocean Power 2020. Available online: https://www.iea.org/reports/ocean-power (accessed on 6 May 2021).
- Afolalu, S.A.; Yusuf, O.O.; Abioye, A.A.; Emetere, M.E.; Ongbali, S.O.; Samuel, O.D. Biofuel; A Sustainable Renewable Source of Energy-A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 665, 012040. [Google Scholar] [CrossRef]
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2020–2029; OECD: Paris, France, 2020; ISBN 9-7892-6431-7673. [Google Scholar]
- Republic of Indonesia. Government Regulations Number 79 Year 2014 Concerning National Energy Policy; Republic of Indonesia: Jakarta, Indonesia, 2014.
- IESR. Indonesia Clean Energy Outlook: Tracking Progress and Review of Clean Energy Development in Indonesia; Institute for Essential Services Reform: Jakarta, Indonesia, 2019. [Google Scholar]
- Ministry of Energy and Mineral Resources of the Republic of Indonesia. Mandatory biodiesel 30% Program (B30); 2019. Available online: http://ebtke.esdm.go.id/post/2019/12/19/2434/faq.program.mandatori.biodiesel.30.b30langen (accessed on 10 April 2020).
- Manik, Y.; Halog, A. A Meta-Analytic Review of Life Cycle Assessment and Flow Analyses Studies of Palm Oil Biodiesel. Integr. Environ. Assess. Manag. 2013, 9, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.A.S.; Lambert, J.G.; Balogh, S.B. EROI of Different Fuels and the Implications for Society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Capellán-Pérez, I.; de Castro, C.; Miguel González, L.J. Dynamic Energy Return on Energy Investment (EROI) and Material Requirements in Scenarios of Global Transition to Renewable Energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- Papong, S.; Chom-In, T.; Noksa-nga, S.; Malakul, P. Life Cycle Energy Efficiency and Potentials of Biodiesel Production from Palm Oil in Thailand. Energy Policy 2010, 38, 226–233. [Google Scholar] [CrossRef]
- Kamahara, H.; Hasanudin, U.; Widiyanto, A.; Tachibana, R.; Atsuta, Y.; Goto, N.; Daimon, H.; Fujie, K. Improvement Potential for Net Energy Balance of Biodiesel Derived from Palm Oil: A Case Study from Indonesian Practice. Biomass Bioenergy 2010, 34, 1818–1824. [Google Scholar] [CrossRef]
- Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Graboski, M.; Shapouri, H. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus; National Renewable Energy Laboratory: Golden, CO, USA, 1998.
- Carraretto, C. Biodiesel as Alternative Fuel: Experimental Analysis and Energetic Evaluations. Energy 2004, 29, 2195–2211. [Google Scholar] [CrossRef]
- Pimentel, D.; Patzek, T.W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Nat. Resour. Res. 2005, 14, 65–76. [Google Scholar] [CrossRef]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [Green Version]
- Tsoutsos, T.; Kouloumpis, V.; Zafiris, T.; Foteinis, S. Life Cycle Assessment for Biodiesel Production under Greek Climate Conditions. J. Clean. Prod. 2010, 18, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Cavalett, O.; Ortega, E. Integrated Environmental Assessment of Biodiesel Production from Soybean in Brazil. J. Clean. Prod. 2010, 18, 55–70. [Google Scholar] [CrossRef]
- Pradhan, A.; Shrestha, D.S.; McAloon, A.; Yee, W.; Haas, M.; Duffield, J.A. Energy Life-Cycle Assessment of Soybean Biodiesel Revisited. Trans. ASABE 2011, 54, 1031–1039. [Google Scholar] [CrossRef]
- Rocha, M.H.; Capaz, R.S.; Lora, E.E.S.; Nogueira, L.A.H.; Leme, M.M.V.; Renó, M.L.G.; del Olmo, O.A. Life Cycle Assessment (LCA) for Biofuels in Brazilian Conditions: A Meta-Analysis. Renew. Sustain. Energy Rev. 2014, 37, 435–459. [Google Scholar] [CrossRef]
- Brondani, M.; Hoffmann, R.; Mayer, F.D.; Kleinert, J.S. Environmental and Energy Analysis of Biodiesel Production in Rio Grande Do Sul, Brazil. Clean Technol. Environ. Policy 2015, 17, 129–143. [Google Scholar] [CrossRef]
- Piastrellini, R.; Arena, A.P.; Civit, B. Energy Life-Cycle Analysis of Soybean Biodiesel: Effects of Tillage and Water Management. Energy 2017, 126, 13–20. [Google Scholar] [CrossRef]
