Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization
Abstract
:1. Introduction
2. Adsorption Mechanisms
3. Adsorptive Capabilities and Selection
4. Inversion Methods
4.1. Classical Methods
- ○
- Surface Area (BET)
- ○
- Pore Size Distribution (BJH)
- ○
- Dubinin equations.
- ○
- Advantages and Disadvantages.
4.2. Advanced Methods
- ○
- Advantages and Disadvantages
4.3. Other Methods
5. Gas Adsorption for Shale Characterization
6. Comparison with Other Techniques
7. Discussion of Gas Adsorption Limitations
8. Conclusions
- Gas adsorption can be considered the fastest and most inexpensive approach to obtain a description of shale pore structures.
- Gas adsorption is not a standalone technique and should be complemented by other techniques such as imaging.
- The most suitable scenario for gas adsorption is to compare changes over the same sample, after it has been subject to an alteration.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
AFM | Atomic Fore Microscopy |
Ar | Argon |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
CH4 | Methane |
CO2 | Carbon Dioxide |
D-A | Dubinin–Astakhov |
DFT | Density Functional Theory |
D-R | Dubinin–Radushkevich |
FHH | Frenkel–Halsey–Hill |
FIB-SEM | Focus Ion Beam Scanning Electron Microscopy |
Kr | Krypton |
MD | Molecular Dynamics |
MIP | Mercury Intrusion Porosimetry |
N2 | Nitrogen |
NLDFT | Non-Local Density Functional Theory |
OM | Organic Matter |
PSD | Pore Size Distribution |
QSDFT | Quenched Solid Density Functional Theory |
SANS | Small Angle Neutron Scattering |
SAX | Saturated Excitation Microscopy |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
TOC | Total Organic Content |
USANS | Ultra-Small Angle Neutron Scattering |
XRD | X-Ray Diffraction |
XRF | X-Ray Fluorescence |
References
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar] [CrossRef]
- Scotchman, I.C. CHAPTER 3. Exploration for Unconventional Hydrocarbons: Shale Gas and Shale Oil. Issues Environ. Sci. Technol. 2014, 39, 69–103. [Google Scholar] [CrossRef]
- Rezaee, R. Fundamentals of Gas Shale Reservoirs; Rezaee, R., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 9781119039228. [Google Scholar]
- Dewhurst, D.N.; Yang, Y.; Aplin, A.C. Permeability and fluid flow in natural mudstones. Geol. Soc. London Spec. Publ. 1999, 158, 23–43. [Google Scholar] [CrossRef]
- Dewhurst, D.N.; Jones, R.M.; Raven, M.D. Microstructural and petrophysical characterization of Muderong Shale: Application to top seal risking. Pet. Geosci. 2002, 8, 371–383. [Google Scholar] [CrossRef]
- Horsrud, P.; Sønstebø, E.; Bøe, R. Mechanical and petrophysical properties of North Sea shales. Int. J. Rock Mech. Min. Sci. 1998, 35, 1009–1020. [Google Scholar] [CrossRef]
- Josh, M.; Esteban, L.; Piane, C.D.; Sarout, J.; Dewhurst, D.; Clennell, M. Laboratory characterisation of shale properties. J. Pet. Sci. Eng. 2012, 88–89, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Zhang, W.; Liang, C.; Wang, Y.; Liu, H.; Chen, X. Basic characteristics and evaluation of shale oil reservoirs. Pet. Res. 2016, 1, 149–163. [Google Scholar] [CrossRef]
- Josh, M.; Piane, C.D.; Esteban, L.; Bourdet, J.; Mayo, S.; Pejcic, B.; Burgar, I.; Luzin, V.; Clennell, M.B.; Dewhurst, D.N. Advanced laboratory techniques characterising solids, fluids and pores in shales. J. Pet. Sci. Eng. 2019, 180, 932–949. [Google Scholar] [CrossRef]
- Hackley, P.C.; Araujo, C.V.; Borrego, A.G.; Bouzinos, A.; Cardott, B.J.; Cook, A.C.; Eble, C.; Flores, D.; Gentzis, T.; Gonçalves, P.A.; et al. Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement. Mar. Pet. Geol. 2015, 59, 22–34. [Google Scholar] [CrossRef]
- Vandenbroucke, M.; Largeau, C. Kerogen Origin, Evolution and Structure. Org. Geochem. 2007, 38, 719–833. [Google Scholar] [CrossRef]
- Senftle, J.T.; Landis, C.R.; McLaughlin, R.L. Organic Petrographic Approach to Kerogen Characterization. In Organic Geochemistry; Springer: Boston, MA, USA, 1993; pp. 355–374. [Google Scholar]
- McLaughlin, J.; McLaughlin, R.; Kneller, W. Organic geochemistry of the kerogen and bitumen from the Ohio Shale by pyrolysis-gas chromatography. Int. J. Coal Geol. 1987, 7, 21–50. [Google Scholar] [CrossRef]
- Dembicki, H. Practical Petroleum Geochemistry for Exploration and Production; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128033517. [Google Scholar]
