Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer
Abstract
:1. Introduction
- The effectiveness validation of voltage unbalance compensation using SVRs and LRT.
- Comprehensive integration of multiple unbalance metrics into the optimization problem to address different voltage unbalance definition issues.
- Consideration of voltage deviation, network losses, and coordinated tap operation with the voltage unbalance compensation and investigation of the impact of considering these typical issues on unbalance compensation.
- Application and implementaion of tabu search-based heuristic to voltage unbalance compensation.
2. Voltage Unbalance Metrics and Typical Issues in Unbalanced Distribution Systems Operation
2.1. Voltage Unbalance Metrics
2.1.1. VUF (IEC Definition)
2.1.2. VUF0
2.1.3. PVUR (IEEE Definition)
2.2. Voltage Deviations
2.3. Network Losses
2.4. Coordinated Operation of Control Devices
2.4.1. Unbalanced Operation of Control Devices
2.4.2. Deterioration of Control Devices
3. Optimization Problem Formulation
3.1. Objective Functions
3.1.1. Objective Function for Minimize VUF
3.1.2. Objective Function for Minimize Sum of All Voltage Unbalance Metrics
3.1.3. Objective Function for Minimize Loss
3.2. Penalty Constraints
3.2.1. Penalty Constraint to Limit Voltage Deviation Rate
3.2.2. Penalty Constraint to Limit Voltage Unbalance Metrics
3.2.3. Penalty Constraint to Reduce Unbalanced Operation
3.2.4. Penalty Constraint to Limit the Number of Tap Operations per Day
3.3. Constraint
Inequality Constraint to Limit Tap Control Range
3.4. Optimal Scheduling Problem Formulation
3.4.1. Minimize VUF
3.4.2. Minimize Sum of All Voltage Unbalance Metrics
3.4.3. Minimize Losses
3.4.4. Minimize Losses with Voltage Unbalance Penalty
3.4.5. Minimize Losses with Voltage Unbalance and Tap Operation Penalty
4. Simulation Results
4.1. Optimization Method
4.2. Distribution System Model
4.3. Case Study and Discussion
- Base case
- Case 1: minimize VUF
- Case 2: minimize sum of all voltage unbalance metrics
- Case 3: minimize losses
- Case 4: minimize losses with voltage unbalance penalty
- Case 5: minimize losses with voltage unbalance and tap operation penalty
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Biryulin, V.I.; Kudelina, D.V.; Larin, O.M. Electricity Quality Problems in the 0.4 kV City Electric Networks. In Proceedings of the 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 18–22 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ma, K.; Fang, L.; Kong, W. Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future research directions. CSEE J. Power Energy Syst. 2020, 6, 479–488. [Google Scholar] [CrossRef]
- Shahnia, F.; Majumder, R.; Ghosh, A.; Ledwich, G.; Zare, F. Voltage imbalance analysis in residential low voltage distribution networks with rooftop PVs. Electr. Power Syst. Res. 2011, 81, 1805–1814. [Google Scholar] [CrossRef]
- Schwanz, D.; Moller, F.; Ronnberg, S.K.; Meyer, J.; Bollen, M.H. Stochastic Assessment of Voltage Unbalance Due to Single-Phase-Connected Solar Power. IEEE Trans. Power Deliv. 2017, 32, 852–861. [Google Scholar] [CrossRef]
- Jabalameli, N.; Masoum, M.A.; Deilami, S. Optimal online charging of plug-in electric vehicles considering voltage unbalance factor. In Proceedings of the IEEE Power and Energy Society General Meeting, Portland, OR, USA, 5–9 August 2018; IEEE Computer Society: Washington, DC, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Helm, S.; Hauer, I.; Wolter, M.; Wenge, C.; Balischewski, S.; Komarnicki, P. Impact of unbalanced electric vehicle charging on low-voltage grids. In Proceedings of the 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Delft, The Netherlands, 26–28 October 2020; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2020; pp. 665–669. [Google Scholar] [CrossRef]
- Li, C.; Disfani, V.R.; Haghi, H.V.; Kleissl, J. Optimal Voltage Regulation of Unbalanced Distribution Networks with Coordination of OLTC and PV Generation. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM); Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, L.R.; Penido, D.R.R.; Carneiro, S.; Pereira, J.L.R. Optimal unbalanced capacitor placement in distribution systems for voltage control and energy losses minimization. Electr. Power Syst. Res. 2018, 154, 110–121. [Google Scholar] [CrossRef]
- Othman, M.M.; El-Khattam, W.; Hegazy, Y.G.; Abdelaziz, A.Y. Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm. Int. J. Electr. Power Energy Syst. 2016, 82, 105–113. [Google Scholar] [CrossRef]
- Dahal, S.; Salehfar, H. Impact of distributed generators in the power loss and voltage profile of three phase unbalanced distribution network. Int. J. Electr. Power Energy Syst. 2016, 77, 256–262. [Google Scholar] [CrossRef]
- IEC 6100-2-2, EMC Part 2-2: Environment—Compatibility Levels for Low-Frequency Conducted Disturbances and Signalling in Public Low-Voltage Power Supply Systems. 2002. Available online: https://webstore.iec.ch/publication/4133 (accessed on 20 May 2021).
