Theoretical Study of an Undisclosed Reaction Class: Direct H-Atom Abstraction from Allylic Radicals by Molecular Oxygen
Abstract
:1. Introduction
2. Computational Methods
- Three sets of quantum chemical methods: Method 1, Method 2, and Method 3.
3. Results and Discussion
3.1. Potential Energy Surface for C4H71-3 + O2 Reaction
3.2. Comparison of Rate Constants
- Comparing two ab initio solvers (Gaussian and Orca) when using the MultiWell kinetic solver with Method 2
- Comparing two kinetic solvers (Multiwell and PAPR) using ab initio results from Gaussian with Method 2
3.3. Thermodynamic Properties
3.4. Application in Kinetic Model Development
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Banyon, C.; Togbé, C.; Dagaut, P.; Bugler, J.; Curran, H.J. An experimental and kinetic modeling study of n-hexane oxidation. Combust. Flame 2015, 162, 4194–4207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Banyon, C.; Bugler, J.; Curran, H.J.; Rodriguez, A.; Herbinet, O.; Battin-Leclerc, F.; B’Chir, C.; Heufer, K.A. An updated experimental and kinetic modeling study of n-heptane oxidation. Combust. Flame 2016, 172, 116–135. [Google Scholar] [CrossRef] [Green Version]
- Atef, N.; Kukkadapu, G.; Mohamed, S.Y.; Rashidi, M.A.; Banyon, C.; Mehl, M.; Heufer, K.A.; Nasir, E.F.; Alfazazi, A.; Das, A.K.; et al. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics. Combust. Flame 2017, 178, 111–134. [Google Scholar] [CrossRef] [Green Version]
- Kopp, M.M.; Donato, N.S.; Petersen, E.L.; Metcalfe, W.K.; Burke, S.M.; Curran, H.J. Oxidation of Ethylene–Air Mixtures at Elevated Pressures, Part 1: Experimental Results. J. Propuls. Power 2014, 30, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Kopp, M.M.; Petersen, E.L.; Metcalfe, W.K.; Burke, S.M.; Curran, H.J. Oxidation of Ethylene—Air Mixtures at Elevated Pressures, Part 2: Chemical Kinetics. J. Propuls. Power 2014, 30, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Burke, S.M.; Metcalfe, W.; Herbinet, O.; Battin-Leclerc, F.; Haas, F.M.; Santner, J.; Dryer, F.L.; Curran, H.J. An experimental and modeling study of propene oxidation. Part 1: Speciation measurements in jet-stirred and flow reactors. Combust. Flame 2014, 161, 2765–2784. [Google Scholar] [CrossRef] [Green Version]
- Burke, S.M.; Burke, U.; Mc Donagh, R.; Mathieu, O.; Osorio, I.; Keesee, C.; Morones, A.; Petersen, E.L.; Wang, W.; DeVerter, T.A.; et al. An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combust. Flame 2015, 162, 296–314. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.-W.; Li, Y.; O’Connor, E.; Somers, K.P.; Thion, S.; Keesee, C.; Mathieu, O.; Petersen, E.L.; DeVerter, T.A.; Oehlschlaeger, M.A.; et al. A comprehensive experimental and modeling study of isobutene oxidation. Combust. Flame 2016, 167, 353–379. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Somers, K.P.; Mehl, M.; Pitz, W.J.; Cracknell, R.F.; Curran, H.J. Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures. Proc. Combust. Inst. 2017, 36, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Li, Y.; Pengloan, G.; Togbé, C.; Dagaut, P.; Qi, F. A comprehensive experimental and kinetic modeling study of ethylbenzene combustion. Combust. Flame 2016, 166, 255–265. [Google Scholar] [CrossRef]