- Larter, S.; Douglas, A. A pyrolysis-gas chromatographic method for kerogen typing. Phys. Chem. Earth 1980, 12, 579–583. [Google Scholar] [CrossRef]
- Hackley, P.C. Standardization of Vitrinite Reflectance Measurements in Shale Petroleum Systems: How Accurate Are My Ro Data. In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, 6–9 April 2014; AAPG: Tulsa, OK, USA, 2014. [Google Scholar]
- Lazar, O.R.; Bohacs, K.M.; Macquaker, J.H.S.; Schieber, J.; Demko, T.M. Capturing Key Attributes of Fine-Grained Sedimentary Rocks In Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. J. Sediment. Res. 2015, 85, 230–246. [Google Scholar] [CrossRef] [Green Version]
- Hazra, B.; Varma, A.K.; Bandopadhyay, A.K.; Chakravarty, S.; Buragohain, J.; Samad, S.K.; Prasad, A.K. FTIR, XRF, XRD and SEM characteristics of Permian shales, India. J. Nat. Gas Sci. Eng. 2016, 32, 239–255. [Google Scholar] [CrossRef]
- Dargahi, H.J.; Rezaee, R.; Pejcic, B. Clay Mineralogy of Shale Gas Reservoirs through Integrating Infrared Spectroscopy and X-Ray Diffraction. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013; pp. 2027–2036. [Google Scholar]
- Mandile, A.J.; Hutton, A.C. Quantitative X-ray diffraction analysis of mineral and organic phases in organic-rich rocks. Int. J. Coal Geol. 1995, 28, 51–69. [Google Scholar] [CrossRef]
- Coveney, R.M., Jr.; Glascock, M.D. A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Appl. Geochem. 1989, 4, 347–367. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, Y.; Slatt, R. XRF (X-ray fluorescence) applied to characterization of unconventional Woodford Shale (Devonian, U.S.A.) lateral well heterogeneity. Fuel 2019, 254, 115565. [Google Scholar] [CrossRef]
- Wood, D.A.; Hazra, B. Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 1: Bulk properties, multi-scale geometry and gas adsorption. J. Earth Sci. 2017, 28, 739–757. [Google Scholar] [CrossRef]
- Zhang, D.; Ranjith, P.; Perera, M. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review. J. Pet. Sci. Eng. 2016, 143, 158–170. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Ge, X.; Han, Z.; Qu, G.; Jiang, S. A new method for rock brittleness evaluation in tight oil formation from conventional logs and petrophysical data. J. Pet. Sci. Eng. 2017, 151, 169–182. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. Am. Assoc. Pet. Geol. Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Kuila, U.; McCarty, D.K.; Derkowski, A.; Fischer, T.B.; Topór, T.; Prasad, M. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel 2014, 135, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Veselinovic, D.; Green, D.; Dick, M. Determination of Natural Fracture Porosity Using NMR. In Proceedings of the of the 4th Unconventional Resources Technology Conference, American Association of Petroleum Geologists, Tulsa, OK, USA, 20–22 July 2016. [Google Scholar]
- Longman, M.; Dahlberg, K.; Yared, K. Lithologies and Petrophysical Characteristics of the Upper Cretaceous Baxter Shale Gas Reservoir, Canyon Creek Field, Sweetwater County, Wyoming. In Proceedings of the Society of Petroleum Engineers-SPE Low Perm Symposium; Society of Petroleum Engineers, Denver, CO, USA, 5 May 2016. [Google Scholar]
- Fleury, M.; Romero-Sarmiento, M. Characterization of shales using T1–T2 NMR maps. J. Pet. Sci. Eng. 2016, 137, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, C.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.; Mastalerz, M.; Bustin, R.; Radliński, A.; Blach, T. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Song, Y.-Q.; Kausik, R. NMR application in unconventional shale reservoirs—A new porous media research frontier. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 112–113, 17–33. [Google Scholar] [CrossRef]
- Goral, J.; Panja, P.; Deo, M.; Andrew, M.; Linden, S.; Schwarz, J.-O.; Wiegmann, A. Confinement Effect on Porosity and Permeability of Shales. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sakhaee-Pour, A.; Bryant, S.L. Gas Permeability of Shale. In Proceedings of the Proceedings-SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (SPE), Denver, CO, USA, 30 October–2 November 2011; Volume 4, pp. 3047–3060. [Google Scholar]
