Physical Simulation and Mathematical Model of the Porous Flow Characteristics of Gas-Bearing Tight Oil Reservoirs
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Methods
2.2.1. Microscopic Structural Characteristics
2.2.2. Porous Flow Resistance Test
2.3. Results
2.3.1. Microscopic Structural Characteristics of the Pore Throats
2.3.2. Porous Flow Resistance
3. Mathematical Model of Gas-Bearing Tight Oil
3.1. Physical Model and Assumptions
- Oil and gas two-phase porous flow;
- The threshold pressure gradient of the oil phase is considered;
- The compressibility of the oil and gas is considered;
- Gas can dissolve in or separate from the oil;
- The compressibility of the rock is negligible, and the porosity is regarded as being constant;
- The porous flow process is steady state and isothermal.
3.2. Mathematical Model
3.3. Results and Discussion
3.3.1. Influence of Production Well Pressure
3.3.2. The Impact of Well Spacing
3.3.3. The Impact of Row Spacing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, S.Y.; Tao, S.Z.; Yan, W.P.; Men, G.T.; Tang, Z.X.; Xue, J.Q.; Jia, X.Y. Advances on continental tight oil accumulation and key technologies for exploration and development in China. Nat. Gas Geosci. 2019, 30, 1083–1093. [Google Scholar]
- Kang, Y.Z. Resource potential of tight sand oil & gas and exploration orientation in China. Nat. Gas Ind. 2016, 36, 10–18. [Google Scholar]
- Zou, C.N.; Yang, Z.; Zhu, R.K.; Zhang, G.S.; Hou, L.H.; Wu, S.T.; Tao, S.Z. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies. Acta Geol. Sin. 2015, 89, 979–1007. [Google Scholar]
- Hassanpouryouzband, A.; Joonaki, E.; Farahani, M.V.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hassanpouryouzband, A.; Tohidi, B.; Chuvilin, E.; Bukhanov, B.; Istomin, V.; Cheremisin, A. Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate-Bearing Permafrost Sediments. J. Geophys. Res. Solid Earth 2019, 124, 2551–2563. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Z.; Guo, X.G.; Wu, Y.X.; Liu, J.T. Resource grading evaluation and exploration potential of tight oil in major basins of China. Gas Sci. Geosci. 2019, 30, 1094–1105. [Google Scholar]
- Zhu, X.M.; Pan, R.; Zhu, S.F.; Wei, W.; Ye, L. Research progress and core issues in tight reservoir exploration. Earth Sci. Front. 2018, 25, 141–146. [Google Scholar]
- Du, J.H.; He, H.Q.; Yang, T.; Li, J.Z.; Huang, F.X.; Guo, B.C.; Yan, W.P. Progress in China’s tight oil exploration and challenges. China Pet. Explor. 2014, 19, 1–9. [Google Scholar]
- Zou, C.N.; Zhu, R.K.; Wu, S.T.; Yang, Z.; Tao, S.Z.; Yuan, X.J.; Hou, L.H. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance. Acta Pet. Sin. 2012, 33, 173–187. [Google Scholar]
- Al-Hosani, A.; Ravichandran, S.; Daraboina, N. Review of Asphaltene Deposition Modeling in Oil and Gas Production. Energy Fuels 2021, 35, 965–986. [Google Scholar] [CrossRef]
- Lin, Y.; Cao, T.; Chacón-Patiño, M.L.; Rowland, S.M.; Rodgers, R.P.; Yen, A.; Biswal, S.L. Microfluidic Study of the Deposition Dynamics of Asphaltene Subfractions Enriched with Island and Archipelago Motifs. Energy Fuels 2019, 32, 1882–1891. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Taghikhani, V.; Boozarjomehry, R.B.; Chapoy, A.; Tohidi, B. New Two-Dimensional Particle-Scale Model to Simulate Asphaltene Deposition in Wellbores and Pipelines. Energy Fuels 2018, 32, 2661–2672. [Google Scholar] [CrossRef]