- Dagaut, P.; Ristori, A.; El Bakali, A.; Cathonnet, M. Experimental and kinetic modeling study of the oxidation of n-propylbenzene. Fuel 2002, 81, 173–184. [Google Scholar] [CrossRef]
- Zhang, Y.; El-Merhubi, H.; Lefort, B.; Le Moyne, L.; Curran, H.J.; Kéromnès, A. Probing the low-temperature chemistry of ethanol via the addition of dimethyl ether. Combust. Flame 2018, 190, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Frassoldati, A.; Cuoci, A.; Faravelli, T.; Niemann, U.; Ranzi, E.; Seiser, R.; Seshadri, K. An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combust. Flame 2010, 157, 2–16. [Google Scholar] [CrossRef]
- Sarathy, S.M.; Vranckx, S.; Yasunaga, K.; Mehl, M.; Oßwald, P.; Metcalfe, W.K.; Westbrook, C.K.; Pitz, W.J.; Kohse-Höinghaus, K.; Fernandes, R.X.; et al. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame 2012, 159, 2028–2055. [Google Scholar] [CrossRef]
- Pelucchi, M.; Somers, K.P.; Yasunaga, K.; Burke, U.; Frassoldati, A.; Ranzi, E.; Curran, H.J.; Faravelli, T. An experimental and kinetic modeling study of the pyrolysis and oxidation of n-C3C5 aldehydes in shock tubes. Combust. Flame 2015, 162, 265–286. [Google Scholar] [CrossRef] [Green Version]
- Burke, U.; Somers, K.P.; O’Toole, P.; Zinner, C.M.; Marquet, N.; Bourque, G.; Petersen, E.L.; Metcalfe, W.K.; Serinyel, Z.; Curran, H.J. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combust. Flame 2015, 162, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Yasunaga, K.; Gillespie, F.; Simmie, J.M.; Curran, H.J.; Kuraguchi, Y.; Hoshikawa, H.; Yamane, M.; Hidaka, Y. A Multiple Shock Tube and Chemical Kinetic Modeling Study of Diethyl Ether Pyrolysis and Oxidation. J. Phys. Chem. 2010, 114, 9098–9109. [Google Scholar] [CrossRef]
- Somers, K.P.; Simmie, J.M.; Gillespie, F.; Burke, U.; Connolly, J.; Metcalfe, W.K.; Battin-Leclerc, F.; Dirrenberger, P.; Herbinet, O.; Glaude, P.A.; et al. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proc. Combust. Inst. 2013, 34, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Somers, K.P.; Simmie, J.M.; Gillespie, F.; Conroy, C.; Black, G.; Metcalfe, W.K.; Battin-Leclerc, F.; Dirrenberger, P.; Herbinet, O.; Glaude, P.-A.; et al. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combust. Flame 2013, 160, 2291–2318. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, C.-W.; Curran, H.J. An extensive experimental and modeling study of 1-butene oxidation. Combust. Flame 2017, 181, 198–213. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, C.-W.; Somers, K.P.; Zhang, K.; Curran, H.J. The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst. 2017, 36, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.-W.; Li, Y.; Burke, U.; Banyon, C.; Somers, K.P.; Ding, S.; Khan, S.; Hargis, J.W.; Sikes, T.; Mathieu, O.; et al. An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combust. Flame 2018, 197, 423–438. [Google Scholar] [CrossRef]
- Li, Y.; Klippenstein, S.J.; Zhou, C.-W.; Curran, H.J. Theoretical Kinetics Analysis for Ḣ Atom Addition to 1,3-Butadiene and Related Reactions on the Ċ4H7 Potential Energy Surface. J. Phys. Chem. 2017, 121, 7433–7445. [Google Scholar] [CrossRef] [Green Version]
