Investigation of Compact Hollow-Anode Discharge Source for Copper Thin Films by Sputtering Processes
Abstract
:1. Introduction
2. Model
3. Experiment
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, I.J.; Joa, S.B.; Lee, H.J. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron. J. Nanosci. Nanotechnol. 2013, 13, 7370–7375. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.J.; Ko, M.G.; Yang, J.K.; Lee, H.J. Plasma surface treatments by using a dielectric barrier discharge for the deposition of diamond films. J. Korean Phys. Soc. 2013, 63, 199–205. [Google Scholar] [CrossRef]
- Terasawa, T.; Saiki, K. Growth of Graphene on Cu by Plasma Enhanced Chemical Vapor Deposition. Carbon 2012, 50, 869–874. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Babayan, S.E.; Tu, V.J.; Park, J.; Henins, I.; Hicks, R.F.; Selwyn, G.S. Etching materials with an atmospheric-pressure plasma jet. Plasma Source Sci. Technol. 1998, 7, 282–285. [Google Scholar] [CrossRef]
- Miljevic, V.I. Hollow anode ion–electron source. Rev. Sci. Instrum. 1984, 55, 931–933. [Google Scholar] [CrossRef]
- Anders, A.; Anders, S. The working principle of the hollow-anode plasma source. Plasma Source Sci. Technol. 1995, 4, 571–575. [Google Scholar] [CrossRef]
- Granda-Gutiérrez, E.E.; López-Callejas, R.; Peña-Eguiluz, R.; Valencia, A.R.; Mercado-Cabrera, A.; Barocio, S.R.; de la Piedad-Beneitez, A.; Benítez-Read, J.S.; Pacheco-Sotelo, J.O. V-I curves and plasma parameters in a high density DC glow discharge generated by a current-source. J. Phys. Conf. Ser. 2008, 100, 062019. [Google Scholar] [CrossRef]
- Abdelsalam, F.W.; Helal, A.G.; Saddeek, Y.B.; Abdelrahman, M.M.; Soliman, B.A. Investigation and application of hollow anode glow discharge ion source. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 3464–3467. [Google Scholar] [CrossRef]
- Park, Y.-S.; Hwang, Y.S. Enhancement in ion beam current with layered-glows in a constricted dc plasma ion source. Rev. Sci. Instrum. 2010, 81, 02B309. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Godyak, V.A. Soviet Radio Frequency Discharge Research; Delphic: Falls Church, VA, USA, 1986. [Google Scholar]
- Kimura, T.; Ohe, K. Global model of inductively coupled Ar plasmas using two-temperature approximation. J. Appl. Phys. 2001, 89, 4240–4246. [Google Scholar] [CrossRef]
- Chen, F.F. Introduction to Plasma Physics and Controlled Fusion, 3rd ed.; Springer: Los Angeles, CA, USA, 2016. [Google Scholar]
- Hutchinson, I.H. Principles of Plasma Diagnostics, 2nd ed.; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Green, T.S. Beam Formation and Space Charge Neutralisation. IEEE Trans. Nucl. Sci. 1976, NS-23, 918–928. [Google Scholar] [CrossRef]
- Abdelsalam, F.W.; Helal, A.G.; Abdelrahman, M.M.; Soliman, B.A. Operating characteristics of the hollow anode glow discharge ion source. Vacuum 2010, 84, 405–409. [Google Scholar] [CrossRef]
- Chung, K.-S.; Hong, S.-H.; Chung, K.-H. Measurements of Plasma Flow Velocity in DC Plasma Jets Using Perpendicular and Parallel Mach Probes. Jpn. J. Appl. Phys. 1995, 34, 4217–4222. [Google Scholar] [CrossRef]
- Kim, J.-W.; Cho, S.-G.; Bae, M.-K.; Kim, H.-J.; Chung, T.H.; Chung, K.-S. Analysis of Electron Temperature in DC Ar/SF6 Plasma Using Cylindrical and Planar Probes. Jpn. J. Appl. Phys. 2013, 52, 11NC03. [Google Scholar] [CrossRef]
- Kang, I.J.; Bae, M.-K.; Lho, T.; Chung, K.-S. Experimental investigation of free and bounded presheaths in weakly magnetized plasmas. Curr. Appl. Phys. 2017, 17, 358–365. [Google Scholar] [CrossRef]
- Chen, F.F. Langmuir probe analysis for high density plasmas. Phys. Plasmas 2001, 8, 3029–3041. [Google Scholar] [CrossRef] [Green Version]
- Callen, J.D. Model of Plasma Confinement and Heating in Tokamaks; University of Wisconsin: Madison, WI, USA, 1989. [Google Scholar]
- Choi, Y.-S.; Woo, H.-J.; Chung, K.-S.; Lee, M.-J. Determination of Plasma Flow Velocity by Mach Probe and Triple Probe with Correction by Laser-Induced Fluorescence in Unmagnetized Plasmas. Jpn. J. Appl. Phys. 2006, 45, 5945–5950. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, I.-J.; Kim, J.-H.; Park, I.-S.; Chung, K.-S. Investigation of Compact Hollow-Anode Discharge Source for Copper Thin Films by Sputtering Processes. Energies 2021, 14, 3138. https://doi.org/10.3390/en14113138
Kang I-J, Kim J-H, Park I-S, Chung K-S. Investigation of Compact Hollow-Anode Discharge Source for Copper Thin Films by Sputtering Processes. Energies. 2021; 14(11):3138. https://doi.org/10.3390/en14113138
Chicago/Turabian StyleKang, In-Je, Ji-Hun Kim, In-Sun Park, and Kyu-Sun Chung. 2021. "Investigation of Compact Hollow-Anode Discharge Source for Copper Thin Films by Sputtering Processes" Energies 14, no. 11: 3138. https://doi.org/10.3390/en14113138
APA StyleKang, I. -J., Kim, J. -H., Park, I. -S., & Chung, K. -S. (2021). Investigation of Compact Hollow-Anode Discharge Source for Copper Thin Films by Sputtering Processes. Energies, 14(11), 3138. https://doi.org/10.3390/en14113138