Structural, Optical, and Magnetic Properties of Cobalt-Doped ZnAl2O4 Nanosheets Prepared by Hydrothermal Synthesis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XRD Analysis
3.2. TEM Analysis
3.3. XPS Analysis
3.4. DRS Analysis
3.5. VSM Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akika, F.Z.; Benamira, M.; Lahmar, H.; Trari, M.; Avramova, I.; Suzer, Ş. Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight. Surf. Interfaces 2020, 18, 100406. [Google Scholar] [CrossRef]
- Belyaev, A.V.; Lelet, M.I.; Kirillova, N.I.; Khamaletdinova, N.M.; Boldin, M.S.; Murashov, A.A.; Balabanov, S.S. Sol-gel synthesis and characterization of ZnAl2O4 powders for transparent ceramics. Ceram. Int. 2019, 45, 4835–4839. [Google Scholar] [CrossRef]
- Loiko, P.; Belyaev, A.; Dymshits, O.; Evdokimov, I.; Vitkin, V.; Volkova, K.; Tsenter, M.; Volokitina, A.; Baranov, M.; Vilejshikova, E.; et al. Synthesis, characterization and absorption saturation of Co:ZnAl2O4 (gahnite) transparent ceramic and glass-ceramics: A comparative study. J. Alloys Compd. 2017, 725, 998–1005. [Google Scholar] [CrossRef]
- Mirbagheri, S.A.; Masoudpanah, S.M.; Alamolhoda, S. Structural and optical properties of ZnAl2O4 powders synthesized by solution combustion method: Effects of mixture of fuels. Optik 2020, 204, 164170. [Google Scholar] [CrossRef]
- Huang, S.; Wei, Z.; Wu, X.; Shi, J. Optical properties and theoretical study of Mn doped ZnAl2O4 nanoparticles with spinel structure. J. Alloys Compd. 2020, 825, 154004. [Google Scholar] [CrossRef]
- Lahmer, M.A. The effect of Fe-doping on the electronic, optical and magnetic properties of ZnAl2O4; a first-principles study. Comput. Condens. Matter 2019, 20, e00387. [Google Scholar] [CrossRef]
- Yong, X.; Ping, F.; Baohua, Z.; Juan, G.; Lin, Z.; Xuehua, W. Optical properties of transparent ZnAl2O4 ceramics: A new transparent material prepared by spark plasma sintering. Mater. Lett. 2014, 123, 142–144. [Google Scholar] [CrossRef]
- Bhavani, P.; Manikandan, A.; Paulraj, P.; Dinesh, A.; Durka, M.; Antony, S.A. Okra (Abelmoschus esculentus) Plant Extract-Assisted Combustion Synthesis and Characterization Studies of Spinel ZnAl2O4 Nano-Catalysts. J. Nanosci. Nanotechnol. 2018, 18, 4072–4081. [Google Scholar] [CrossRef]
- Cornu, L.; Gaudon, M.; Jubera, V. ZnAl2O4 as a potential sensor: Variation of luminescence with thermal history. J. Mater. Chem. C 2013, 1, 5419–5428. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Ramamoorthy, K.; Koinkar, P.M.; Chandramohan, R.; Sankaranarayanan, K. A novel way of modifying nano grain size by solution concentration in the growth of ZnAl2O4 thin films. J. Nanopart. Res. 2007, 9, 331–335. [Google Scholar] [CrossRef]
- Motloung, S.V.; Kumari, P.; Koao, L.F.; Motaung, T.E.; Hlatshwayo, T.T.; Mochane, M.J. Effects of annealing time on the structure and optical properties of ZnAl2O4/ZnO prepared via citrate sol-gel process. Mater. Today Commun. 2018, 14, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Cornu, L.; Duttine, M.; Gaudon, M.; Jubera, V. Luminescence switch of Mn-Doped ZnAl2O4 powder with temperature. J. Mater. Chem. C 2014, 2, 9512–9522. [Google Scholar] [CrossRef]
- Denisov, I.A.; Volk, Y.V.; Malyarevich, A.M.; Yumashev, K.V.; Dymshits, O.S.; Zhilin, A.A.; Kang, U.; Lee, K.H. Linear and nonlinear optical properties of cobalt-doped zinc aluminum glass ceramics. J. Appl. Phys. 2003, 93, 3827–3831. [Google Scholar] [CrossRef]
- Rani, G. Annealing effect on the structural, optical and thermoluminescent properties of ZnAl2O4:Cr3+. Powder Technol. 2017, 312, 354–359. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, S.K. An insight into optical spectroscopy of intense green emitting ZnAl2O4:Tb3+ nanoparticles: Photo, thermally stimulated luminescence and EPR study. J. Lumin. 2015, 168, 151–157. [Google Scholar] [CrossRef]