- Zeng, J.; Liu, J.; Li, W.; Leong, Y.-K.; Elsworth, D.; Guo, J. Evolution of Shale Permeability under the Influence of Gas Diffusion from the Fracture Wall into the Matrix. Energy Fuels 2020, 34, 4393–4406. [Google Scholar] [CrossRef]
- Neuzil, C. Permeability of Clays and Shales. Annu. Rev. Earth Planet. Sci. 2019, 47, 247–273. [Google Scholar] [CrossRef]
- Lyu, Q.; Shi, J.; Gamage, R.P. Effects of testing method, lithology and fluid-rock interactions on shale permeability: A review of laboratory measurements. J. Nat. Gas Sci. Eng. 2020, 78, 103302. [Google Scholar] [CrossRef]
- Yuan, Y.; Rahman, S.; Wang, J.; Doonechaly, N.G. An Innovative Technique for Estimation of Permeability of Shale Gas Reservoirs. In Proceedings of the Society of Petroleum Engineers-SPE Asia Pacific Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers, Brisbane, Australia, 9–11 November 2015. [Google Scholar]
- Wang, M.; Yu, Q. A method to determine the permeability of shales by using the dynamic process data of methane adsorption. Eng. Geol. 2019, 253, 111–122. [Google Scholar] [CrossRef]
- Yang, Z.; Dong, M. A new measurement method for radial permeability and porosity of shale. Pet. Res. 2017, 2, 178–185. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Javadpour, F.; Enayati, S.F. Digital Rock Techniques to Study Shale Permeability: A Mini-Review. Energy Fuels 2020. [Google Scholar] [CrossRef]
- Lu, T.; Xu, R.; Zhou, B.; Wang, Y.; Zhang, F.; Jiang, P. Improved Method for Measuring the Permeability of Nanoporous Material and Its Application to Shale Matrix with Ultra-Low Permeability. Materials 2019, 12, 1567. [Google Scholar] [CrossRef] [Green Version]
- Medina-Rodriguez, B.X.; Alvarado, V.; Edgin, M.; Kaszuba, J. Unveiling stimulation fluid-driven alterations in shale pore architecture through combined interpretation of TD-NMR and multi-component gas adsorption. Fuel 2021, 297, 120744. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Miner. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef] [Green Version]
- Davarpanah, A.; Mirshekari, B. Experimental Investigation and Mathematical Modeling of Gas Diffusivity by Carbon Dioxide and Methane Kinetic Adsorption. Ind. Eng. Chem. Res. 2019, 58, 12392–12400. [Google Scholar] [CrossRef]
- He, S.; Palmer, J.C.; Qin, G. A non-equilibrium molecular dynamics study of methane transport in clay nano-pores. Microporous Mesoporous Mater. 2017, 249, 88–96. [Google Scholar] [CrossRef]
- Aylmore, L.A.G. Gas Sorption in Clay Mineral Systems. Clays Clay Miner. 1974, 22, 175–183. [Google Scholar] [CrossRef]
- Aylmore, L.A.G.; Quirk, J.P. The micropore size distributions of clay mineral systems. Eur. J. Soil Sci. 1967, 18, 1–17. [Google Scholar] [CrossRef]
- Gan, H.; Nandi, S.; Walker, P. Nature of the porosity in American coals. Fuel 1972, 51, 272–277. [Google Scholar] [CrossRef]
- Rani, S.; Padmanabhan, E.; Prusty, B.K. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage. J. Pet. Sci. Eng. 2019, 175, 634–643. [Google Scholar] [CrossRef]
- Kang, S.M.; Fathi, E.; Ambrose, R.J.; Akkutlu, I.Y.; Sigal, R.F. Carbon Dioxide Storage Capacity of Organic-Rich Shales. SPE J. 2011, 16, 842–855. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xiong, Y.; Li, Y.; Wei, M.; Jiang, W.; Lei, R.; Wu, Z. DFT modeling of CO2 and Ar low-pressure adsorption for accurate nanopore structure characterization in organic-rich shales. Fuel 2017, 204, 1–11. [Google Scholar] [CrossRef]
- Kuila, U.; Prasad, M. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 2013, 61, 341–362. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Choi, J.-G.; Do, D.D.; Do, H.D. Surface Diffusion of Adsorbed Molecules in Porous Media: Monolayer, Multilayer, and Capillary Condensation Regimes. Ind. Eng. Chem. Res. 2001, 40, 4005–4031. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; ISBN 9780080970356. [Google Scholar]
- Thommes, M. Physical Adsorption Characterization of Nanoporous Materials. Chem. Ing. Tech. 2010, 82, 1059–1073. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 49–71. [Google Scholar] [CrossRef]
- DIN ISO 15901-3: Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 3: Analysis of Micropores by Gas Adsorption. 2007. Available online: https://www.iso.org/standard/40364.html (accessed on 17 May 2021).