- Foresman, J.; Ortiz, J.; Cioslowski, J.; Fox, D. Gaussian 09, Revision, D. 01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Barker, J.R.; Nguyen, T.L.; Stanton, J.F.; Aieta, C.; Ceotto, M.; Gabas, F.; Kumar, T.J.D.; Li, C.G.L.; Lohr, L.L.; Maranzana, A.; et al. MultiWell-2016 Software Suite; Barker, J.R., Ed.; University of Michigan: Ann Arbor, MI, USA, 2016. [Google Scholar]
- Georgievskii, Y.; Miller, J.A.; Burke, M.P.; Klippenstein, S.J. Reformulation and Solution of the Master Equation for Multiple-Well Chemical Reactions. J. Phys. Chem. 2013, 117, 12146–12154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.-W.; Simmie, J.M.; Somers, K.P.; Goldsmith, C.F.; Curran, H.J. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation. J. Phys. Chem. 2017, 121, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Bugler, J.; Power, J.; Curran, H.J. A theoretical study of cyclic ether formation reactions. Proc. Combust. Inst. 2017, 36, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11−18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Purvis, G.D., III; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Møller, C.; Plesset, M.S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007, 126, 084108. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.J.; Taylor, P.R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Ochterski, J.W.; Petersson, G.A.; Montgomery, J.A., Jr. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 1996, 104, 2598–2619. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Raghavachari, K.; Redfern, P.C.; Rassolov, V.; Pople, J.A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 1998, 109, 7764–7776. [Google Scholar] [CrossRef]
- Eckart, C. The Penetration of a Potential Barrier by Electrons. Phys. Rev. 1930, 35, 1303–1309. [Google Scholar] [CrossRef]
- Eyring, H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3, 107–115. [Google Scholar] [CrossRef]
- Gordon, S.; Mcbride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Nasa Sti 1976, 273, 119–224. [Google Scholar]
- ANSYS, Inc. ANSYS Chemkin-Pro 17.2; ANSYS, Inc.: San Diego, CA, USA, 2016. [Google Scholar]
- Li, Y.; Sarathy, S.M. Probing hydrogen–nitrogen chemistry: A theoretical study of important reactions in NxHy, HCN and HNCO oxidation. Int. J. Hydrog. Energy 2020, 45, 23624–23637. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. PCCP 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knyazev, V.D.; Slagle, I.R. Thermochemistry and Kinetics of the Reaction of 1-Methylallyl Radicals with Molecular Oxygen. J. Phys. Chem. 1998, 102, 8932–8940. [Google Scholar] [CrossRef]
- Baldwin, R.R.; Bennett, J.P.; Walker, R.W. Addition of pentenes to slowly reacting mixtures of hydrogen and oxygen at 480 °C. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 1980, 76, 2396–2412. [Google Scholar] [CrossRef]
- Pedley, J.B. Thermochemical Data of Organic Compounds; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Ruscic, B.; Pinzon, R.E.; Morton, M.L.; von Laszevski, G.; Bittner, S.J.; Nijsure, S.G.; Amin, K.A.; Minkoff, M.; Wagner, A.F. Introduction to Active Thermochemical Tables: Several “Key” Enthalpies of Formation Revisited. J. Phys. Chem. 2004, 108, 9979–9997. [Google Scholar] [CrossRef]