- Kumari, P.; Dwivedi, Y. Structural and photophysical investigations of bright yellow emitting Dy: ZnAl2O4 nanophosphor. J. Lumin. 2016, 178, 407–413. [Google Scholar] [CrossRef]
- Belyaev, A.; Basyrova, L.; Sysoev, V.; Lelet, M.; Balabanov, S.; Kalganov, V.; Mikhailovski, V.; Baranov, M.; Stepanidenko, E.; Vitkin, V.; et al. Microstructure, doping and optical properties of Co2+:ZnAl2O4 transparent ceramics for saturable absorbers: Effect of the ZnF2 sintering additive. J. Alloys Compd. 2020, 829, 154514. [Google Scholar] [CrossRef]
- Tsai, M.T.; Chang, Y.S.; Huang, I.B.; Pan, B.Y. Luminescent and structural properties of manganese-doped zinc aluminate spinel nanocrystals. Ceram. Int. 2013, 39, 3691–3697. [Google Scholar] [CrossRef]
- Ragupathi, C.; Kennedy, L.J.; Vijaya, J.J. A new approach: Synthesis, characterization and optical studies of nano-zinc aluminate. Adv. Powder Technol. 2014, 25, 267–273. [Google Scholar] [CrossRef]
- Basavaraju, N.; Priolkar, K.R.; Gourier, D.; Sharma, S.K.; Bessière, A.; Viana, B. The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al). Phys. Chem. Chem. Phys. 2015, 17, 1790–1799. [Google Scholar] [CrossRef] [Green Version]
- Parya, T.K.; Bhattacharyya, R.K.; Banerjee, S.; Adhikari, U.B. Co-precipitated ZnAl2O4 spinel precursor as potential sintering aid for pure alumina system. Ceram. Int. 2010, 36, 1211–1215. [Google Scholar] [CrossRef]
- Zou, L.; Li, F.; Xiang, X.; Evans, D.G.; Duan, X. Self-generated Template Pathway to High-Surface-Area Zinc Aluminate Spinel with Mesopore Network from a Single-Source Inorganic Precursor. Chem. Mater. 2006, 18, 5852–5859. [Google Scholar] [CrossRef]
- Zawadzki, M. Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave–hydrothermal synthesis of ZnAl2O4). Solid State Sci. 2006, 8, 14–18. [Google Scholar] [CrossRef]
- Tangcharoen, T.; Thienprasert, J.; Kongmark, C. Optical properties and versatile photocatalytic degradation ability of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 8995–9006. [Google Scholar] [CrossRef]
- Chaudhary, A.; Mohammad, A.; Mobin, S.M. Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater. Sci. Eng. B 2018, 227, 136–144. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Z.; Chen, X.; Wang, X.; Yang, H.; Jiang, J. Optical properties and microstructure of Ni doped ZnAl2O4 nanopowders synthesized by sol–gel method. J. Mater. Sci. Mater. Electron. 2015, 26, 6606–6611. [Google Scholar] [CrossRef]
- Komahal, F.F.; Nagabhushana, H.; Basavaraj, R.B.; Darshan, G.P.; Prasad, B.D. Solvothermal synthesis and luminescent properties of hierarchical flowerlike ZnAl2O4:Ho3+ microstructures. Opt. Mater. 2018, 84, 536–544. [Google Scholar] [CrossRef]
- Pan, Q.; Ye, S.; Yang, D.; Qiu, J.; Dong, G. Multifunctional magnetic-fluorescent Ni-doped ZnAl2O4 nanoparticles with second biological NIR window fluorescence. Mater. Res. Bull. 2017, 93, 310–317. [Google Scholar] [CrossRef]
- Singh, V.; Singh, N.; Pathak, M.S.; Dubey, V.; Singh, P.K. Annealing effects on the luminescence properties of Ce doped ZnAl2O4 produced by combustion synthesis. Optik 2018, 155, 285–291. [Google Scholar] [CrossRef]
- Maity, G.; Maji, P.; Sain, S.; Das, S.; Kar, T.; Pradhan, S.K. Microstructure, optical and electrical characterizations of nanocrystalline ZnAl2O4 spinel synthesized by mechanical alloying: Effect of sintering on microstructure and properties. Phys. E Low Dimens. Syst. Nanostruct. 2019, 108, 411–420. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Nandhini, V.; Jeyaprakash, B.G. Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection. J. Colloid Interface Sci. 2016, 482, 81–88. [Google Scholar] [CrossRef]
