Demand Response Alert Service Based on Appliance Modeling
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Contribution
- Different variations for a probabilistic data-driven appliance model that permits us to rank our users based on their past appliance usage are presented;
- In the multi-appliance scenario, appliance-based personalized DR alerts are offered, which can help end users to choose the right actions for reducing energy use during the DR event;
- Overall, an improved data-driven appliance-based DRAS to increase participation in manual DR programs is introduced;
- The DRAS is evaluated on real-world data and on different appliances and households.
2. Method
2.1. Appliances
2.2. Appliance Modeling
2.3. Estimating the PDFs
2.4. Variations of the Model
2.5. Performance Metrics
3. Results
3.1. Dataset
3.2. Single-Appliance DR Scenario
3.2.1. Workdays versus Non-Workdays
3.2.2. Seven Day Types
3.2.3. Different Peak Periods
3.2.4. Modeling Based on Previous Day Use
3.3. Multi-Appliance DR Scenario
- Any one of the selected appliances will be used. Each residence receives a general alert asking to lower consumption. A result is considered a True Positive (TP) if any of the studied appliances are ON in the respective household during the DR event;
- A specific appliance among the selected ones will be used. Each residence receives a personalized alert to turn off the appliance with the highest calculated probability during the peak period. A result is a TP only if this appliance is ON during the DR event.
3.4. Ablation Study
- For REFIT, for the time interval 17:00–19:00 and focusing on the washing machine, when we removed the probability of an appliance being ON on a given day type, by setting the probability equal to 1 for all day types, the AUC decreased from 0.77 to 0.72;
- Again, for the REFIT dataset, when we set the probability distribution of an appliance being ON on a specific time during the day to a uniform distribution, rendering it indifferent, the AUC decreased from 0.77 to 0.68;
- The same experiment for HES decreased the AUC from 0.72 to 0.7 in the first scenario and from 0.72 to 0.67 in the second scenario.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palensky, P.; Dietrich, D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Gellings, C.W. The Concept of Demand-Side Management for Electric Utilities. Proc. IEEE 1985, 73, 1468–1470. [Google Scholar] [CrossRef]
- Oconnell, N.; Pinson, P.; Madsen, H.; Omalley, M. Benefits and challenges of electrical demand response: A critical review. Renew. Sustain. Energy Rev. 2014, 39, 686–699. [Google Scholar] [CrossRef]
- Haider, H.T.; See, O.H.; Elmenreich, W. A review of residential demand response of smart grid, Renew. Sustain. Energy Rev. 2016, 59, 166–178. [Google Scholar] [CrossRef]
- Parrish, B.; Gross, R.; Heptonstall, P. On demand: Can demand response live up to expectations in managing electricity systems? Energy Res. Soc. Sci. 2019, 51, 107–118. [Google Scholar] [CrossRef]
- Federal Energy Regulatory Commission. 2020 Assessment of Demand Response and Advanced Metering; Federal Energy Regulatory Commission: Washington, DC, USA, 2020. Available online: https://cms.ferc.gov/sites/default/files/2020-12/2020AssessmentofDemandResponseandAdvancedMetering_December2020.pdf (accessed on 18 May 2021).
- Barbero, M.; Corchero, C.; Canals Casals, L.; Igualada, L.; Heredia, F.-J. Critical evaluation of European balancing markets to enable the participation of Demand Aggregators. Appl. Energy 2020, 264, 114707. [Google Scholar] [CrossRef]
- Tounquet, F.; Alaton, C. Benchmarking Smart Metering Deployment in EU; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Mohsenian-Rad, A.H.; Wong, V.W.S.; Jatskevich, J.; Schober, R.; Leon-Garcia, A. Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid. IEEE Trans. Smart Grid 2010, 1, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Li, W.; Chan, K.W.; Cao, Y.; Kuang, Y.; Liu, X.; Wang, X. Smart home energy management systems: Concept, configurations, and scheduling strategies. Renew. Sustain. Energy Rev. 2016, 61, 30–40. [Google Scholar] [CrossRef]
- Parrish, B.; Heptonstall, P.; Gross, R.; Sovacool, B.K. A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response. Energy Policy. 2020, 138, 111221. [Google Scholar] [CrossRef]
- Srivastava, A.; Van Passel, S.; Laes, E. Assessing the success of electricity demand response programs: A meta-analysis. Energy Res. Soc. Sci. 2018, 40, 110–117. [Google Scholar] [CrossRef]
- Lesic, V.; Bruine De Bruin, W.; Davis, M.C.; Krishnamurti, T.; Azevedo, I.M.L. Consumers’ perceptions of energy use and energy savings: A literature review. Environ. Res. Lett. 2018, 13, 033004. [Google Scholar] [CrossRef]
- Element Energy; Chan, A.; Garcia Moreno, J.; Hughes, M. Electricity Price Signals and Demand Response. 2014. Available online: https://www.gov.uk/government/publications/electricity-price-signals-and-demand-response (accessed on 18 May 2021).