- Hu, S.Y.; Zhu, R.K.; Wu, S.T.; Bai, B.; Yang, Z.; Cui, J.W. Profitable exploration and development of continental tight oil in China. Pet. Explor. Dev. 2018, 45, 737–748. [Google Scholar] [CrossRef]
- Xiao, Q.H. The Reservoir Evaluation and Porous Flow Mechanism for Typical Tight Oilfields. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2015. [Google Scholar]
- Du, J.H.; Liu, H.; Ma, D.S.; Wang, Y.H.; Zhou, T.Y. Discussion on effective development techniques for continental tight oil in China. Pet. Explor. Dev. 2014, 41, 198–205. [Google Scholar] [CrossRef]
- Wei, Y.Y. Study on Tight Sandstone Reservoir Characteristics and Development in Sichuan. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Xiao, Q.H.; Wang, Z.Y.; Yang, Z.M.; Liu, X.W.; Wei, Y.Y. Porous flow characteristics of solution-gas drive in tight oil reservoirs. Open Phys. 2018, 16, 412–418. [Google Scholar]
- Akin, S.; Kovscek, A.R. Heavy-oil solution gas drive: A laboratory study. J. Pet. Sci. Eng. 2002, 35, 33–48. [Google Scholar] [CrossRef]
- Chen, X.L.; Qing, J.S. Visualization study on foamy oil flow state. J. Southwest Pet. Univ. 2009, 31, 126–130. [Google Scholar]
- Chen, Z.X.; Sun, J.; Wang, R.H.; Xiao, D.W. A pseudobubblepoint model and its simulation for foamy oil in porous media. SPE J. 2015, 20, 239–247. [Google Scholar] [CrossRef] [Green Version]
- George, D.S.; Hayat, O.; Kovscek, A.R. A microvisual study of solution-gas-drive mechanisms in viscous oils. J. Pet. Sci. Eng. 2005, 46, 101–119. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, Z.M.; Wang, Z.Z. Experimental study on the performance of foamy oil flow under different solution gas-oil ratios. RSC Adv. 2015, 5, 66797–66806. [Google Scholar] [CrossRef]
- Lu, T.; Li, Z.M.; Li, S.Y.; Li, X.M.; Wang, P.; Wang, Z.Z. Physical and numerical simulations of flow characteristics in solution gas drive for heavy oils. Acta Pet. Sin. 2014, 35, 332–339. [Google Scholar]
- Cui, G.L.; Zhang, Y.Y.; Sun, X.F.; Duan, X.W. Foamy oil characteristics of dissolved gas drive in heavy crude. Complex Hydrocarb. Reserv. 2013, 6, 55–58. [Google Scholar]
- Liu, P.C.; Wu, Y.B.; Li, X.L. Experimental study on the stability of the foamy oil in developing heavy oil reservoirs. Fuel 2013, 111, 12–19. [Google Scholar] [CrossRef]
- Lu, T.; Li, Z.M.; Li, S.Y.; Li, B.F.; Liu, S.Q. Performances of different recovery methods for Orinoco Belt heavy oil after solution gas drive. Energy Fuels 2013, 27, 3499–3507. [Google Scholar] [CrossRef]
- Ostos, A.T.; Maini, B.B. An integrated experimental study of foamy oil flow during solution gas drive. J. Can. Pet. Technol. 2005, 44, 43–50. [Google Scholar] [CrossRef]
- Turta, A.T.; Maini, B.B.; Jackson, C. Mobility of gas-in-oil dispersions in enhanced solution gas drive (foamy oil) exploitation of heavy oil reservoirs. J. Can. Pet. Technol. 2003, 42, 48–55. [Google Scholar] [CrossRef]
- Sun, X.F.; Zhang, Y.Y.; Li, X.M.; Li, W.W.; Song, H.H. Simulation model evaluation in foamy oil reservoir and porous flow mechanism study based on experimental matching. J. China Univ. Pet. 2013, 37, 114–118. [Google Scholar]