- Hui, D.; Pan, Y.; Luo, P.; Zhang, Y.; Sun, L.; Lin, C. Effect of supercritical CO2 exposure on the high-pressure CO2 adsorption performance of shales. Fuel 2019, 247, 57–66. [Google Scholar] [CrossRef]
- Levy, J.H.; Day, S.J.; Killingley, J.S. Methane capacities of Bowen Basin coals related to coal properties. Fuel 1997, 76, 813–819. [Google Scholar] [CrossRef]
- International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry Including Catalysis* Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. 1985. Available online: http://publications.iupac.org/pac/57/4/0603/index.html (accessed on 25 January 2021).
- Schneider, P. Adsorption isotherms of microporous-mesoporous solids revisited. Appl. Catal. A Gen. 1995, 129, 157–165. [Google Scholar] [CrossRef]
- de Boer, J.H. The Structure and Properties of Porous Materials; Butterworths: London, UK, 1958. [Google Scholar]
- Mayagoitia, V. The Five Types of Porous Structures and Their Hysteresis Loops. Adv. Pharmacol. 1991, 62, 51–60. [Google Scholar] [CrossRef]
- Labani, M.M.; Rezaee, R.; Saeedi, A.; Al Hinai, A. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia. J. Pet. Sci. Eng. 2013, 112, 7–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, D.; Yan, J.; Jia, X.; Li, Y.; Yu, P.; Zhang, T. The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China. J. Nat. Gas Geosci. 2016, 1, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Nelson, B.P.H.; Kibler, J.E. Formation Pressures and Gas-Flow Rates from Well Tests, Southwestern Wyoming Province, Wyoming, Colorado, and Utah; USGS Southwestern Wyoming Province Assessment Team: Laramie, WY, USA, 2005; ISBN 0607990279.
- Zeng, F.; Huang, W.B.; Liu, M.; Lu, S.F.; Yu, L. A Study on Quantitative Characterization of Adsorption Capacity of Shale. Adv. Mater. Res. 2013, 868, 20–25. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Y.-P. Characterization of pore structure, gas adsorption, and spontaneous imbibition in shale gas reservoirs. J. Pet. Sci. Eng. 2017, 159, 197–204. [Google Scholar] [CrossRef]
- Tian, Y.; Yan, C.; Jin, Z. Characterization of Methane Excess and Absolute Adsorption in Various Clay Nanopores from Molecular Simulation. Sci. Rep. 2017, 7, 12040. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Ning, Z.; Wang, Q.; Ye, H.; Wang, Z.; Sun, Z.; Qin, H. Microstructure and adsorption properties of organic matter in Chinese Cambrian gas shale: Experimental characterization, molecular modeling and molecular simulation. Int. J. Coal Geol. 2018, 198, 14–28. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Gaus, G.; Li, Y.; Ma, Y.; Chen, K.; Zhang, Y. Characterization of methane adsorption on shale and isolated kerogen from the Sichuan Basin under pressure up to 60 MPa: Experimental results and geological implications. Int. J. Coal Geol. 2018, 189, 83–93. [Google Scholar] [CrossRef]
- Cao, X.; Wang, M.; Kang, J.; Wang, S.; Liang, Y. Fracturing technologies of deep shale gas horizontal wells in the Weirong Block, southern Sichuan Basin. Nat. Gas Ind. B 2020, 7, 64–70. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, Y.; Wang, H.; Liu, H.; Wei, W.; Fang, J. Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy 2011, 36, 6609–6616. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Gasparik, M.; Ghanizadeh, A.; Bertier, P.; Gensterblum, Y.; Bouw, S.; Krooss, B.M. High-Pressure Methane Sorption Isotherms of Black Shales from The Netherlands. Energy Fuels 2012, 26, 4995–5004. [Google Scholar] [CrossRef]