- Lorrenz, D.; Morris, D. How Much Energy Does It Take to Make A Gallon of Ethanol? Revisited and Updated; Institute for Local Self-Reliance: Minneapolis, MN, USA, 1995. [Google Scholar]
- Yusoff, S.; Hansen, S.B. Feasibility Study of Performing an Life Cycle Assessment on Crude Palm Oil Production in Malaysia (9 Pp). Int. J. Life Cycle Assess. 2007, 12, 50–58. [Google Scholar] [CrossRef]
- Thamsiriroj, T.; Murphy, J.D. Is It Better to Import Palm Oil from Thailand to Produce Biodiesel in Ireland than to Produce Biodiesel from Indigenous Irish Rape Seed? Appl. Energy 2009, 86, 595–604. [Google Scholar] [CrossRef]
- Yee, K.F.; Tan, K.T.; Abdullah, A.Z.; Lee, K.T. Life Cycle Assessment of Palm Biodiesel: Revealing Facts and Benefits for Sustainability. Appl. Energy 2009, 86, 189–196. [Google Scholar] [CrossRef]
- Pleanjai, S.; Gheewala, S.H. Full Chain Energy Analysis of Biodiesel Production from Palm Oil in Thailand. Appl. Energy 2009, 86, 209–214. [Google Scholar] [CrossRef]
- Angarita, E.E.Y.; Lora, E.E.S.; da Costa, R.E.; Torres, E.A. The Energy Balance in the Palm Oil-Derived Methyl Ester (PME) Life Cycle for the Cases in Brazil and Colombia. Renew. Energy 2009, 34, 2905–2913. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Life Cycle Assessment for the Production of Biodiesel: A Case Study in Malaysia for Palm Oil versus Jatropha Oil. Biofuels Bioprod. Bioref. 2009, 3, 601–612. [Google Scholar] [CrossRef]
- Achten, W.M.J.; Vandenbempt, P.; Almeida, J.; Mathijs, E.; Muys, B. Life Cycle Assessment of a Palm Oil System with Simultaneous Production of Biodiesel and Cooking Oil in Cameroon. Environ. Sci. Technol. 2010, 44, 4809–4815. [Google Scholar] [CrossRef] [PubMed]
- De Souza, S.P.; Pacca, S.; de Ávila, M.T.; Borges, J.L.B. Greenhouse Gas Emissions and Energy Balance of Palm Oil Biofuel. Renew. Energy 2010, 35, 2552–2561. [Google Scholar] [CrossRef]
- Queiroz, A.G.; França, L.; Ponte, M.X. The Life Cycle Assessment of Biodiesel from Palm Oil (“Dendê”) in the Amazon. Biomass Bioenergy 2012, 36, 50–59. [Google Scholar] [CrossRef]
- Agostinho, F.; Siche, R. Hidden Costs of a Typical Embodied Energy Analysis: Brazilian Sugarcane Ethanol as a Case Study. Biomass Bioenergy 2014, 71, 69–83. [Google Scholar] [CrossRef]
- Khatiwada, D.; Venkata, B.K.; Silveira, S.; Johnson, F.X. Energy and GHG Balances of Ethanol Production from Cane Molasses in Indonesia. Appl. Energy 2016, 164, 756–768. [Google Scholar] [CrossRef]
- Atlason, R.S.; Lehtinen, T.; Davíðsdóttir, B.; Gísladóttir, G.; Brocza, F.; Unnþórsson, R.; Ragnarsdóttir, K.V. Energy Return on Investment of Austrian Sugar Beet: A Small-Scale Comparison between Organic and Conventional Production. Biomass Bioenergy 2015, 75, 267–271. [Google Scholar] [CrossRef]
- Saga, K.; Imou, K.; Yokoyama, S.; Minowa, T. Net Energy Analysis of Bioethanol Production System from High-Yield Rice Plant in Japan. Appl. Energy 2010, 87, 2164–2168. [Google Scholar] [CrossRef]
- Prueksakorn, K.; Gheewala, S.H. Full Chain Energy Analysis of Biodiesel from Jatropha curcas L. in Thailand. Environ. Sci. Technol. 2008, 42, 3388–3393. [Google Scholar] [CrossRef]
- Ooi, L.-H.; Heriansyah, H. Palm Pulverisation in Sustainable Oil Palm Replanting. Plant Prod. Sci. 2005, 8, 345–348. [Google Scholar] [CrossRef]
- Purnomo, H.; Okarda, B.; Dermawan, A.; Ilham, Q.P.; Pacheco, P.; Nurfatriani, F.; Suhendang, E. Reconciling Oil Palm Economic Development and Environmental Conservation in Indonesia: A Value Chain Dynamic Approach. Forest Policy Econ. 2020, 111, 1–12. [Google Scholar] [CrossRef]
- Jong, H.N. Indonesia Fires Emitted Double the Carbon of Amazon Fires, Research Shows: Mongabay Environmental News. 2019. Available online: https://news.mongabay.com/2019/11/indonesia-fires-amazon-carbon-emissions-peatland/ (accessed on 27 September 2020).