- Thayer, D.; Brummer, W.; Smith, B.A.; Aslin, R.; Cook, J. Is Behavioral Energy Efficiency and Demand Response Really Better Together? ACEEE Summer Study Energy Effic. Build. 2016, 1–11. [Google Scholar]
- Wang, Z.; Li, H.; Deng, N.; Cheng, K.; Lu, B.; Zhang, B.; Wang, B. How to effectively implement an incentive-based residential electricity demand response policy? Experience from large-scale trials and matching questionnaires. Energy Policy 2020, 141, 111450. [Google Scholar] [CrossRef]
- Pratt, B.W.; Erickson, J.D. Defeat the Peak: Behavioral insights for electricity demand response program design. Energy Res. Soc. Sci. 2020, 61, 01352. [Google Scholar] [CrossRef]
- Thomas, E.; Sharma, R.; Nazarathy, Y. Towards demand side management control using household specific Markovian models. Automatica 2019, 101, 450–457. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Hill, D.J.; Luo, F.; Xu, Y. Short-term residential load forecasting based on resident behaviour learning. IEEE Trans. Power Syst. 2018, 33, 2017–2018. [Google Scholar] [CrossRef]
- Basu, K.; Hawarah, L.; Arghira, N.; Joumaa, H.; Ploix, S. A prediction system for home appliance usage. Energy Build. 2013, 67, 668–679. [Google Scholar] [CrossRef]
- Wenninger, M.; Schmidt, J.; Goeller, T. Appliance usage prediction for the smart home with an application to energy demand side management and why accuracy is not a good performance metric for this problem. In Proceedings of the SMARTGREENS 2017-6th International Conference on Smart Cities and Green ICT Systems, Porto, Portugal, 23–24 April 2017; pp. 143–150. [Google Scholar] [CrossRef]
- Kang, Z.; Jin, M.; Spanos, C.J. Modeling of end-use energy profile: An appliance-data-driven stochastic approach. In Proceedings of the IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 5382–5388. [Google Scholar] [CrossRef] [Green Version]
- Chrysopoulos, A.; Diou, C.; Symeonidis, A.L.; Mitkas, P.A. Bottom-up modeling of small-scale energy consumers for effective demand response applications. Eng. Appl. Artif. Intel. 2014, 35, 299–315. [Google Scholar] [CrossRef]
- Huber, P.; Gerber, M.; Rumsch, A.; Paice, A. Prediction of domestic appliances usage based on electrical consumption. Energy Inform. 2018, 1, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Chatzigeorgiou, I.-M.; Diou, C.; Andreou, G.T. Targeted Messaging for Appliance-based Demand Response. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Razghandi, M.; Turgut, D. Residential Appliance-Level Load Forecasting with Deep Learning. In Proceedings of the GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mehdipour Pirbazari, A.; Farmanbar, M.; Chakravorty, A.; Rong, C. Short-Term Load Forecasting Using Smart Meter Data: A Generalization Analysis. Processes 2020, 8, 484. [Google Scholar] [CrossRef]
- Ji, Y.; Buechler, E.; Rajagopal, R. Data-Driven Load Modeling and Forecasting of Residential Appliances. IEEE Trans. Smart Grid 2019, 11, 2652–2661. [Google Scholar] [CrossRef] [Green Version]
- Din, G.M.U.; Mauthe, A.U.; Marneride, A.K. Appliance-level Short-Term Load Forecasting using Deep Neural Networks. In Proceedings of the 2018 International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 53–57. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Yassine, A. Mining Energy Consumption Behavior Patterns for Households in Smart Grid. IEEE Trans. Emerg. Top. Comput. 2017, 7, 404–419. [Google Scholar] [CrossRef]
- Pipattanasomporn, M.; Kuzlu, M.; Rahman, S.; Teklu, Y. Load profiles of selected major household appliances and their demand response opportunities. IEEE Trans. Smart Grid 2014, 5, 742–750. [Google Scholar] [CrossRef]
- Klaassen, E.; Kobus, C.; Frunt, J.; Slootweg, J. Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands. Appl. Energy 2016, 183, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Klaassen, E.; Kobus, C.; Frunt, J.; Slootweg, H. Load shifting potential of the washing machine and tumble dryer. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Chen, C.F.; Shimoda, Y.; Yagita, Y.; Iwafune, Y.; Ishii, H.; Hayashi, Y. An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities. Energy Policy 2020, 142, 111467. [Google Scholar] [CrossRef]
- Pereira, L.; Nunes, N. Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and tools—A review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1265. [Google Scholar] [CrossRef] [Green Version]
- Murray, D.; Stankovic, L.; Stankovic, V. An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Sci. Data 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.; Terry, N. Powering the Nation 2, (n.d.). Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/325741/Powering_the_Nation_2_260614.pdf (accessed on 18 May 2021).