- Wang, L.; Rao, L.Y.; Li, W.; Li, J. Experimental study and numerical simulation on P oilfield in the progress of water injection. J. Southwest Pet. Univ. 2011, 33, 109–114. [Google Scholar]
- Li, B.; Li, T.L.; Zhang, Y.C. Experimental research of water flooding time in high permeability sandstone reservoirs. Acta Pet. Sin. 2007, 28, 78–82. [Google Scholar]
- Zhang, S.L.; Huang, Y.M.; Niu, M.C.; Zhu, K. Tracking optimum development by water injection and achieve effect in Chengdao oilfield. J. Southwest Pet. Inst. 2003, 25, 46–48. [Google Scholar]
- Ahmadpour, M.; Siavashi, M.; Moghimi, M. Numerical simulation of two-phase mass transport in three-dimensional naturally fractured reservoirs using discrete streamlines. Numer. Heat Transf. Part A Appl. 2018, 73, 482–500. [Google Scholar] [CrossRef]
- Wang, S.R.; Cheng, L.S.; Huang, S.J.; Xue, Y.C.; Bai, M.H.; Wu, Y.H.; Jia, P. A Semi-Analytical Method for Modeling Two-Phase Flow Behavior in Fractured Carbonate Oil Reservoirs. J. Energy Resour. Technol. 2019, 141, 072902. [Google Scholar] [CrossRef]
- Lu, X.Q.; Zhou, X.; Luo, J.X.; Zeng, F.H.; Peng, X.L. Characterization of Foamy Oil and Gas/Oil Two-Phase Flow in Porous Media for a Heavy Oil/Methane System. J. Energy Resour. Technol. 2018, 141, 032801. [Google Scholar] [CrossRef]
- Wang, S.R.; Cheng, L.S.; Xue, Y.C.; Huang, S.J.; Wu, Y.H.; Jia, P.; Sun, Z. A Semi-Analytical Method for Simulating Two-Phase Flow Performance of Horizontal Volatile Oil Wells in Fractured Carbonate Reservoirs. Energies 2018, 11, 2700. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.H.; Cheng, L.S.; Huang, S.J.; Bai, Y.H.; Jia, P.; Wang, S.R. An approximate semianalytical method for two-phase flow analysis of liquid-rich shale gas and tight light-oil wells. J. Pet. Sci. Eng. 2019, 176, 562–572. [Google Scholar] [CrossRef]
- Siripatrachai, N.; Ertekin, T.; Johns, R.T. Compositional Simulation of Hydraulically Fractured Tight Formation Considering the Effect of Capillary Pressure on Phase Behavior. SPE J. 2017, 22, 1046–1063. [Google Scholar] [CrossRef]
- Qin, Y.; Yao, S.; Xiao, H.; Cao, J.; Hu, W.; Sun, L.; Tao, K.; Liu, X. Pore structure and connectivity of tight sandstone reservoirs in petroleum basins: A review and application of new methodologies to the Late Triassic Ordos Basin, China. Mar. Pet. Geol. 2021, 129, 105084. [Google Scholar] [CrossRef]
- Wang, F.J.; Liu, Y.K.; Yu, S.H. Reservoir characteristics of tight sandstone in the eastern Sulige Gas Field. Pet. Geol. Recovery Effic. 2017, 24, 43–47. [Google Scholar]
- Zhu, Y.C.; Jiang, Y.Y.; Wu, J.J.; Yang, S.; Guo, X.G. Quantitative prediction of tight oil reservoir properties in Jumusar depression. Spec. Oil Gas Reserv. 2017, 24, 42–47. [Google Scholar]
- Zhao, X.L.; Yang, Z.M.; Lin, W. Study on pore structures of tight sandstone reservoirs based in nitrogen absorption, high-pressure mercury intrusion and rate-controlled mercury intrusion. J. Energy Resour. Technol. 2019, 141, 112903. [Google Scholar] [CrossRef]
- Yang, Z.M.; Guo, H.K.; Liu, X.W. Micro-Pore Structure Test and Physical Simulation Technology of Low Permeability-Tight Reservoirs; Petroleum Industry Press: Beijing, China, 2017. [Google Scholar]
- Zhang, X.L. Calculation of natural depletion oil recovery for low permeability reservoirs. J. Liaoning Tech. Univ. 2014, 33, 633–636. [Google Scholar]