- Branko, R.; Reinhardt, E.P.; Gregor von, L.; Deepti, K.; Alexander, B.; David, L.; David, M.; Albert, F.W. Active Thermochemical Tables: Thermochemistry for the 21st century. J. Phys. Conf. Ser. 2005, 16, 561. [Google Scholar]
- Ruscic, B.; Feller, D.; Peterson, K.A. Active Thermochemical Tables: Dissociation energies of several homonuclear first-row diatomics and related thermochemical values. Theor. Chem. Acc. 2013, 133, 1415. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, C.F.; Magoon, G.R.; Green, W.H. Database of Small Molecule Thermochemistry for Combustion. J. Phys. Chem. 2012, 116, 9033–9057. [Google Scholar] [CrossRef]
- DeSain, J.D.; Klippenstein, S.J.; Miller, J.A.; Taatjes, C.A. Measurements, Theory, and Modeling of OH Formation in Ethyl + O2 and Propyl + O2 Reactions. J. Phys. Chem. 2003, 107, 4415–4427. [Google Scholar] [CrossRef]
- Zhao, P.; Yuan, W.; Sun, H.; Li, Y.; Kelley, A.P.; Zheng, X.; Law, C.K. Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers. Proc. Combust. Inst. 2015, 35, 309–316. [Google Scholar] [CrossRef]
- Fenard, Y.; Dagaut, P.; Dayma, G.; Halter, F.; Foucher, F. Experimental and kinetic modeling study of trans-2-butene oxidation in a jet-stirred reactor and a combustion bomb. Proc. Combust. Inst. 2015, 35, 317–324. [Google Scholar] [CrossRef]
- Ruiz, R.P.; Bayes, K.D.; Macpherson, M.T.; Pilling, M.J. Direct observation of the equilibrium between allyl radicals, oxygen, and allylperoxy radicals. J. Phys. Chem. 1981, 85, 1622–1624. [Google Scholar] [CrossRef]
- Morgan, C.A.; Pilling, M.J.; Tulloch, J.M.; Ruiz, R.P.; Bayes, K.D. Direct determination of the equilibrium constant and thermodynamic parameters for the reaction. C3H5+ O2⇌ C3H5O2. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1982, 78, 1323–1330. [Google Scholar] [CrossRef]
- Slagle, I.R.; Ratajczak, E.; Heaven, M.C.; Gutman, D.; Wagner, A.F. Kinetics of polyatomic free radicals produced by laser photolysis. 4. Study of the equilibrium isopropyl + oxygen .tautm. isopropylperoxy between 592 and 692 K. J. Am. Chem. Soc. 1985, 107, 1838–1845. [Google Scholar] [CrossRef]
- Baldwin, R.R.; Lodhi, Z.H.; Stothard, N.; Walker, R.W. The oxidation chemistry of allyl radicals and related ‘stable’ radicals. Symp. Int. Combust. 1991, 23, 123–130. [Google Scholar] [CrossRef]
- Lodhi, Z.H.; Walker, R.W. Oxidation of allyl radicals: Kinetic parameters for the reactions of allyl radicals with HO2 and O2 between 400 and 480 °C. J. Chem. Soc. Faraday Trans. 1991, 87, 2361–2365. [Google Scholar] [CrossRef]
- Lodhi, Z.H.; Walker, R.W. Decomposition of 4,4-dimethylpent-1-ene in the presence of oxygen between 400 and 500 °C: Oxidation chemistry of allyl radicals. J. Chem. Soc. Faraday Trans. 1991, 87, 681–689. [Google Scholar] [CrossRef]
- Stothard, N.D.; Walker, R.W. Oxidation chemistry of propene in the autoignition region: Arrhenius parameters for the allyl + O2 reaction pathways and kinetic data for initiation reactions. J. Chem. Soc. Faraday Trans. 1992, 88, 2621–2629. [Google Scholar] [CrossRef]