- Stamminger, R.; Schmitz, A. Load profiles and flexibility in operation of washing machines and dishwashers in Europe. Int. J. Consum. Stud. 2017, 41, 178–187. [Google Scholar] [CrossRef]
- Bobmann, T.; Staffell, I. The shape of future electricity demand: Exploring load curves in 2050s Germany and Britain. Energy 2015, 90, 1317–1333. [Google Scholar] [CrossRef]
- McKenna, E.; Richardson, I.; Thomson, M. Smart meter data: Balancing consumer privacy concerns with legitimate applications. Energy Policy 2012, 41, 807–814. [Google Scholar] [CrossRef] [Green Version]
Dataset | # | f1_s | f1_r | prec_s | prec_r | rec_s | rec_r | AUC_s | AUC_r |
---|---|---|---|---|---|---|---|---|---|
REFIT | 2 | 0.305 | 0.095 | 0.325 | 0.105 | 0.288 | 0.088 | 0.770 | 0.507 |
4 | 0.379 | 0.146 | 0.297 | 0.117 | 0.526 | 0.196 | 0.500 | ||
6 | 0.367 | 0.171 | 0.252 | 0.119 | 0.671 | 0.302 | 0.501 | ||
8 | 0.338 | 0.180 | 0.216 | 0.117 | 0.767 | 0.394 | 0.487 | ||
10 | 0.318 | 0.182 | 0.195 | 0.113 | 0.863 | 0.475 | 0.505 | ||
HES | 2 | 0.225 | 0.096 | 0.229 | 0.100 | 0.220 | 0.093 | 0.722 | 0.504 |
4 | 0.279 | 0.131 | 0.212 | 0.101 | 0.407 | 0.185 | 0.510 | ||
6 | 0.291 | 0.141 | 0.196 | 0.097 | 0.565 | 0.263 | 0.490 | ||
8 | 0.285 | 0.158 | 0.179 | 0.100 | 0.689 | 0.368 | 0.501 | ||
10 | 0.257 | 0.163 | 0.155 | 0.099 | 0.746 | 0.459 | 0.505 |
Dataset | # | f1_s | f1_r | prec_s | prec_r | rec_s | rec_r | AUC_s | AUC_r |
---|---|---|---|---|---|---|---|---|---|
REFIT | 2 | 0.291 | 0.099 | 0.310 | 0.108 | 0.275 | 0.092 | 0.776 | 0.501 |
4 | 0.378 | 0.141 | 0.295 | 0.112 | 0.523 | 0.189 | 0.496 | ||
6 | 0.371 | 0.169 | 0.255 | 0.118 | 0.679 | 0.297 | 0.497 | ||
8 | 0.335 | 0.175 | 0.215 | 0.113 | 0.762 | 0.381 | 0.502 | ||
10 | 0.303 | 0.187 | 0.186 | 0.116 | 0.824 | 0.486 | 0.507 | ||
HES | 2 | 0.236 | 0.088 | 0.241 | 0.093 | 0.232 | 0.084 | 0.718 | 0.499 |
4 | 0.279 | 0.130 | 0.212 | 0.100 | 0.407 | 0.183 | 0.522 | ||
6 | 0.265 | 0.138 | 0.178 | 0.094 | 0.514 | 0.259 | 0.524 | ||
8 | 0.261 | 0.156 | 0.165 | 0.099 | 0.633 | 0.364 | 0.512 | ||
10 | 0.261 | 0.161 | 0.158 | 0.098 | 0.757 | 0.450 | 0.492 |
Dataset | # | f1_s | f1_r | prec_s | prec_r | rec_s | rec_r | AUC_s | AUC_r |
---|---|---|---|---|---|---|---|---|---|
REFIT | 2 | 0.252 | 0.117 | 0.234 | 0.113 | 0.272 | 0.122 | 0.744 | 0.499 |
4 | 0.324 | 0.157 | 0.232 | 0.115 | 0.538 | 0.247 | 0.496 | ||