- Jin, Z.; Firoozabadi, A. Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations. Fluid Phase Equilibria 2013, 360, 456–465. [Google Scholar] [CrossRef]
- Rani, S.; Prusty, B.K.; Pal, S.K. Methane adsorption and pore characterization of Indian shale samples. J. Unconv. Oil Gas Resour. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Tolbert, B.T.; Wu, X. Quantifying Pore Size Distribution Effect on Gas in Place and Recovery Using SLD-PR EOS for Multiple-Components Shale Gas Reservoir. In Proceedings of the Society of Petroleum Engineers-SPE Asia Pacific Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers, Brisbane, Australia, 9–11 November 2015. [Google Scholar]
- Tian, H.; Li, T.; Zhang, T.; Xiao, X. Characterization of methane adsorption on overmature Lower Silurian–Upper Ordovician shales in Sichuan Basin, southwest China: Experimental results and geological implications. Int. J. Coal Geol. 2016, 156, 36–49. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, Y.; Hossain, M.; Saeedi, A.; Xie, Q. Wettability alteration induced water uptake in shale oil reservoirs: A geochemical interpretation for oil-brine-OM interaction during hydraulic fracturing. Int. J. Coal Geol. 2019, 213, 103277. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M. Chapter 15 Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. In Studies in Surface Science and Catalysis; Elsevier Inc.: Amsterdam, The Netherlands, 2007; Volume 168, ISBN 0444530630. [Google Scholar]
- Saidian, M.; Godinez, L.J.; Prasad, M. Effect of clay and organic matter on nitrogen adsorption specific surface area and cation exchange capacity in shales (mudrocks). J. Nat. Gas Sci. Eng. 2016, 33, 1095–1106. [Google Scholar] [CrossRef]
- Zhang, D.; Ranjith, P.; Perera, M.; Ma, G. Laboratory evaluation of flow properties of Niutitang shale at reservoir conditions. Mar. Pet. Geol. 2020, 115, 104257. [Google Scholar] [CrossRef]
- Wang, F.; Guo, S. Influential factors and model of shale pore evolution: A case study of a continental shale from the Ordos Basin. Mar. Pet. Geol. 2019, 102, 271–282. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Yang, X.; Guo, S. Pore characterization of marine-continental transitional shale in Permian Shanxi Formation of The Southern North China Basin. Energy Explor. Exploit. 2020, 38, 2199–2216. [Google Scholar] [CrossRef]
- Yang, X.; Guo, S. Comparative analysis of shale pore size characterization methods. Pet. Sci. Technol. 2020, 38, 793–799. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.Q.; Zhou, B.G.; Qi, S.; Zhang, J.Z.; Wang, G.; Xu, H.W.; Wang, F.Y. Characterization of Microscopic Pore Structure and Its Influence on Gas Content of Shale Gas Reservoirs from the Lower Paleozoic in Southern Sichuan Basin. Meitan Xuebao/J. China Coal Soc. 2016, 41, 2287–2297. [Google Scholar] [CrossRef]
- Thommes, M.; Cychosz, K.A.; Neimark, A.V. Advanced Physical Adsorption Characterization of Nanoporous Carbons. In Novel Carbon Adsorbents; Elsevier BV: Amsterdam, The Netherlands, 2012; pp. 107–145. [Google Scholar]
- AWM’s. Adsorption Page-Mesopores-BJH Scheme. Available online: http://www.adsorption.org/awm/ads/meso/BJH.htm (accessed on 25 January 2021).