- IEEE. IEEE Recommended Practice for Electric Power Distribution for Industrial Plants. In IEEE Std 141-1993; IEEE: New York, NY, USA, 1994; pp. 1–768. [Google Scholar] [CrossRef]
- NEMA. NEMA Standard for motors and generators. In NEMA Standard MG1; NEMA: Arlington, VA, USA, 1993. [Google Scholar]
- Carpinelli, G.; Mottola, F.; Proto, D.; Varilone, P. Minimizing unbalances in low-voltage microgrids: Optimal scheduling of distributed resources. Appl. Energy 2017, 191, 170–182. [Google Scholar] [CrossRef]
- Girigoudar, K.; Roald, L.A. On the impact of different voltage unbalance metrics in distribution system optimization. Electr. Power Syst. Res. 2020, 189, 106656. [Google Scholar] [CrossRef]
- Shigenobu, R.; Nakadomari, A.; Hong, Y.Y.; Mandal, P.; Takahashi, H.; Senjyu, T. Optimization of voltage unbalance compensation by smart inverter. Energies 2020, 13, 4623. [Google Scholar] [CrossRef]
- Rahman, M.M.; Arefi, A.; Shafiullah, G.M.; Hettiwatte, S. A new approach to voltage management in unbalanced low voltage networks using demand response and OLTC considering consumer preference. Int. J. Electr. Power Energy Syst. 2018, 99, 11–27. [Google Scholar] [CrossRef]
- Bedawy, A.; Yorino, N.; Mahmoud, K. Management of voltage regulators in unbalanced distribution networks using voltage/tap sensitivity analysis. In Proceedings of the 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, Aswan, Egypt, 19–21 February 2018; IEEE: New York, NY, USA, 2018; pp. 363–367. [Google Scholar] [CrossRef]
- Hu, J.; Marinelli, M.; Coppo, M.; Zecchino, A.; Bindner, H.W. Coordinated voltage control of a decoupled three-phase on-load tap changer transformer and photovoltaic inverters for managing unbalanced networks. Electr. Power Syst. Res. 2016, 131, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Srivastava, A. Voltage Control Strategy for Energy Storage System in Sustainable Distribution System Operation. Energies 2021, 14, 832. [Google Scholar] [CrossRef]
- Glover, F. Tabu Search―Part I. ORSA J. Comput. 1989, 1, 190–206. [Google Scholar] [CrossRef] [Green Version]
- Shigenobu, R.; Noorzad, A.S.; Yona, A.; Senjyu, T. Multi-objective optimisation of step voltage regulator operation and optimal placement for distribution systems design using linkage combination update-non-dominated sorting genetic algorithm-II. IET Gener. Transm. Distrib. 2018, 12, 20–30. [Google Scholar] [CrossRef]
Base Case | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | |
---|---|---|---|---|---|---|
Max tap count | - | 38 | 39 | 15 | 19 | 5 |
Total tap count | - | 236 | 169 | 66 | 84 | 23 |
Max loss (kWh) | 422.93 | 412.31 | 406.87 | 328.36 | 328.36 | 328.79 |
Total loss (kWh) | 6291 | 5714 | 5244 | 4708 | 4736 | 4860 |
Max (%) | 2.7646 | 0.4575 | 1.5634 | 1.7174 | 1.5847 | 1.5282 |
Total | 429 | 70 | 241 | 183 | 199 | 174 |
Max (%) | 5.3932 | 2.9344 | 1.6160 | 2.2315 | 1.9095 | 1.7794 |
Total | 821 | 423 | 186 | 304 | 264 | 290 |
Max PVUR (%) | 7.1722 | 2.8215 | 1.2713 | 2.5634 | 1.7614 | 1.7868 |
Total PVUR | 1133 | 405 | 155 | 293 | 252 | 253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakadomari, A.; Shigenobu, R.; Kato, T.; Krishnan, N.; Hemeida, A.M.; Takahashi, H.; Senjyu, T. Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer. Energies 2021, 14, 2997. https://doi.org/10.3390/en14112997
Nakadomari A, Shigenobu R, Kato T, Krishnan N, Hemeida AM, Takahashi H, Senjyu T. Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer. Energies. 2021; 14(11):2997. https://doi.org/10.3390/en14112997
Chicago/Turabian StyleNakadomari, Akito, Ryuto Shigenobu, Takeyoshi Kato, Narayanan Krishnan, Ashraf Mohamed Hemeida, Hiroshi Takahashi, and Tomonobu Senjyu. 2021. "Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer" Energies 14, no. 11: 2997. https://doi.org/10.3390/en14112997
APA StyleNakadomari, A., Shigenobu, R., Kato, T., Krishnan, N., Hemeida, A. M., Takahashi, H., & Senjyu, T. (2021). Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer. Energies, 14(11), 2997. https://doi.org/10.3390/en14112997