- Bozzelli, J.W.; Dean, A.M. Hydrocarbon radical reactions with oxygen: Comparison of allyl, formyl, and vinyl to ethyl. J. Phys. Chem. 1993, 97, 4427–4441. [Google Scholar] [CrossRef]
- Chen, C.-J.; Bozzelli, J.W. Thermochemical Property, Pathway and Kinetic Analysis on the Reactions of Allylic Isobutenyl Radical with O2: an Elementary Reaction Mechanism for Isobutene Oxidation. J. Phys. Chem. A 2000, 104, 9715–9732. [Google Scholar] [CrossRef]
- Pratt, D.A.; Mills, J.H.; Porter, N.A. Theoretical Calculations of Carbon−Oxygen Bond Dissociation Enthalpies of Peroxyl Radicals Formed in the Autoxidation of Lipids. J. Am. Chem. Soc. 2003, 125, 5801–5810. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Bozzelli, J.W. Thermochemical and kinetic analysis of the allyl radical with O2 reaction system. Proc. Combust. Inst. 2005, 30, 1015–1022. [Google Scholar] [CrossRef]
- El-Agamey, A.; McGarvey, D.J. First Direct Observation of Reversible Oxygen Addition to a Carotenoid-Derived Carbon-Centered Neutral Radical. Org. Lett. 2005, 7, 3957–3960. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.S.; Shadnia, H.; Chepelev, L.L. Stability of carbon-centered radicals: Effect of functional groups on the energetics of addition of molecular oxygen. J. Comput. Chem. 2009, 30, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Dibble, T.S.; Sha, Y.; Thornton, W.F.; Zhang, F. Cis–Trans Isomerization of Chemically Activated 1-Methylallyl Radical and Fate of the Resulting 2-Buten-1-peroxy Radical. J. Phys. Chem. A 2012, 116, 7603–7614. [Google Scholar] [CrossRef]
Method 1 | Method 2 | Method 3 | |
---|---|---|---|
Ab initio solver | Gaussian and Orca | Gaussian | |
Geometry, frequency, scan and IRC | M06-2X/6-311++G(d,p) | ||
SPEs | CCSD(T)/cc-pVTZ | CCSD(T)/cc-pVDZ | G4 |
CCSD(T)/cc-pVTZ | |||
CCSD(T)/cc-pVQZ | MP2/cc-pVDZ | ||
MP2/cc-pVTZ | |||
MP2/cc-pVQZ | |||
Zero Kelvin energies | CBS-APNO/G3/G4 |
Method 1 | Method 2 | Method 3 | |
---|---|---|---|
Scale factor for ZPEs | 0.9698 | ||
Scale factor for frequencies | 0.983 | ||
CBS extrapolation for SPE | ECCSD(T)/cc-pVQZ + (ECCSD(T)/cc-pVQZ − ECCSD(T)/cc-pVTZ) × 44/(54 − 44) | ECCSD(T)/cc-pVTZ + (ECCSD(T)/cc-pVTZ − ECCSD(T)/cc-pVDZ) × 34/(44 − 34) + EMP2/cc-pVQZ + (EMP2/cc-pVQZ − EMP2/cc-pVTZ) × 44/(54 − 44) − EMP2/cc-pVTZ + (EMP2/cc-pVTZ − EMP2/cc-pVDZ) × 34/(44 − 34) | EG4 |
Method 1 | Method 2 | Method 3 | |||
---|---|---|---|---|---|
Reactions | Orca | Gaussian | Orca | Gaussian | Gaussian |
Forward barrier height | |||||
C4H71-3 + O2 C4H6 + HO2 | 22.42 | 19.15 | 23.23 | 18.30 | 23.35 |
C5H91-3 + O2 C5H8 + HO2 | 21.00 | - | 21.80 | 16.65 | 21.61 |
C6H111-3 + O2 C6H10 + HO2 | 21.12 | - | 21.96 | 16.58 | 21.02 |
Reverse barrier height | |||||
C4H71-3 + O2 C4H6 + HO2 | 25.23 | 22.48 | 26.21 | 22.00 | 25.90 |
C5H91-3 + O2 C5H8 + HO2 | 27.16 | - | 28.09 | 23.63 | 27.06 |
C6H111-3 + O2 C6H10 + HO2 | 28.39 | - | 29.31 | 24.58 | 26.94 |
C4H71-3 + O2 Reaction | C5H91-3 + O2 Reaction | C6H111-3 + O2 Reaction | ||||
---|---|---|---|---|---|---|
T/K | MultiWell | PAPR | MultiWell | PAPR | MultiWell | PAPR |
600 | 1.43E + 06 | 1.28E + 06 | 1.17E + 05 | 5.49E + 05 | 1.81E + 05 | 5.10E + 05 |