- Dallaeva, D.S.; Bilalov, B.A.; Gitikchieva, M.A.; Kardashova, G.D.; Safaraliev, G.K.; Tománek, P.; Škarvada, P.; Smith, S. Structural properties of Al2O3/AlN thin film prepared by magnetron sputtering of Al in HF-activated nitrogen plasma. Thin Solid Films 2012, 526, 92–96. [Google Scholar] [CrossRef]
- Shang-Pan, H.; Zhi-Qiang, W.; Xiao-Juan, W.; Ji-Wen, S. Optical properties of Cr doped ZnAl2O4 nanoparticles with Spinel structure synthesized by hydrothermal method. Mater. Res. Express 2020, 7, 015025. [Google Scholar] [CrossRef]
- Wang, C.C.; Liu, M.; Man, B.Y.; Chen, C.S.; Jiang, S.Z.; Yang, S.Y.; Gao, X.G.; Xu, S.C.; Hu, B.; Sun, Z.C.; et al. Role of cobalt in room-temperature ferromagnetic Co-doped ZnO thin films. AIP Adv. 2012, 2, 012182. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Charoo, M.S.; Jayaganthan, R. Structural, optical and photocatalytic properties of zinc aluminate spinel nanoparticles. Mater. Technol. 2015, 30, 168–176. [Google Scholar] [CrossRef]
- Duan, X.; Yuan, D.; Yu, F. Cation Distribution in Co-Doped ZnAl2O4 Nanoparticles Studied by X-ray Photoelectron Spectroscopy and 27Al Solid-State NMR Spectroscopy. Inorg. Chem. 2011, 50, 5460–5467. [Google Scholar] [CrossRef] [PubMed]
- Skoda, D.; Urbanek, P.; Sevcik, J.; Munster, L.; Nadazdy, V.; Cullen, D.A.; Bazant, P.; Antos, J.; Kuritka, I. Colloidal cobalt-doped ZnO nanoparticles by microwave-assisted synthesis and their utilization in thin composite layers with MEH-PPV as an electroluminescent material for polymer light emitting diodes. Org. Electron. 2018, 59, 337–348. [Google Scholar] [CrossRef]
- Xu, X.; Cao, C. Structure and ferromagnetic properties of Co-doped ZnO powders. J. Magn. Magn. Mater. 2009, 321, 2216–2219. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Deepak, F.L. Absence of ferromagnetism in Mn- and Co-doped ZnO. J. Mater. Chem. 2005, 15, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Siddheswaran, R.; Mangalaraja, R.V.; Gómez, M.E.; Avila, R.E.; Jeyanthi, C.E. Room temperature ferromagnetism in combustion synthesized nanocrystalline Co, Al co-doped ZnO. J. Alloys Compd. 2013, 581, 146–149. [Google Scholar] [CrossRef]
- Basith, N.M.; Vijaya, J.J.; Kennedy, L.J.; Bououdina, M.; Jenefar, S.; Kaviyarasan, V. Co-Doped ZnO Nanoparticles: Structural, Morphological, Optical, Magnetic and Antibacterial Studies. J. Mater. Sci. Technol. 2014, 30, 1108–1117. [Google Scholar] [CrossRef]
Sample | Diffraction Angle (2θ) | Lattice Parameter (a = b = c) nm | Size (D) nm | Strain (ε) × 10−3 | d-Spacing (nm) |
---|---|---|---|---|---|
ZAO | 36.61 | 0.7574 | 26.6 | 1.304 | 0.2454 |
ZAO-Co-1 | 36.57 | 0.7572 | 23.6 | 1.467 | 0.2456 |
ZAO-Co-3 | 36.55 | 0.7577 | 21.3 | 1.629 | 0.2457 |
ZAO-Co-5 | 36.41 | 0.7591 | 17.7 | 1.955 | 0.2467 |
Sample | Saturation Magnetization (Ms) × 10−3 emu | Retentivity (Mr) × 10−6 emu | Coercivity (Hc) Oe |
---|---|---|---|
ZAO-Co-1 | 1.11 | 41.73 | 306.10 |
ZAO-Co-3 | 4.98 | 54.95 | 104.00 |
ZAO-Co-5 | 2.68 | 50.34 | 140.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurugubelli, T.R.; Babu, B.; Yoo, K. Structural, Optical, and Magnetic Properties of Cobalt-Doped ZnAl2O4 Nanosheets Prepared by Hydrothermal Synthesis. Energies 2021, 14, 2869. https://doi.org/10.3390/en14102869
Gurugubelli TR, Babu B, Yoo K. Structural, Optical, and Magnetic Properties of Cobalt-Doped ZnAl2O4 Nanosheets Prepared by Hydrothermal Synthesis. Energies. 2021; 14(10):2869. https://doi.org/10.3390/en14102869
Chicago/Turabian StyleGurugubelli, Thirumala Rao, Bathula Babu, and Kisoo Yoo. 2021. "Structural, Optical, and Magnetic Properties of Cobalt-Doped ZnAl2O4 Nanosheets Prepared by Hydrothermal Synthesis" Energies 14, no. 10: 2869. https://doi.org/10.3390/en14102869
APA StyleGurugubelli, T. R., Babu, B., & Yoo, K. (2021). Structural, Optical, and Magnetic Properties of Cobalt-Doped ZnAl2O4 Nanosheets Prepared by Hydrothermal Synthesis. Energies, 14(10), 2869. https://doi.org/10.3390/en14102869