- Harkins, W.D.; Jura, G. Surface of Solids. X. Extension of the Attractive Energy of a Solid into an Adjacent Liquid or Film, the Decrease of Energy with Distance, and the Thickness of Films. J. Am. Chem. Soc. 1944, 66, 919–927. [Google Scholar] [CrossRef]
- Harkins, W.D.; Jura, G. Surfaces of Solids. XIII. A Vapor Adsorption Method for the Determination of the Area of a Solid without the Assumption of a Molecular Area, and the Areas Occupied by Nitrogen and Other Molecules on the Surface of a Solid. J. Am. Chem. Soc. 1944, 66, 1366–1373. [Google Scholar] [CrossRef]
- Jura, G.; Harkins, W.D. Surfaces of Solids. XI. Determination of the Decrease (π) of Free Surface Energy of a Solid by an Adsorbed Film. J. Am. Chem. Soc. 1944, 66, 1356–1362. [Google Scholar] [CrossRef]
- Halsey, G. Physical Adsorption on Non-Uniform Surfaces. J. Chem. Phys. 1948, 16, 931–937. [Google Scholar] [CrossRef]
- Broekhoff, J.C.P.; De Boer, J.H. The Surface Area in Intermediate Pores. In Surface Area Determination; Elsevier: Amsterdam, The Netherlands, 1970; pp. 97–121. [Google Scholar]
- Kruk, M.; Jaroniec, M.; Sayari, A. Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes. J. Phys. Chem. B 1997, 101, 583–589. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Sayari, A. Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements. Langmuir 1997, 13, 6267–6273. [Google Scholar] [CrossRef]
- Magee, R.W. Evaluation of the External Surface Area of Carbon Black by Nitrogen Adsorption. Rubber Chem. Technol. 1995, 68, 590–600. [Google Scholar] [CrossRef]
- Dubinin, M.M. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Pure Appl. Chem. 1989, 61, 1841–1843. [Google Scholar] [CrossRef]
- Dubinin, M.; Stoeckli, H. Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents. J. Colloid Interface Sci. 1980, 75, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Stoeckli, H.; Kraehenbuehl, F.; Ballerini, L.; De Bernardini, S. Recent developments in the Dubinin equation. Carbon 1989, 27, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Mastalerz, M.; He, L.; Melnichenko, Y.B.; Rupp, J.A. Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/USANS Techniques. Energy Fuels 2012, 26, 5109–5120. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, L.; Mastalerz, M.; Schimmelmann, A. The effect of analytical particle size on gas adsorption porosimetry of shale. Int. J. Coal Geol. 2015, 138, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-Y.; Tian, S.-C.; Liu, Q.-L.; Li, G.-S.; Sheng, M.; Ren, W.-X.; Zhang, P.-P. Pore structure characterization and its effect on methane adsorption in shale kerogen. Pet. Sci. 2020, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Y.; He, D.; Sun, P.; Zou, X. Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry. Appl. Clay Sci. 2020, 196, 105758. [Google Scholar] [CrossRef]
- Li, T.; Tian, H.; Chen, J.; Cheng, L. Application of low pressure gas adsorption to the characterization of pore size distribution of shales: An example from Southeastern Chongqing area, China. J. Nat. Gas Geosci. 2016, 1, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.G.; Yang, R.T. Theoretical Basis for the Potential Theory Adsorption Isotherms. The Dubinin-Radushkevich and Dubinin-Astakhov Equations. Langmuir 1994, 10, 4244–4249. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.; Pérez-Ramírez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Do, D.; Do, H. Pore Characterization of Carbonaceous Materials by DFT and GCMC Simulations: A Review. Adsorpt. Sci. Technol. 2003, 21, 389–423. [Google Scholar] [CrossRef]
- Herdes, C.; Petit, C.; Mejía, A.; Müller, E.A. Combined Experimental, Theoretical, and Molecular Simulation Approach for the Description of the Fluid-Phase Behavior of Hydrocarbon Mixtures within Shale Rocks. Energy Fuels 2018, 32, 5750–5762. [Google Scholar] [CrossRef] [Green Version]
- Chong, L.; Sanguinito, S.; Goodman, A.L.; Myshakin, E.M. Molecular characterization of carbon dioxide, methane, and water adsorption in micropore space of kerogen matrix. Fuel 2021, 283, 119254. [Google Scholar] [CrossRef]
- AlAfnan, S.; Falola, Y.; Al Mansour, O.; Alsamadony, K.; Awotunde, A.; Aljawad, M. Enhanced Recovery From Organic-Rich Shales through Carbon Dioxide Injection: Molecular-Level Investigation. Energy Fuels 2020, 34, 16089–16098. [Google Scholar] [CrossRef]
- Gupta, N.; Fathi, E.; Belyadi, F. Effects of nano-pore wall confinements on rarefied gas dynamics in organic rich shale reservoirs. Fuel 2018, 220, 120–129. [Google Scholar] [CrossRef]
- Sui, H.; Yao, J.; Zhang, L. Molecular Simulation of Shale Gas Adsorption and Diffusion in Clay Nanopores. Computation 2015, 3, 687–700. [Google Scholar] [CrossRef] [Green Version]
- Adesida, A.G.; Akkutlu, I.Y.; Resasco, D.E.; Rai, C.S. Kerogen Pore Size Distribution of Barnett Shale using DFT Analysis and Monte Carlo Simulations. In Proceedings of the Society of Petroleum Engineers-SPE Asia Pacific Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers, Brisbane, Australia, 9–11 November; Volume 5, pp. 4341–4354.