- Pichler, M.; Brad, A. Political Ecology and Socio-Ecological Conflicts in Southeast Asia. Austrian J. South East Asian Stud. 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Afriyanti, D.; Kroeze, C.; Saad, A. Indonesia Palm Oil Production without Deforestation and Peat Conversion by 2050. Sci. Total Environ. 2016, 557–558, 562–570. [Google Scholar] [CrossRef]
- Walmsley, T.G.; Walmsley, M.R.W.; Atkins, M.J. Energy Return on Energy and Carbon Investment of Wind Energy Farms: A Case Study of New Zealand. J. Clean. Prod. 2017, 167, 885–895. [Google Scholar] [CrossRef]
- Walmsley, T.G.; Walmsley, M.R.W.; Varbanov, P.S.; Klemeš, J.J. Energy Ratio Analysis and Accounting for Renewable and Non-Renewable Electricity Generation: A Review. Renew. Sustain. Energy Rev. 2018, 98, 328–345. [Google Scholar] [CrossRef]
- Bhandari, K.P.; Collier, J.M.; Ellingson, R.J.; Apul, D.S. Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Solar Photovoltaic Systems: A Systematic Review and Meta-Analysis. Renew. Sustain. Energy Rev. 2015, 47, 133–141. [Google Scholar] [CrossRef]
- Atlason, R.S.; Unnthorsson, R. Hot Water Production Improves the Energy Return on Investment of Geothermal Power Plants. Energy 2013, 51, 273–280. [Google Scholar] [CrossRef]
- Lambert, J.G.; Hall, C.A.S.; Balogh, S.; Gupta, A.; Arnold, M. Energy, EROI and Quality of Life. Energy Policy 2014, 64, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Fizaine, F.; Court, V. Energy Expenditure, Economic Growth, and the Minimum EROI of Society. Energy Policy 2016, 95, 172–186. [Google Scholar] [CrossRef]
- Indonesian Palm Oil Association. The Strategic Role of the Indonesian People’s Oil Palm. 2018. Available online: https://gapki.id/news/3875/peran-strategis-sawit-rakyat-indonesia (accessed on 10 June 2020).
- Bureau of Statistics of Indonesia. Indonesian Oil Palm Statistics 2018; Bureau of Statistics of Indonesia: Jakarta, Indonesia, 2018.
- Shubik, M. The Dollar Auction Game: A Paradox in Noncooperative Behavior and Escalation. J. Confl. Resolut. 1971, 15, 109–111. [Google Scholar] [CrossRef]
- Suharyati; Pambudi, S.H.; Wibowo, J.L.; Pratiwi, N.I. Indonesia Energy Outlook 2019; National Energy Council: Jakarta, Indonesia, 2019. Available online: https://www.esdm.go.id/assets/media/content/content-indonesia-energy-outlook-2019-english-version.pdf (accessed on 24 June 2020).