800 | 6.37E + 07 | 6.12E + 07 | 3.01E + 06 | 2.04E + 07 | 5.58E + 06 | 1.74E + 07 |
1000 | 8.61E + 08 | 8.62E + 08 | 2.71E + 07 | 2.41E + 08 | 5.77E + 07 | 1.91E + 08 |
1100 | 2.38E + 09 | 2.42E + 09 | 6.35E + 07 | 6.31E + 08 | 1.44E + 08 | 4.88E + 08 |
1200 | 5.75E + 09 | 5.92E + 09 | 1.33E + 08 | 1.45E + 09 | 3.17E + 08 | 1.10E + 09 |
1300 | 1.24E + 10 | 1.30E + 10 | 2.52E + 08 | 3.02E + 09 | 6.35E + 08 | 2.24E + 09 |
1400 | 2.46E + 10 | 2.59E + 10 | 4.44E + 08 | 5.78E + 09 | 1.17E + 09 | 4.21E + 09 |
1500 | 4.53E + 10 | 4.81E + 10 | 7.35E + 08 | 1.03E + 10 | 2.04E + 09 | 7.40E + 09 |
1600 | 7.82E + 10 | 8.39E + 10 | 1.16E + 09 | 1.73E + 10 | 3.34E + 09 | 1.23E + 10 |
1700 | 1.28E + 11 | 1.39E + 11 | 1.74E + 09 | 2.78E + 10 | 5.25E + 09 | 1.96E + 10 |
1800 | 2.01E + 11 | 2.20E + 11 | 2.53E + 09 | 4.28E + 10 | 7.91E + 09 | 2.98E + 10 |
ΔfHӨ | SӨ | Cp | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Molecules | Source | 298 K | 298 K | 300 K | 400 K | 500 K | 600 K | 800 K | 1000 K | 1500 K |
C4H6 | This study | 26.7 | 66.6 | 18.9 | 24.3 | 28.7 | 32.1 | 37.1 | 40.7 | 46.3 |
ATcT | 26.5 | - | - | - | - | - | - | - | - | |
TDOC | 26.3 | - | - | - | - | - | - | - | - | |
Goldsmith et al. | 26.5 | 65.8 | 18.5 | 24.0 | 28.7 | 32.4 | 37.6 | 41.1 | 46.6 | |
C5H8 | This study | 18.7 | 76.5 | 24.4 | 30.9 | 36.4 | 41.0 | 47.8 | 52.7 | 60.4 |
TDOC | 18.2 | - | - | - | - | - | - | - | - | |
C6H10 | Current study | 11.0 | 84.9 | 29.8 | 37.6 | 44.3 | 49.7 | 58.1 | 64.3 | 74.2 |
ΔfHӨ | SӨ | Cp | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Radicals | Source | 298 K | 298 K | 300 K | 400 K | 500 K | 600 K | 800 K | 1000 K | 1500 K |
C4H71-3 | MultiWell | 31.9 | 72.1 | 19.7 | 24.8 | 29.3 | 33.1 | 39.1 | 43.6 | 50.6 |
PAPR | 31.7 | 72.0 | 19.9 | 24.8 | 29.3 | 33.3 | 39.2 | 43.7 | 50.6 | |
C5H91-3 | MultiWell | 26.8 | 83.1 | 25.2 | 31.8 | 37.6 | 42.5 | 50.1 | 55.8 | 64.8 |
PAPR | 27.2 | 83.3 | 25.5 | 32.6 | 38.2 | 43.1 | 50.5 | 56.1 | 64.9 | |
C6H111-3 | MultiWell | 19.8 | 88.9 | 31.4 | 39.4 | 46.5 | 52.4 | 61.6 | 68.4 | 79.1 |
PAPR | 19.8 | 89.1 | 31.2 | 39.0 | 46.2 | 52.4 | 61.5 | 68.4 | 79.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wu, J.; Zhao, Q.; Zhang, Y.; Huang, Z. Theoretical Study of an Undisclosed Reaction Class: Direct H-Atom Abstraction from Allylic Radicals by Molecular Oxygen. Energies 2021, 14, 2916. https://doi.org/10.3390/en14102916
Li Y, Wu J, Zhao Q, Zhang Y, Huang Z. Theoretical Study of an Undisclosed Reaction Class: Direct H-Atom Abstraction from Allylic Radicals by Molecular Oxygen. Energies. 2021; 14(10):2916. https://doi.org/10.3390/en14102916
Chicago/Turabian StyleLi, Yang, Jin Wu, Qian Zhao, Yingjia Zhang, and Zuohua Huang. 2021. "Theoretical Study of an Undisclosed Reaction Class: Direct H-Atom Abstraction from Allylic Radicals by Molecular Oxygen" Energies 14, no. 10: 2916. https://doi.org/10.3390/en14102916
APA StyleLi, Y., Wu, J., Zhao, Q., Zhang, Y., & Huang, Z. (2021). Theoretical Study of an Undisclosed Reaction Class: Direct H-Atom Abstraction from Allylic Radicals by Molecular Oxygen. Energies, 14(10), 2916. https://doi.org/10.3390/en14102916