- Song, W.; Yao, J.; Ma, J.; Li, A.; Li, Y.; Sun, H.; Zhang, L. Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal and shale systems. Fuel 2018, 215, 196–203. [Google Scholar] [CrossRef]
- Aljamaan, H.; Al Ismail, M.; Kovscek, A.R. Experimental investigation and Grand Canonical Monte Carlo simulation of gas shale adsorption from the macro to the nano scale. J. Nat. Gas Sci. Eng. 2017, 48, 119–137. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, J. Investigation on the Potential Relationships between Geophysical Properties and CH4 Adsorption in a Typical Shale Gas Reservoir. Energy Fuels 2019, 33, 8354–8362. [Google Scholar] [CrossRef]
- Hu, X.; Deng, H.; Lu, C.; Tian, Y.; Jin, Z. Characterization of CO2/CH4 Competitive Adsorption in Various Clay Minerals in Relation to Shale Gas Recovery from Molecular Simulation. Energy Fuels 2019, 33, 8202–8214. [Google Scholar] [CrossRef]
- Takbiri-Borujeni, A.; Fathi, E.; Kazemi, M.; Belyadi, F. An integrated multiscale model for gas storage and transport in shale reservoirs. Fuel 2019, 237, 1228–1243. [Google Scholar] [CrossRef]
- Tarazona, P. Free-energy density functional for hard spheres. Phys. Rev. A 1985, 31, 2672–2679. [Google Scholar] [CrossRef]
- Tarazona, P.; Marconi, U.M.B.; Evans, R. Phase equilibria of fluid interfaces and confined fluids. Mol. Phys. 1987, 60, 573–595. [Google Scholar] [CrossRef]
- Lastoskie, C.; Gubbins, K.E.; Quirke, N. Pore size distribution analysis of microporous carbons: A density functional theory approach. J. Phys. Chem. 1993, 97, 4786–4796. [Google Scholar] [CrossRef]
- Olivier, J.P.; Occelli, M.L. Surface Area and Microporosity of a Pillared Interlayered Clay (PILC) from a Hybrid Density Functional Theory (DFT) Method. J. Phys. Chem. B 2001, 105, 623–629. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Neimark, A.V. Density Functional Theory Model of Adsorption on Amorphous and Microporous Silica Materials. Langmuir 2006, 22, 11171–11179. [Google Scholar] [CrossRef] [PubMed]
- Landers, J.; Gor, G.Y.; Neimark, A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3–32. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z. Theoretical and practical discussion of measurement accuracy for physisorption with micro- and mesoporous materials. Chin. J. Catal. 2013, 34, 1797–1810. [Google Scholar] [CrossRef]
- Horváth, G.; Kawazoe, K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 1983, 16, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Nia, S.F.; Dasani, D.; Tsotsis, T.; Jessen, K. Pore-Scale Characterization of Oil-Rich Monterey Shale: A Preliminary Study. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013; pp. 1750–1760. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J.; Tang, X.; Dang, W.; Li, Z.; Liu, C.; Zhang, X. Pore Structure Characterization of the Lower Permian Marine-Continental Transitional Black Shale in the Southern North China Basin, Central China. Energy Fuels 2016, 30, 10092–10105. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Fu, D.; Li, Y.; Ma, Y.; Yang, Y.; Li, C. Changes in the pore characteristics of shale during comminution. Energy Explor. Exploit. 2016, 34, 676–688. [Google Scholar] [CrossRef] [Green Version]
- Saito, A.; Foley, H.C. Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J. 1991, 37, 429–436. [Google Scholar] [CrossRef]
- Saito, A.; Foley, H.C. High-resolution nitrogen and argon adsorption on ZSM-5 zeolites: Effects of cation exchange and ratio. Microporous Mater. 1995, 3, 543–556. [Google Scholar] [CrossRef]
- De Boer, J.; Lippens, B.; Linsen, B.; Broekhoff, J.; Heuvel, A.V.D.; Osinga, T.J. Thet-curve of multimolecular N2-adsorption. J. Colloid Interface Sci. 1966, 21, 405–414. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.; Liu, K.; Wang, P.; Gao, F.; Hu, T. Application of low-pressure gas adsorption to nanopore structure characterisation of organic-rich lower Cambrian shale in the Upper Yangtze Platform, South China. Aust. J. Earth Sci. 2017, 64, 653–665. [Google Scholar] [CrossRef]