- Saleh, S.; Bagja, B.; Putra, S.; Said, Z.; Putraditama, A.; Widyapratami, H. Smallholders Oil Palm Plantation Intensification: Where Do We Start? Working Paper; World Resources Institute Indonesia: Jakarta, Indonesia, 2019. [Google Scholar]
- Cheong, K.H.; Ngiam, N.J.; Morgan, G.G.; Pek, P.P.; Tan, B.Y.; Lai, J.W.; Koh, J.M.; Ong, M.E.H.; Ho, A.F.W. Acute Health Impacts of the Southeast Asian Transboundary Haze Problem—A Review. Int. J. Environ. Res. Public Health 2019, 16, 3286. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Fernandez-Anez, N.; Smith, T.E.L.; Rein, G. Review of Emissions from Smouldering Peat Fires and Their Contribution to Regional Haze Episodes. Int. J. Wildland Fire 2018, 27, 293–312. [Google Scholar] [CrossRef]
- Jahirul, M.; Rasul, M.; Chowdhury, A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis—A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent Advances in Carbon Capture Storage and Utilisation Technologies: A Review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Babin, A.; Vaneeckhaute, C.; Iliuta, M.C. Potential and Challenges of Bioenergy with Carbon Capture and Storage as a Carbon-Negative Energy Source: A Review. Biomass Bioenergy 2021, 146, 105968. [Google Scholar] [CrossRef]
Region | Country | Type of Feedstocks | Projects |
---|---|---|---|
Asia | Thailand | Oil palm, jatropha | 4 |
Indonesia | Sugarcane, oil palm | 2 | |
Japan | Rice straw | 1 | |
Malaysia | Oil palm, jatropha, rapeseed | 5 | |
Europe | Italy | Soybean | 1 |
Ireland | Rapeseed | 1 | |
Austria | Sugar beet | 1 | |
Greece | Soybean | 1 | |
South America | Brazil | Soybean, oil palm, sugarcane | 10 |
Argentina | Soybean | 4 | |
Colombia | Oil palm | 3 | |
North America | United States | Corn, switchgrass, soybean, wood cellulose, sunflower | 10 |
Africa | Cameroon | Oil palm | 1 |
Type of Feedstock | Authors/Reference | Location | EROIst | EROIst Average | System Boundaries | Project |
---|---|---|---|---|---|---|
1st Generation | ||||||
Soybean | Sheehan et al. (1998) [49] | United States | 0.81 | 2.35 | 2, 3, 4, 5 | o |
Carraretto et al. (2004) [50] | Italy | 2.2 | 2, 3, 4, 5 | o | ||
Pimentel and Patzek (2005) [51] | United States | 0.98 | 2, 3, 4 | c | ||
Hill et al. (2006) [52] | United States | 1.92 | 2, 3, 4 | o | ||
Tsoutsos et al. (2009) [53] | Greece | 1.16 | 2, 3, 4 | o | ||
Cavalett and Ortega (2010) [54] | Brazil | 2.48 | 2, 3, 4 | o | ||
Pradhan et al. (2011) [55] | United States | 5.54 | 2, 3, 4 | c | ||
Rocha et al. (2014) [56] | Brazil | 2.88 | 2, 3, 4 | c | ||
Brondani et al. (2015) [57] | Brazil | 3.08 | 2, 3, 4 | c | ||
Piastrellini et al. (2016) [58] | Argentina-a | 1.77 | 2, 3, 4 | o | ||
Piastrellini et al. (2016) [58] | Argentina-b | 3.1 | 2, 3, 4 | o | ||
Piastrellini et al. (2016) [58] | Argentina-c | 1.86 | 2, 3, 4 | o | ||
Piastrellini et al. (2016) [58] | Argentina-d | 2.83 | 2, 3, 4 | o | ||
Corn | Lorrenz and Morris (1995) [59] | United States | 1.38 | 1.15 | 2, 3, 4 | o |
Pimentel and Patzek (2005) [51] | United States | 0.78 | 2, 3, 4 | c | ||
Hill et al. (2006) [52] | United States | 1.28 | 2, 3, 4 | o | ||
Palm Oil | Yusoff and Hansen (2007) [60] | Malaysia | 4.05 | 3.92 | 1, 2, 3, 4 | o |
Thamsiriroj and Murphy (2008) [61] | Thailand | 2.64 | 2, 3, 4 | c | ||