- Song, Y.L.; Song, Z.J.; Feng, D.; Qin, J.H.; Chen, Y.K.; Shi, Y.L.; Hou, J.R.; Song, K.P. Phase behavior of hydrocarbon mixture in shale nanopores considering the effect of adsorption and its induced critical shifts. Ind. Eng. Chem. Res. 2020, 59, 8374–8382. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Wang, Y.N.; Zhong, J.J.; Xu, Y.; Sinton, D.; Jin, Z.H. Bubble point pressures of hydrocarbon mixtures in multiscale volumes from density functional theory. Langmuir 2018, 34, 14058–14068. [Google Scholar] [CrossRef] [PubMed]
- Nojabaei, B.; Johns, R.T.; Chu, L. Effect of capillary pressure on phase behavior in tight rocks and shales. SPE Reserv. Eval. Eng. 2013, 16, 281–289. [Google Scholar] [CrossRef]
- Zhang, M.L.; Mei, H.Y.; Li, M.; Sun, L.T.; Li, S.L.; Wu, Q.S. A phase equilibrium model in volatile petroleum system under consideration of capillary pressure. China Offshore Oil Gas 2002, 16, 48–51. [Google Scholar]
- He, Y. Research on Reservoir Engineering Method of Low Permeability Reservoir Well Pattern Deployment; Graduate School of Chinese Academy of Sciences, Institute of Percolation Fluid Mechanics: Langfang, China, 2009. [Google Scholar]
Number | Length (cm) | Diameter (cm) | Porosity (%) | Gas Log Permeability (mD) |
---|---|---|---|---|
16-1B | 4.29 | 2.49 | 11.25 | 0.12 |
11-4A | 4.16 | 2.51 | 10.48 | 0.29 |
97 | 6.21 | 2.50 | 13.23 | 0.53 |
Components | Mole Fraction (%) |
---|---|
CH4 | 54.8 |
C2H6 | 37.0 |
C3H8 | 5.0 |
N2 | 3.2 |
Distilled Water (L) | NaCl (g) | CaCl2 (g) | MgCl2 (g) |
---|---|---|---|
1 | 43.75 | 3.75 | 2.50 |
Solution Gas–Oil Ratio (m3/t) | Viscosity of Degassed Oil (mPa·s) | Viscosity of Formation Oil (mPa·s) | Temperature (°C) | Formation Pressure (MPa) | Bubble Point Measured in PVT Apparatus Set (MPa) |
---|---|---|---|---|---|
80 | 4.3 | 1.23 | 72 | 18 | 10.72 |
Number | Median Radius (μm) | Median Pressure (MPa) | Displacement Pressure (MPa) |
---|---|---|---|
16-1B | 0.1289 | 5.7 | 3.1 |
11-4A | 0.2542 | 2.8 | 0.8 |
97 | 0.3067 | 2.3 | 0.4 |
Number | Gas Log Permeability (mD) | Pseudo-Bubble Point Pressure (MPa) | Resistance Gradient Under Pseudo-Bubble Point Pressure (MPa/m) |
---|---|---|---|
16-1B | 0.12 | 9.75 | 0.482 |
11-4A | 0.30 | 9.25 | 0.106 |
97 | 0.53 | 9.00 | 0.085 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Y.; Yang, Z.; Zhang, Y.; Wu, Z.; Luo, Y.; Li, H.; He, Y. Physical Simulation and Mathematical Model of the Porous Flow Characteristics of Gas-Bearing Tight Oil Reservoirs. Energies 2021, 14, 3121. https://doi.org/10.3390/en14113121
Rao Y, Yang Z, Zhang Y, Wu Z, Luo Y, Li H, He Y. Physical Simulation and Mathematical Model of the Porous Flow Characteristics of Gas-Bearing Tight Oil Reservoirs. Energies. 2021; 14(11):3121. https://doi.org/10.3390/en14113121
Chicago/Turabian StyleRao, Yuan, Zhengming Yang, Yapu Zhang, Zhenkai Wu, Yutian Luo, Haibo Li, and Ying He. 2021. "Physical Simulation and Mathematical Model of the Porous Flow Characteristics of Gas-Bearing Tight Oil Reservoirs" Energies 14, no. 11: 3121. https://doi.org/10.3390/en14113121
APA StyleRao, Y., Yang, Z., Zhang, Y., Wu, Z., Luo, Y., Li, H., & He, Y. (2021). Physical Simulation and Mathematical Model of the Porous Flow Characteristics of Gas-Bearing Tight Oil Reservoirs. Energies, 14(11), 3121. https://doi.org/10.3390/en14113121