- Li, K.; Kong, S.; Xia, P.; Wang, X. Microstructural characterisation of organic matter pores in coal-measure shale. Adv. Geo-Energy Res. 2020, 4, 372–391. [Google Scholar] [CrossRef]
- Huang, L.; Liu, X.; Xiong, J.; Liang, L. Experimental on the pore structure characteristics of Longmaxi Formation shale in southern Sichuan Basin, China. Petroleum 2020. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Jang, H.W.; Zakharova, N.V.; Shokouhimehr, M. Comparison of fractal dimensions from nitrogen adsorption data in shale via different models. RSC Adv. 2021, 11, 2298–2306. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Evaluation of Fractal Dimension by Gas Adsorption. Part. Technol. Ser. 2004, 94–100. [Google Scholar]
- Sakhaee-Pour, A.; Li, W. Fractal dimensions of shale. J. Nat. Gas Sci. Eng. 2016, 30, 578–582. [Google Scholar] [CrossRef]
- Wang, G.; Ju, Y. Organic shale micropore and mesopore structure characterization by ultra-low pressure N 2 physisorption: Experimental procedure and interpretation model. J. Nat. Gas Sci. Eng. 2015, 27, 452–465. [Google Scholar] [CrossRef]
- Clarkson, C.; Solano, N.; Bustin, R.; Bustin, A.; Chalmers, G.; He, L.; Melnichenko, Y.; Radliński, A.; Blach, T. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Schäfer, T.; Dohrmann, R.; Greenwell, H.C.; Bertier, P.; Schweinar, K.; Stanjek, H.; Ghanizadeh, A.; Clarkson, C.R.; Busch, A.; Kampman, N.; et al. On the Use and Abuse of N 2 Physisorption for the Characterization of the Pore Structure of Shales. In Filling the Gaps-from Microscopic Pore Structures to Transport Properties in Shales; Clay Minerals Society: Chantilly, VA, USA, 2016; pp. 151–161. [Google Scholar]
- Yuan, Y.; Rezaee, R. Comparative Porosity and Pore Structure Assessment in Shales: Measurement Techniques, Influencing Factors and Implications for Reservoir Characterization. Energies 2019, 12, 2094. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liu, D.; Xie, S. Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method. Int. J. Coal Geol. 2014, 131, 32–40. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Xie, S.; Fang, X.; Si, G.; Cai, Y.; Wang, Y. Evaluation of Methane Dynamic Adsorption–Diffusion Process in Coals by a Low-Field NMR Method. Energy Fuels 2020, 34, 16119–16131. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, J.; Liu, D.; Chen, J.; Pan, Z. A new application of NMR in characterization of multiphase methane and adsorption capacity of shale. Int. J. Coal Geol. 2019, 201, 76–85. [Google Scholar] [CrossRef]
Name | Formula | Kinetic Diameter (nm) | Common Use in Shales |
---|---|---|---|
Methane | CH4 | 0.380 | Storage capacity, Permeability |
Helium | He | 0.260 | Porosity, void volume |
Krypton | Kr | 0.360 | Permeability, Porosity, void volume |
Argon | Ar | 0.340 | Permeability, Porosity, Pore size distribution |
Nitrogen | N2 | 0.364 | Permeability, Porosity, Pore size distribution, Surface area |
Carbon Dioxide | CO2 | 0.330 | Storage capacity, Permeability, Porosity, Pore size distribution |
Harkins and Jura [98,99,100] | |
Halsey [101] | |
Broekhoff–de Boer [102] | |
Kruk, Jaroniec, and Sayari [103,104] | |
Carbon Black STSA [105] |
Dubinin–Radushkevich | |
Dubinin–Astakhov |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Rodriguez, B.X.; Alvarado, V. Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization. Energies 2021, 14, 2880. https://doi.org/10.3390/en14102880
Medina-Rodriguez BX, Alvarado V. Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization. Energies. 2021; 14(10):2880. https://doi.org/10.3390/en14102880
Chicago/Turabian StyleMedina-Rodriguez, Bryan X., and Vladimir Alvarado. 2021. "Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization" Energies 14, no. 10: 2880. https://doi.org/10.3390/en14102880
APA StyleMedina-Rodriguez, B. X., & Alvarado, V. (2021). Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization. Energies, 14(10), 2880. https://doi.org/10.3390/en14102880