6 | 0.312 | 0.187 | 0.201 | 0.122 | 0.698 | 0.397 | 0.502 | ||
8 | 0.307 | 0.190 | 0.186 | 0.117 | 0.866 | 0.509 | 0.514 | ||
10 | 0.281 | 0.201 | 0.165 | 0.119 | 0.957 | 0.646 | 0.502 | ||
HES | 2 | 0.218 | 0.132 | 0.194 | 0.121 | 0.248 | 0.146 | 0.645 | 0.503 |
4 | 0.228 | 0.143 | 0.159 | 0.101 | 0.406 | 0.244 | 0.501 | ||
6 | 0.221 | 0.164 | 0.139 | 0.105 | 0.534 | 0.376 | 0.507 | ||
8 | 0.219 | 0.171 | 0.131 | 0.103 | 0.669 | 0.492 | 0.498 | ||
10 | 0.214 | 0.170 | 0.124 | 0.099 | 0.789 | 0.594 | 0.494 |
Dataset | # | f1_s | f1_r | prec_s | prec_r | rec_s | rec_r | AUC_s | AUC_r |
---|---|---|---|---|---|---|---|---|---|
REFIT | 2 | 0.352 | 0.125 | 0.285 | 0.105 | 0.459 | 0.154 | 0.787 | 0.508 |
4 | 0.358 | 0.161 | 0.234 | 0.108 | 0.757 | 0.319 | 0.504 | ||
6 | 0.279 | 0.167 | 0.168 | 0.102 | 0.815 | 0.455 | 0.496 | ||
8 | 0.255 | 0.182 | 0.147 | 0.107 | 0.950 | 0.629 | 0.498 | ||
10 | 0.210 | 0.184 | 0.118 | 0.105 | 0.954 | 0.774 | 0.489 | ||
HES | 2 | 0.299 | 0.154 | 0.250 | 0.135 | 0.371 | 0.180 | 0.685 | 0.478 |
4 | 0.315 | 0.172 | 0.210 | 0.118 | 0.624 | 0.316 | 0.502 | ||
6 | 0.291 | 0.190 | 0.178 | 0.119 | 0.793 | 0.483 | 0.508 | ||
8 | 0.248 | 0.204 | 0.145 | 0.121 | 0.859 | 0.654 | 0.489 | ||
10 | 0.213 | 0.210 | 0.121 | 0.120 | 0.897 | 0.812 | 0.480 |
REFIT Dataset | Washing Machines | Dishwashers | Tumble Dryers | ||||
---|---|---|---|---|---|---|---|
# | time | f1_s | AUC_s | f1_s | AUC_s | f1_s | AUC_s |
2 | 07:00–09:00 | 0.363 | 0.737 | 0.315 | 0.772 | 0.261 | 0.735 |
4 | 0.400 | 0.270 | 0.199 | ||||
6 | 0.391 | 0.247 | 0.189 | ||||
8 | 0.357 | 0.240 | 0.178 | ||||
10 | 0.347 | 0.213 | 0.149 | ||||
2 | 07:00–10:00 | 0.304 | 0.716 | 0.326 | 0.770 | 0.356 | 0.755 |
4 | 0.402 | 0.328 | 0.295 | ||||
6 | 0.441 | 0.305 | 0.254 | ||||
8 | 0.420 | 0.295 | 0.244 | ||||
10 | 0.410 | 0.272 | 0.213 | ||||
2 | 06:00–10:00 | 0.327 | 0.705 | 0.325 | 0.759 | 0.350 | 0.737 |
4 | 0.417 | 0.326 | 0.299 | ||||
6 | 0.435 | 0.303 | 0.255 | ||||
8 | 0.418 | 0.293 | 0.251 | ||||
10 | 0.408 | 0.278 | 0.219 | ||||
2 | 16:00–19:00 | 0.284 | 0.758 | 0.250 | 0.727 | 0.447 | 0.780 |
4 | 0.363 | 0.351 | 0.396 | ||||
6 | 0.399 | 0.355 | 0.316 | ||||
8 | 0.382 | 0.329 | 0.291 | ||||
10 | 0.349 | 0.319 | 0.249 | ||||
2 | 16:00–20:00 | 0.350 | 0.788 | 0.250 | 0.723 | 0.467 | 0.792 |