Papong et al. (2010) [47] | Thailand | 3.33 | 2, 3, 4 | o | ||
Yee et al. (2009) [62] | Malaysia | 3.53 | 1, 2, 3, 4 | o | ||
Pleanjai and Gheewala (2009) [63] | Thailand | 3.57 | 2, 3, 4 | o | ||
Angarita et al. (2009) [59] | Brazil-a | 3.77 | 2, 3, 4 | o | ||
Angarita et al. (2009) [64] | Brazil-b | 5.72 | 2, 3, 4 | o | ||
Angarita et al. (2009) [64] | Brazil-c | 4.63 | 2, 3, 4 | o | ||
Angarita et al. (2009) [64] | Colombia-a | 5.17 | 2, 3, 4 | o | ||
Angarita et al. (2009) [64] | Colombia-b | 4.64 | 2, 3, 4 | o | ||
Angarita et al. (2009) [64] | Colombia-c | 5.01 | 2, 3, 4 | o | ||
Lam et al. (2009) [65] | Malaysia | 2.27 | 2, 3, 4 | c | ||
Kamahara et al. (2010) [48] | Indonesia | 3.63 | 2, 3, 4 | o | ||
Achten et al. (2010) [66] | Cameroon | 2.61 | 2, 3, 4 | c | ||
de Souza et al. (2010) [67] | Brazil | 4.99 | 2, 3, 4 | c | ||
Queiroz et al. (2012) [68] | Brazil-a | 3.41 | 2, 3, 4 | o | ||
Queiroz et al. (2012) [68] | Brazil-b | 3.59 | 2, 3, 4 | o | ||
Sunflower | Pimentel and Patzek (2005) [51] | United States | 0.76 | 0.76 | 2, 3, 4 | c |
Sugarcane | Agostinho and Siche (2014) [69] | Brazil | 6.7 | 6.38 | 2, 3, 4 | o |
Khatiwalda et al. (2016) [70] | Indonesia | 6.07 | 2, 3, 4 | o | ||
Sugar beet | Atlason et al. (2015) [71] | Austria | 11.26 | 11.26 | 2 | o |
Rice straw | Saga et al. (2010) [72] | Japan | 3.46 | 3.46 | 2, 4 | o |
Rapeseed | Thamsiriroj and Murphy (2008) [61] | Ireland | 2.19 | 1.82 | 2, 3, 4 | c |
Yee et al. (2009) [62] | Malaysia | 1.44 | 1, 2, 3, 4 | o | ||
2nd Generation | ||||||
Jatropha | Prueksakorn and Gheewala (2008) [73] | Thailand | 6.03 | 3.98 | 2, 3, 4 | c |
Lam et al. (2009) [65] | Malaysia | 1.92 | 2, 3, 4 | c | ||
Wood cellulose | Pimentel and Patzek (2005) [51] | United States | 0.64 | 0.64 | 2, 3, 4 | c |
Switchgrass | Pimentel and Patzek (2005) [51] | United States | 0.69 | 0.69 | 2, 3, 4 | c |
No | Type of NRE | Operational/Conceptual | EROI (Range) | EROI (Average) | Category * | Lifetime (Year) | Author/Reference No. |
---|---|---|---|---|---|---|---|
1 | Wind power | o+c | 6.5–57.7 | 34.3 | No Risk | 20 | Walmsley & Atkins, 2017 [79] |
2 | Natural Gas | o+c | 41.7 | 41.7 | No Risk | 35 | Walmsley et al., 2018 [80] |
3 | Hydropower | o+c | 2.4–38.2 | 22.4 | No Risk | 100 | Walmsley et al., 2018 [80] |
4 | Solar PV | o+c | 8.7–34.2 | 21.5 | No Risk | 30 | Bhandari et al., 2015 [81] |
5 | Geothermal | o | 9.5–32.4 | 20.9 | No Risk | 40 | Atlason & Unnthorsson, 2013 [82] |
EROIst | Category |
---|---|
>15 | No risk |
10–15 | Low risk |
5–10 | Dangerous |
4–5 | Very dangerous |
2–3 | Not feasible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prananta, W.; Kubiszewski, I. Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI). Energies 2021, 14, 2803. https://doi.org/10.3390/en14102803
Prananta W, Kubiszewski I. Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI). Energies. 2021; 14(10):2803. https://doi.org/10.3390/en14102803
Chicago/Turabian StylePrananta, Wiraditma, and Ida Kubiszewski. 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)" Energies 14, no. 10: 2803. https://doi.org/10.3390/en14102803
APA StylePrananta, W., & Kubiszewski, I. (2021). Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI). Energies, 14(10), 2803. https://doi.org/10.3390/en14102803