4 | 0.436 | 0.413 | 0.446 | ||||
6 | 0.462 | 0.435 | 0.354 | ||||
8 | 0.435 | 0.440 | 0.325 | ||||
10 | 0.411 | 0.419 | 0.277 |
Dataset | # | f1_s | f1_r | prec_s | prec_r | rec_s | rec_r | AUC_s | AUC_r |
---|---|---|---|---|---|---|---|---|---|
REFIT | 2 | 0.275 | 0.108 | 0.292 | 0.118 | 0.259 | 0.099 | 0.725 | 0.501 |
4 | 0.310 | 0.153 | 0.243 | 0.122 | 0.430 | 0.205 | 0.490 | ||
6 | 0.316 | 0.163 | 0.217 | 0.114 | 0.578 | 0.287 | 0.508 | ||
8 | 0.295 | 0.169 | 0.189 | 0.110 | 0.671 | 0.369 | 0.498 | ||
10 | 0.287 | 0.187 | 0.176 | 0.116 | 0.780 | 0.487 | 0.503 | ||
HES | 2 | 0.184 | 0.084 | 0.188 | 0.088 | 0.181 | 0.081 | 0.651 | 0.503 |
4 | 0.197 | 0.120 | 0.150 | 0.093 | 0.288 | 0.171 | 0.501 | ||
6 | 0.215 | 0.138 | 0.145 | 0.094 | 0.418 | 0.261 | 0.513 | ||
8 | 0.208 | 0.146 | 0.131 | 0.093 | 0.503 | 0.340 | 0.493 | ||
10 | 0.214 | 0.146 | 0.129 | 0.089 | 0.621 | 0.408 | 0.493 |
Dataset | Thres | Scenario 1 | Scenario 2 | ||||
---|---|---|---|---|---|---|---|
msgs | f1_s | AUC_s | msgs | f1_s | AUC_s | ||
REFIT | 0.1 | 9.719 | 0.513 | 0.768 | 9.719 | 0.353 | 0.809 |
0.15 | 6.298 | 0.5 | 6.444 | 0.315 | |||
0.2 | 3.561 | 0.383 | 3.135 | 0.233 | |||
0.25 | 1.567 | 0.188 | 1.421 | 0.127 | |||
0.3 | 1. | 0.125 | 1. | 0.09 | |||
HES | 0.1 | 7.976 | 0.488 | 0.663 | 6.136 | 0.288 | 0.783 |
0.15 | 5.259 | 0.429 | 4.045 | 0.27 | |||
0.2 | 2. | 0.215 | 1.538 | 0.123 | |||
0.25 | 0.706 | 0.086 | 0.543 | 0.064 | |||
0.3 | 0.141 | 0.015 | 0.217 | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzigeorgiou, I.-M.; Diou, C.; Chatzidimitriou, K.C.; Andreou, G.T. Demand Response Alert Service Based on Appliance Modeling. Energies 2021, 14, 2953. https://doi.org/10.3390/en14102953
Chatzigeorgiou I-M, Diou C, Chatzidimitriou KC, Andreou GT. Demand Response Alert Service Based on Appliance Modeling. Energies. 2021; 14(10):2953. https://doi.org/10.3390/en14102953
Chicago/Turabian StyleChatzigeorgiou, Ioanna-M., Christos Diou, Kyriakos C. Chatzidimitriou, and Georgios T. Andreou. 2021. "Demand Response Alert Service Based on Appliance Modeling" Energies 14, no. 10: 2953. https://doi.org/10.3390/en14102953
APA StyleChatzigeorgiou, I. -M., Diou, C., Chatzidimitriou, K. C., & Andreou, G. T. (2021). Demand Response Alert Service Based on Appliance Modeling. Energies, 14(10), 2953. https://doi.org/10.3390/en14102953